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Abstract

Choice of observational networks used for inverse re-estimation of elemental (or black)
carbon (EC) emissions in the United States impacts results. We convert the Thermal
Optical Transmittance (TOT) EC measurements to the Thermal Optical Reflectance
(TOR) equivalents to make full utilization of available networks in inverse modeling of
EC using regional air quality model. Results show that using the Interagency Monitoring
of Protected Visual Environments (IMPROVE) network gives significantly lower
emissions estimate compared to using the Speciation Trends Network (STN) and other
networks or using all available networks together. The re-estimate obtained by using
IMPROVE sites alone made overall model performance worse compared to the
bottom-up estimate of EC emissions, while both re-estimates, using STN (and others)
sites and using all sites together, significantly improved the performance. Further analysis
suggests that site density with respect to geographical location (downwind) impacts the

robustness of a network’s inverse re-estimate.
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1. Introduction

Atmospheric chemical transport models are subject to emissions uncertainties.
Application of inverse methods in atmospheric models helps reconcile the gap between
modeled and observed species concentrations by adjusting the emissions. During the past
decade, using surface monitoring networks and satellite images, inverse modeling has
been actively utilized to “correct” bottom-up emissions estimates [ Bergamaschi et al.,
2000; Elbern et al., 2000; Gilliland et al., 2003; Heald et al., 2004; Mendoza-Dominguez
and Russell, 2001]. However, the adoption of different observational networks in inverse
modeling can lead to discrepancies in inverse emissions estimates [Law et al., 2003;
Patra et al., 2006]. Of interest is the sensitivity of the inverse estimates to the choice of
observational networks. Here we study the sensitivity of inverse estimation of elemental
(or black) carbon (EC) emissions to different observational networks and examine the
robustness of the re-estimates.

EC is measured as the light-absorbing fraction of carbonaceous aerosol species and
can be a significant component of fine particulate matter (PM, 5). However, its
measurement is operationally defined and different measurement techniques give
differing, but often highly correlated results [Chow et al., 2004, Hitzenberger et al., 2006;
Nejedly et al., 2003; Schmid et al., 2001]. EC is found to be associated with adverse
human health effects and regional visibility degradation and can influence radiative
forcing [Charlson et al., 1992; Penner et al., 1992; Ramanathan et al., 2001]. EC in the
atmosphere comes solely from combustion processes of either fossil fuels (e.g. coal
burning and diesel combustion) or bio-mass ('é. g. wildfire and prescribed burning).

Studies suggest EC emissions inventories are significantly underestimated at regional
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level (e.g. in the United States) [Eder and Yu, 2006; Tesche et al., 2006]. Limited inverse
modeling studies have been carried out to adjust the existing emissions inventory
[Hakami et al., 2005; Park et al., 2003] utilizing aircraft and/or surface measurements,
however the spatial and temporal coverage of EC measurements were extremely limited
in these studies.

EC emissions in the US are estimated to be about 0.4 Tg yr' which is 5% of the
global totals [Bond et al., 2004], which makes the US the third largest emitter after China
(~20%) and India (~9%). There are two major national surface networks measuring EC
currently operational in the US: the Interagency Monitoring of Protected Visual
Environments (IMPROVE) network and the Speciation Trends Network (STN). In
addition, there is the SouthEastern Aerosol Research and CHaracterization (SEARCH)
[Hansen et al., 2006] in the southeastern US, and the Assessment of Spatial Aerosol
Composition in Atlanta (ASACA) [Butler et az;., 2003] in Georgia, measuring EC as well.
IMPROVE sites are located primarily in rural areas while STN, SEARCH and ASACA
networks include urban, sub-urban and rural sites (urban and sub-urban sites being the
majority). The observations at rural sites (i.e. a portion of current IMPROVE sites) have
been utilized by Park, et al. [2003] to adjust the carbonaceous aerosols including EC
emissions in the US for 1998, but urban networks have not been utilized in previous
similar inverse modeling studies.

