Population Based Exposure Assessment of Bioaccessible Arsenic in Carrots

Santha K.V. Yathavakilla^a, Andrea R. Young^a, Sarah E. Lenhof^c, Madhavi Mantha^a, Christina M. Gallawa^b, Patricia A. Creed^c, Jianping Xue^d, John T. Creed^c
^aStudent Services Contractor ORD, NERL, MCEARD, Cincinnati, OH
^bOak Ridge Research Fellow, Cincinnati, OH,
^cUS EPA, ORD, NERL, MCEARD, Cincinnati, OH

^dUS EPA, NERL, HEASD, Research Triangle Park, NC

Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Introduction

Arsenic is classified as Type 1 carcinogen by IARC

Exposure routes are:

Water

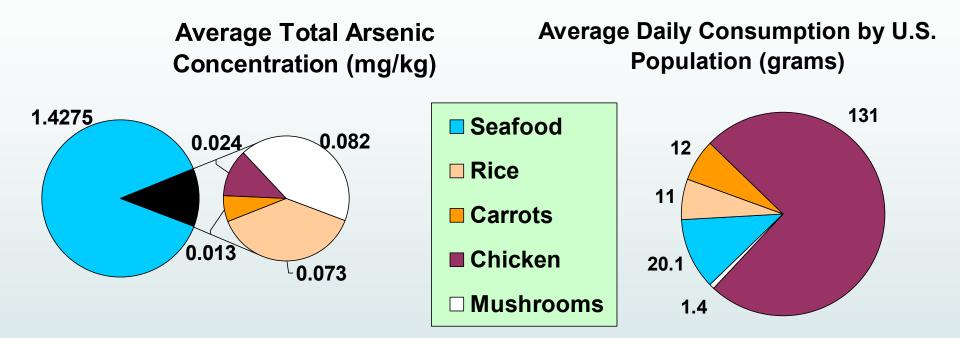
- Easy to analyze
- Centralized distribution
- Easy to control
- Mostly Inorganic arsenic
- Mostly bioaccessible

Food

- Different matrices
- Origin unknown
- Not easy to control
- Different arsenic species in different foods
- Bioaccessibility varies

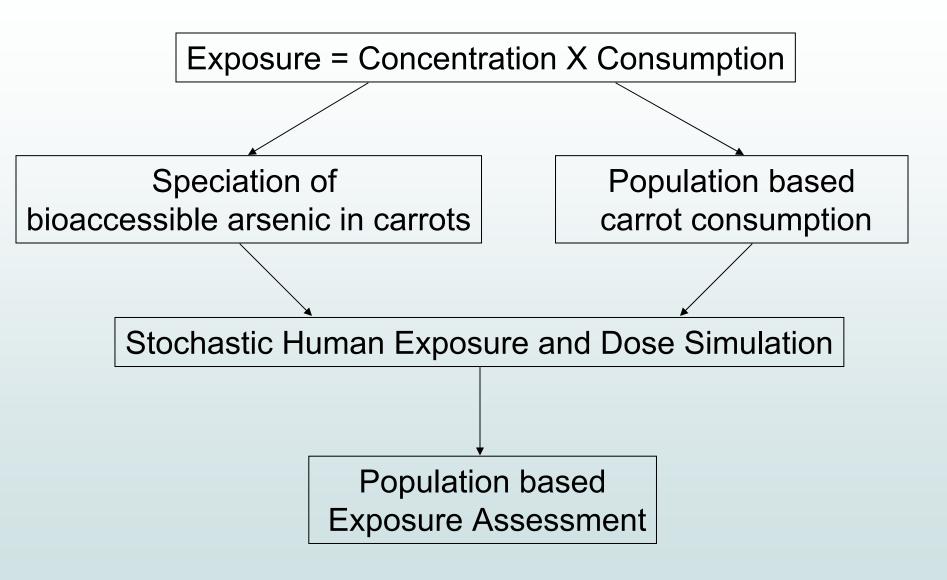
RESEARCH & DEVELOPMENT

Foods with High Arsenic Concentration


Source - Total Diet Study by FDA in 2004

RESEARCH & DEVELOPMENT

Exposure = Concentration x Consumption


Exposure ≠ Dose

RESEARCH & DEVELOPMENT

Outline

RESEARCH & DEVELOPMENT

Typical Sample Preparation for Exposure Analysis

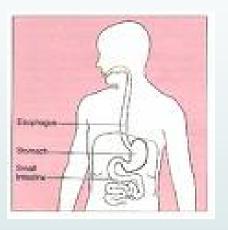
Total Digestion

Speciation Analysis

+ HNO₃ H₂O₂ + Chemical Based Extractions: Acid Base Water

Biological Relevance???