We adopt an inverse method [Mendoza-Dominguez and Russell, 2000], along with
the Community Multiscale Air Quality model (CMAQ) [Byun and Schere, 2006]
equipped with the Decoupled Direct Method in Three Dimensions (DDM-3D) [Cohan et

al., 2005; Dunker et al., 2002; Napelenok et al., 2006; Yang et al., 1997] for sensitivity
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calculations, to adjust the 2004 US regional EC emissions inventory. We examine the
sensitivity of EC emissions adjustment to the choice of different observational networks
(i.e., IMPROVE versus STN, SEARCH and ASACA combined (called SSA hereafter)
and all of the networks (called ALL hereafter) (see site locations in Figure 1a)) in the
inverse modeling.

2. Method

For five chosen months (January, March, May, August and October) in 2004, we
apply CMAQ (Version 4.5, updated with mass conservation [Hu et al., 2006]) to simulate
EC concentrations as well as DDM-3D to obtain coefficients of EC sensitivity to specific
sources. The modeling domain (Figure 1b), covering the entire continental US as well as
portions of Canada and Mexico, has a 36-km horizontal resolution and thirteen vertical
layers extending ~16 km above ground, 7 layers below 1 km and a first layer of 18 m
thickness. The Fifth-Generation PSU/NCAR Mesoscale Model (MMS5) [Grell et al., 1994]
is used to develop the meteorological fields and is run with 34 vertical layers using four
dimensional data assimilation (FDDA) technique and the Pleim-Xiu Land-Surface Model
(PX-LSM) [Pleim and Xiu, 1995; Xiu and Pleim, 2001]. Simulated surface
meteorological fields were examined against surface hourly observations from North
America (Table S1), with performance well within the typical range for air quality
modeling [Emery et al., 2001; Hanna and Yang, 2001]. The Sparse Matrix Operator
Kernel Emissions (SMOKE) model [CEP, 2003] is used to prepare gridded, CMAQ-
ready emissions using a priori emissions (APRIOR]) for the year 2004 which were
projected from a 2002 inventory (VISTAS2002) [MACTEC, 2005]. Biomass fire

emissions in VISTAS2002 were estimated for a “typical” year by averaging actual fire



93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

information from a five-year period between 1999 and 2003, which is used directly as the
estimate for 2004. We sub-divide APRIORI to twenty-seven sources: Canadian total
within the domain, Mexican total within the domain, and the continental US emissions
divided to five regional planning organization (RPO) regions (Figure 1b), further split
into five categories: on-road mobile, off-road mobile, fire (including wildfire, agricultural
burning and prescribed burning), wood fuel and “others” (including coal-burning power
plants etc.). We calculate the sensitivity of EC concentrations (at each grid cell) to each
of the above sub-group EC emissions sources.

Sensitivities of EC concentration to each individual sub-group source are used to
estimate how much EC emissions from each specific source should be adjusted to
minimize the CMAQ EC prediction errors (difference between the simulation and the
observation) at each site through ridge regression [Draper and van Nostrand, 1979].
Detailed description of the inverse method is documented elsewhere [Mendoza-
Dominguez and Russell, 2000]. Here, we calculate the emissions adjustment factors
m that minimize the objective function I" (Equations S1 and S2) which is a linear
combination of the errors and the adjustments to emissions.

Inverse modeling is conducted three times using measurements, respectively, from
the IMPROVE, SSA and ALL networks. Measurements used here are 24-hr averages

(midnight to midnight) collected using filters, but in different frequencies, either daily, or

~ every third day or sixth day. We first average all measurements (and the corresponding

predictions as well as the sensitivity coefficients) at the same site to get a monthly mean.
For multiple sites that are located in the same grid cell, we further average their monthly

means to obtain a composite. After merging, the number of IMRPOVE sites remained the
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same at 163 (i.e. no multiple sites in a same grid cell), while the number of SSA sites
dropped from 245 to 211. Note that different protocols are adopted by the networks to
measure aerosol carbon fraction (EC and organic carbon (OC)): the Thermal Optical
Transmittance (TOT) is used by STN and ASACA while the Thermal Optical
Reflectance (TOR) is used by IMPROVE and SEARCH. Most of the speciation profiles
used in SMOKE to split EC and OC emissions from_PMz‘ 5 totals were determined using
the TOR protocol. For consistency, we convert the TOT measurements to TOR
equivalent values by using seasonal factors (Table 1) obtained through a parallel TOR
and TOT comparison study recently carried out at the SEARCH sites [Chen et al., 2009].

We apply three sets of adjustment factors to APRIORI to obtain the posterior EC
emissions inventories. These re-estimates of emissions are then used to drive the model.
We calculate the improvements of the posterior CMAQ model performance (with respect
to the prior performance) to examine the robustness of each re-estimate obtained. Model
performance is judged by the fractional bias (FB) and fractional error (FE) (Equations S3
and S4).

3. Results and Discussion

APRIORI estimates (through bottom-up methods) the US continental total EC
emissions for 2004 as about 0.36 Tg yr''. Off-road and fire emissions are the two leading
categories continent-wide (Figure S1a). Fire emissions lead in the west (WRAP and
CENRAP) and off-road emissions lead in the east (VISTAS, MANE-VU and Midwest).
By using APRIORI, the model performance is comparable to what is typically reported
for regional application of CMAQ [Eder and Yu, 2006; Tesche et al., 2006]. Overall FB

and FE against ALL sites are -42.6% and 65.1%. Among the five simulated months: the
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best performance is seen for winter (January) and the worst for summer (August) though
all of the months were biased low (Figure 2). Note that CMAQ predictions did a slightly

better job at the IMPROVE sites than at the SSA sites (not shown), while on average, the
IMPROVE sites have much cleaner air than the SSA sties with an observed EC mean of

0.23 ug m™ versus 1.05 ug m”.

We re-estimate the US continental total EC emissions for 2004 to be 0.40, 0.29 and
0.44 Tg yr', respectively, by using ALL, IMPROVE and SSA networks in the inversion.
Note that we apply the adjustment factors to APRIORI for each month of 2004, i.e. either
the chosen month itself or a month that the chosen month represents (Table S2), to get the
annual totals. Overall, the IMPROVE re-estimate reduced the prior annual emissions
significantly, while both the ALL and SSA re-estimates increased the emissions. Between
the ALL and SSA re-estimates, insignificant differences (within a few percents) are seen
for most RPOs and categories, but the SSA re-estimates increased emissions largely from
WRAP and from fire while the ALL re-estimates did not (Figure S1). Both the ALL and
SSA re-estimates improved model performance (against ALL sites) for all five months,
for both FB and FE (Figure 2). However the IMPROVE re-estimate led to a deterioration
in the model performance (Figure 2). We also calculated “performance change” (defined
as the difference of FEs between the posterior and the prior) at each individual site. Both
the ALL and SSA re-estimates resulted in better CMAQ predictions at about 70% of the
total sites (i.e. ALL sites), while the IMPROVE re-estimate made predictions worse at
two thirds of them (Figure S2), roughly proportional to the number of SSA and
IMPROVE sites. This suggests that the IMPROVE re-estimate of EC emissions is less

robust than the ALL or SSA re-estimate. This is tied to the geographic location of major
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emission sources and the monitors. While one set of sources (on-road, off-road and fuel
burning) are concentrated in urban areas (similar to SSA sites), fires are not. Thus using a
network that is less sensitive to the one set of sources weakens the inversion.

Prediction errors still remain in the posterior model results obtained by using the
ALL and SSA re-estimates even though the performance improved. The remaining errors
could come from model parameterization and other model inputs, e.g. errors in vertical
diffusion, wind fields, boundary conditions and etc., as well as remaining errors in
emissions inputs, ¢.g. the errors in the temporal variations and sub-regional spatial
variability that our emissions adjustments did not address. The remaining prediction
errors might also come from the representativeness of point measurements within a
modeled grid, especially for sites near polluted areas where large spatial gradients exist in
EC concentrations. However, compared to the much coarser grid spacing adopted in
previous studies (e.g. 80-km or even 2° latitude by 2.5° longitude), the 36-km grid
spacing we have adopted in this study better captures the spatial gradients of primary
pollutants like EC.