No Species Specific Information


RESEARCH & DEVELOPMENT

Sample Preparation that Approximates Pre-systemic Exposure

Alternatives

Tedious

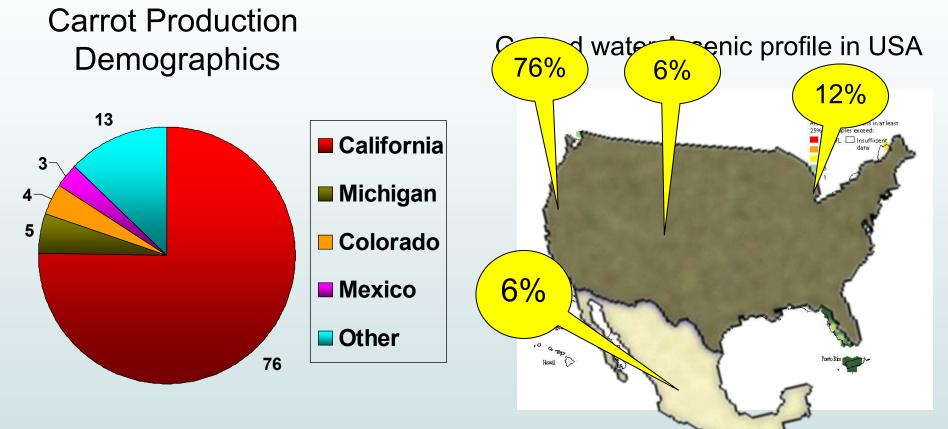
Cross-species correlation?