A common belief is that an inverse re-estimate would be more robust when using a
higher density of monitoring sites, especially for primary pollutants like EC. Domain
wide, the total number of SSA sites is just slightly larger than IMRPOVE sites, which
explains only part of the difference in robustness. However, the monitoring site densities
are geographically imbalanced for both the SSA and IMPROVE networks. The
IMPROVE sites are situated more in the western US than in the east, while the SSA sites
are predominantly in the east (Table 2). Since upper level winds are mostly eastward the

urban-oriented SSA network is impacted by emissions from more upwind regions. The
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life time of EC is about 6 days on average [Park et al., 2005] which is sufficient to be
transported across the continent. This can be seen more clearly through the non-zero
sensitivity counts reported by RPO region (Table 3a). Monitoring sites located in WRAP
are situated in the far west and are having a smaller number of non-zero sensitivities than
any other RPO to the east. Inside WRAP the ratio of IMPROVE sites to SSA sites is
almost 3:1. Downwind, the number of non-zero sensitivities becomes larger while at the
same time the number of SSA sites relative to IMRPOVE sites increase. These results
suggest that the robustness of the EC inverse re-estimates are impacted by site density
and geographical location, with further downwind sites adding robustness. Furthermore,
sites with larger sensitivities receive heavier weightings in inversion (Equation S2). In
this regard the location of rural (impacted by smaller sources) vs. urban (impacted by
larger sources), plays a role. The sites, that is immediately downwind of larger sources
are more impacted and weight more in the inversion. While there is no difference in the
average number of non-zero sensitivities between IMPROVE and SSA networks from the
same RPO (Table 3a), the average number of above-EC-detection-limit sensitivities are
significantly less for IMPROVE than SSA, and more so in the West (Table 3b). This
suggests that the robustness of the EC inverse re-estimates is further impacted by the sites
located immediately downwind of larger sources. This also explains that the ALL re-
estimate was not significantly more robust than the SSA re-estimate though utilizing
more than 50% more sites.

Park, et al. [2003], the only previous top-down estimation of EC emissions in the US,
increased the a priori estimate of 0.66 Tg yr”' to 0.75 Tg yr’'. They estimated a 15%

increase in fossil fuel emissions, a 65% increase in biofuel emissions and a 17% decrease
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in biomass burning emissions. There are a number of differences between that study and
the one presented here. The prior inventory of fossil fuel emissions (totaling to 0.52 Tg
yr'') used in their study had been developed for 1984 [Cooke et al., 1999] and may have
largely overestimated the EC fossil fuel emissions for the year 1998 [Bond et al., 2004].
Second, the grid spacing was 2° latitude by 2.5° longitude in their global transport model.
Third, only 45 rural-sites from IMPROVE network were available then. Finally among

the 45 sites, seven of them (model overestimated at these sites) were further excluded.
4. Conclusion

Our sensitivity study of inverse re-estimation of EC emissions in the US to the
choice of different observational networks found that the re-estimate using the
IMPROVE sites (all rurally situated) alone leads to significantly different results than
using STN sites plus SEARCH and ASACA sites ( mairﬂy urban and suburban) or using
all sites together. The difference in model performance between the posterior and prior
simulations suggests that the IMRPOVE re-estimate was less robust than the other two.
Further analysis based on examining the sensitivity coefficients obtained through DDM-
3D calculations suggests that it was neither the rural vs. urban site locations nor number
of sites, alone, but the site density with respect to geographical location (downwind of
source) affected the robustness of the inverse re-estimate as well. Since much of the EC
emissions are associated with sources more concentrated in urban areas, having more
measurements in urban area leads to better constraining on EC emissions inventory.
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Figure Captions

Figure 1. (a) EC monitoring networks: IMPROVE (green dots), STN (red dots) and
SEARCH and ASACA (pink dots). Urban areas in the United States are shown in blue.

(b) Modeling domain, with a 36-km horizontal grid spacing. The sub regions of the
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United States studied as source areas in the sensitivity analysis are the five RPO regions:

CENRAP, Midwest RPO, MANE-VU, WRAP and VISTAS.

Figure 2. Monthly CMAQ EC performance (against ALL sites) by using the a priori and

the three a posteriori emissions inventories (i.e. the All, IMPROVE and SSA re-

estimates): (a) FB and (b) FE.

Tables

Table 1 Seasonal factors (a ) converting BC ambient concentration from TOT

measurements to TOR equivalents: TOR = ax TOT .

Winter Spring Summer Fall

1.672 1.831 2.577 1.890

*Data source Chen et al. [2009]

Table 2 Sites numbers located in each RPO region.

Network WRAP CENRAP Midwest RPO VISTAS MANE-VU Total
SSA 35 39 34 67 36 211
IMPROVE 92 24 7 17 23 163
ALL 124 60 39 82 53 358

*These are numbers of composite sites.

per total EC emissions in a specific source is considered numerical noise and omitted).

Network WEAP CENRAP Midwest RPO VISTAS MANE-VU Domain
SSA 117 23.0 246 263 27.0 230
IMPROVE 11.4 21.7 254 268 27.0 17.2
All 115 226 247 264 27.0 204
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Table 3b Average number of above-EC-detection-limit DDM-3D sensitivities

(>0.05ug m™ per total EC emissions in a specific source).

Networks WRAP CENRAP Midwest RPO VISTAS MANE-VU Domain
SSA 25 1.7 24 28 28 25

IMPROVE 0.7 0.8 19 18 20 11
All 1.2 14 pel) 26 2.4 1.8
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Supporting Material

Table S1 Statistical measures in MMS5-generated meteorological parameter fields with

respect to the Techniques Development Laboratory (TDL) surface observations.

Parameters Mﬁyr&s Linit Jan Mar May Aup Oat
Surface Wind Speed Mean OBS (mis) EEZ 4.01 387 289 325
Bias {m/s) -0.01 -0.14 -0.08 0.07 0.13
RMSE (m/s) 2.02 1,98 1.89 1.73 .81
Surface Wind Direction Mean OBS (deg) 261.25 243,56 211.28 227.50 193.77
Bias {deg) 2.56 239 .00 248 2.57
{iross Error (deg) 2508 26.92 28.77 32.61 2780
Surface Air Mean OBS (K} 270.63 280,34 289.54 29192 285.95
Temperature Bias (K) 079 0,75 0.29 -0.24 0.36
RMSE (K) 31 294 2.63 249 2.46
Surface Humidity Mean OBS (eke) 3.33 S04 8.68 11,55 n
Bias (zkg) 0.01 0.09 <011 -022 015
Gross Error (;:.-'I_cE} 0.52 0.77 1.10 128 0.92

Table S2 Representative months and the months they represent.

Representing Jan Mar May Aug Oct
Represented Dec and Feb Apr Jun Jul and Sep Nov
Equations

We calculate the emissions adjustment factors m that minimize the objective

functionT :
T=e'We+m'W,m : (S1)
m=(G"W,G+w,)' G'W.d (S2).

where e is a vector of length N representing the prediction errors remaining after
adjustment of emissions (N being the total number of valid pairs of observation and
simulation during each chosen month), m is the vector of faétors that are used to adjust
each sub-group emission source and is of length J ( J being the total number of emissions

sub-groups: 27), superscript 7' denotes the transpose of a vector or matrix, W, is a NxN

matrix weighting the observations, W, is a JxJ matrix representing the penalty function
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that constrains the emissions adjustment factors within prescribed bounds derived from
the uncertainty limits of the base emission estimates, G is a NxJ matrix of semi-
normalized sensitivity coefficients and d is vector of current prediction errors before the
emissions adjustments and is of length N. The first term of our objective function is the
square of the weighted prediction error while the .second term is the square of the
penalized emissions adjustment. The linear system described by Equation 2 has a
dimension of N with J unknown parameters. When N >J, such as the cases in this study,
this is an over-determined problem, and will have a unique least square solution.

Model performance is judged by the fractional bias (FB) and fractional error (FE):

1 & 2(Sim, — Obs,)
FB=—) —————ix100% S3
N z. (Sim, +Obs,) ’ (83)

2|Ssm — Obs. |

x100%
Z (Ssm +Obs,) 4 (54)

where N is the total number of valid pairs of simulated (Sim) and observed (Obs)

concentrations.

Figure Captions
Figure S1. EC emission totals of the a priori and the a posteriori inventories (i.e. the

ALL, IMPROVE and SSA re-estimates): (a) by category (continental US) and (b) by

‘region.

Figure S2. “Performance change” (against ALL sites) versus percentage of total number

of sites (one count at each month).
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