Ethical issues

In-vitro studies that mimic human GI system

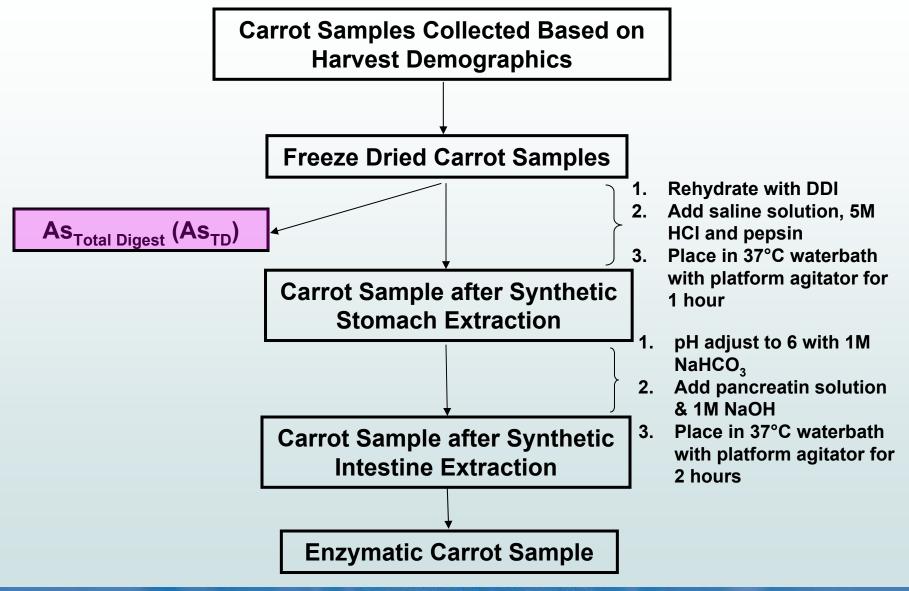
Better control

Estimate of bioaccessible component


RESEARCH & DEVELOPMENT

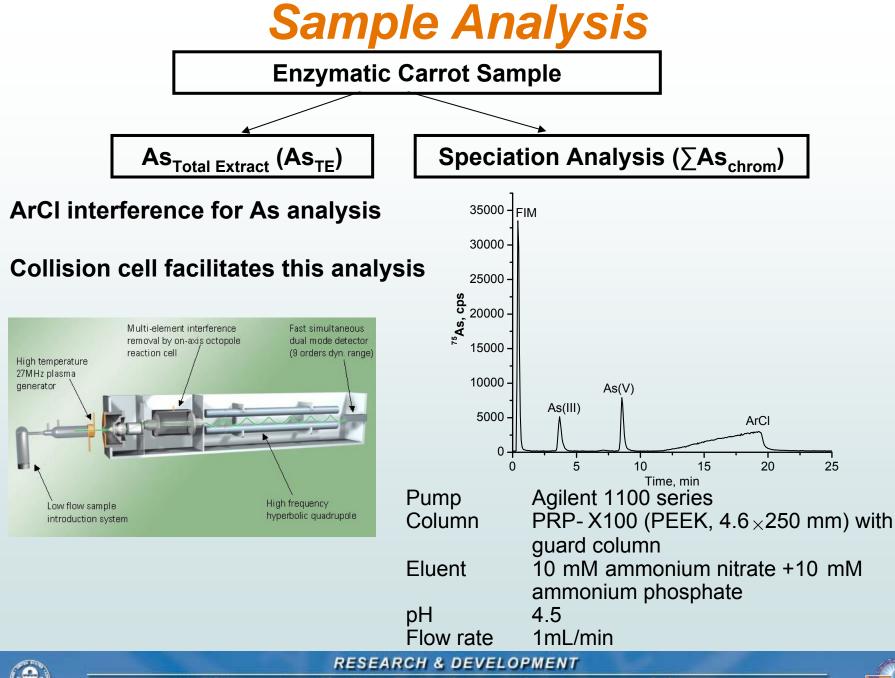
Sample Collection

Carrot sampling for this study



RESEARCH & DEVELOPMENT

Sample Collection and Enzymatic Extraction



RESEARCH & DEVELOPMENT

	1	2	3	4	5	6	7	8	9
		As _{Total}				As _{Speciation}			
Mass	Sample	Wet Weight Moisture Content (%)	Dry Weight Total Digest (ng/g ± 2σ)	Wet Weight Total Digest $(ng/g \pm 2\sigma)$	Dry Weight Extraction Efficiency (% ± 2σ)	Dry Weight As _{Inorganic} $(ng/g \pm 2\sigma)$	Wet Weight As _{Inorganic} $(ng/g \pm 2\sigma)$	Dry Weight Chromatographic Recovery (% ± 20)	Dry Weight Overall Recovery (% ± 25)
balance	1	91	36 ± 0.8	3.5 ± 0.15	61 ± 11.0	21.4 ± 2.5	2.1 ± 0.2	87 ± 3.7	59 ± 6.9
table for	2	90	37 ± 4.6	4.1 ± 1.03	62 ± 17.5	22.7 ± 2.0	2.5 ± 0.2	101 ± 59.1	61 ± 21.5
	3	87	36 ± 4.7	5.4 ± 0.70	82 ± 27.2	28.0 ± 5.6	4.2 ± 0.8	92 ± 22.0	76 ± 15.1
species	4	90	58 ± 11.2	6.5 ± 1.25	87 ± 21.5	45.8 ± 14.2	5.1 ± 1.6	91 ± 19.6	79 ± 24.5
specific	5	88	48 ± 4.2	6.6 ± 0.57	57 ± 22.0	28.3 ± 9.2	3.9 ± 1.3	103 ± 10.5	59 ± 19.1
-	6	87	43 ± 3.5	6.5 ± 0.52	69 ± 17.2	27.4 ± 3.8	4.1 ± 0.6	93 ± 16.7	64 ± 8.9
bioacce-	7	88	63 ± 1.7	8.6 ± 0.23	74 ± 18.2	49.1 ± 12.5	6.7 ± 1.7	107 ± 40.4	78 ± 19.9
ssibility	8	89	74 ± 11.0	9.2 ± 1.35	77 ± 11.0	52.3 ± 8.3	6.5 ± 1.0	93 ± 28.0	71 ± 11.2
	9	91	107 ± 1.3	10.5 ± 0.12	53 ± 9.0	72.0 ± 1.1	7.1 ± 0.1	127 ± 22.8	67 ± 1.0
based	10	90	63 ± 6.0	7.0 ± 0.65	72 ± 2.5	48.7 ± 4.0	5.4 ± 0.4	108 ± 5.6	77 ± 6.37
analysas	11	90	8 ± 5.4	0.85 ± 0.60	ND	ND	ND	ND	ND
analyses	12	90	79 ± 5.7	8.7 ± 0.63	69 ± 6.4	55.6 ± 4.5	6.2 ± 0.5	102 ± 2.2	70 ± 5.7
of arsenic	13	90	79 ± 5.4	9.0 ± 0.65	71 ± 24.2	62.5 ± 16.7	6.9 ± 1.9	112 ± 40.4	79 ± 21.1
	14	90	24 ± 0.6	2.7 ± 0.07	48 ± 15	ND	ND	ND	ND
n carrots	15	87	57 ± 5.9	8.5 ± 0.88	43 ± 9.0	27.9 ± 6.0	4.2 ± 0.9	114 ± 25.8	49 ± 10.6
	16	90	116 ± 14.6	12.8 ± 1.61	29 ± 2.4	32.5 ± 1.5	3.6 ± 0.2	96 ± 8.0	28 ± 1.3
	17	89	39 ± 1.3	4.8 ± 0.16	93 ± 56.6	32.4 ± 4.2	4.0 ± 0.5	94 ± 46.1	83 ± 10.9
	18	90	43 ± 3.6	4.7 ± 0.39	43 ± 16.2	18.0 ± 7.1	2.0 ± 0.8	72 ± 14.0	42 ± 16.5
	Across Matrix Avg ± 2σ	89 ± 2.6	56 ± 55	6.6 ± 5.9	56 ± 15	40 ± 31	4.8 ± 3.1	101 ± 21	65 ± 31

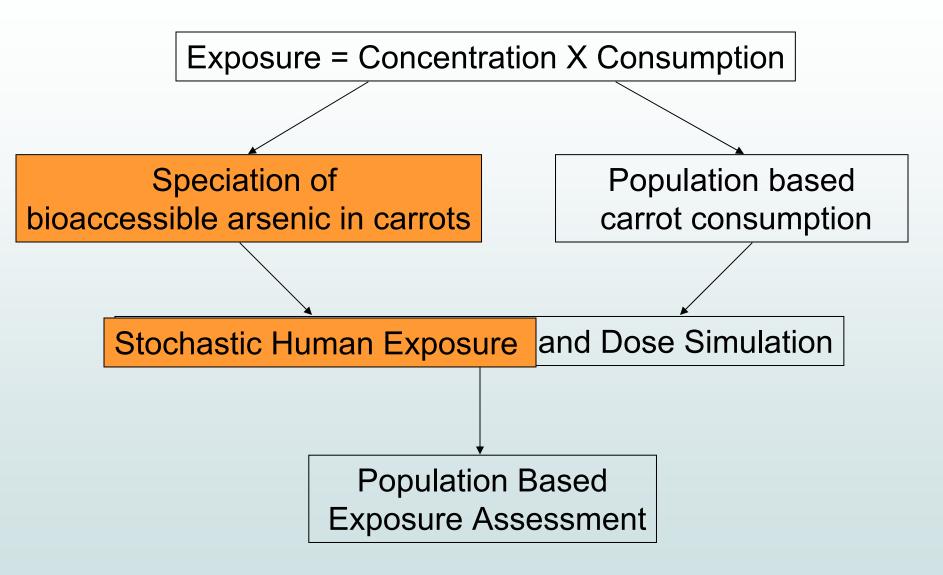
RESEARCH & DEVELOPMENT

a

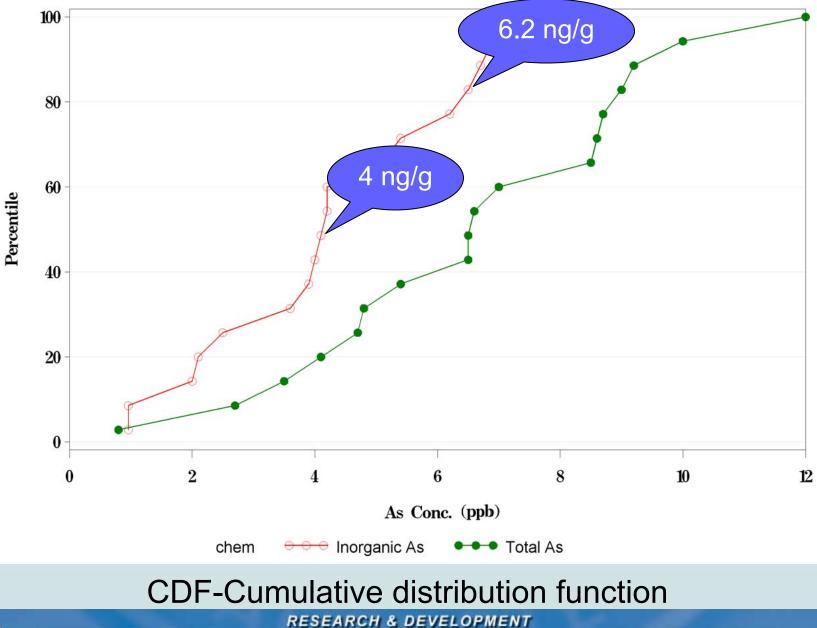
0

i

Across Matrix Averages


1	2	3	4	5	6	7	8	9
	As_{Total}				$\mathrm{As}_{\mathrm{Speciation}}$			
Sample	Wet Weight Moisture Content %	Dry Weight Total Digest (ng/g ± 25)	Wet Weight Total Digest (ng/g ± 2σ)	Dry Weight Extraction Efficiency (%±25)	Dry Weight As _{Inorganic} (ng/g ± 2 ⁵)	Wet Weight AsInorganic $(ng/g \pm 2\sigma)$	Dry Weight Chromatographic Recovery (% ± 25)	Dry Weight Overall Recovery (% ± 2σ)
1								
18								
Across Matrix Avg ± 2σ	89 ± 2.6	56 ± 55	6.6 ± 5.9	56 ± 15	40 ± 31	4.8 ± 3.1	101 ± 21	65 ± 31

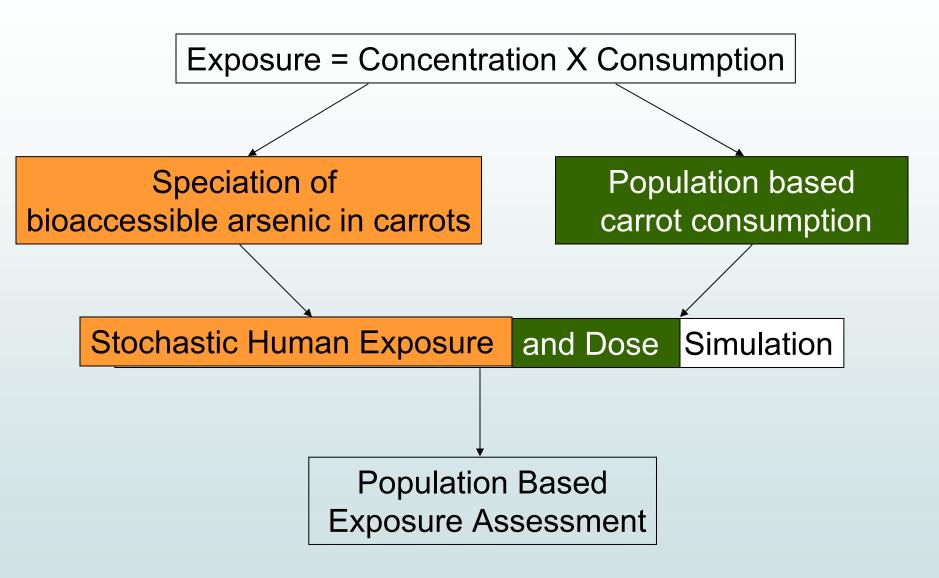
RESEARCH & DEVELOPMENT



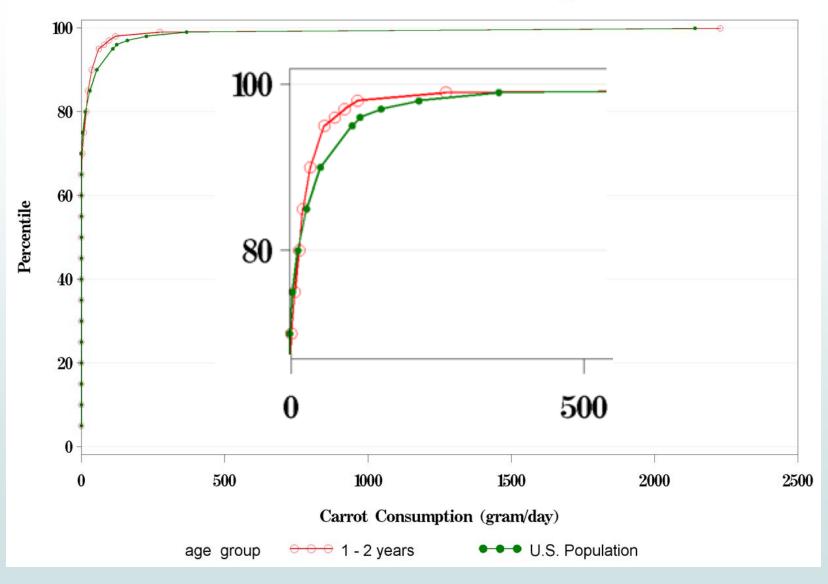
RESEARCH & DEVELOPMENT

CDFs of Arsenic Concentration in Carrot

Population Based Carrot Consumption

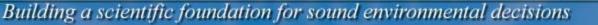

- What We Eat In America (WWEIA), NHANES 2005-2006, considers 13,000 commonly eaten foods in US.
- 52,653 participants in the survey provided precise information of the food consumed by them.
- From the recipes of these foods consumed, the ingredient carrot is picked and calculated for consumption rate.

RESEARCH & DEVELOPMENT



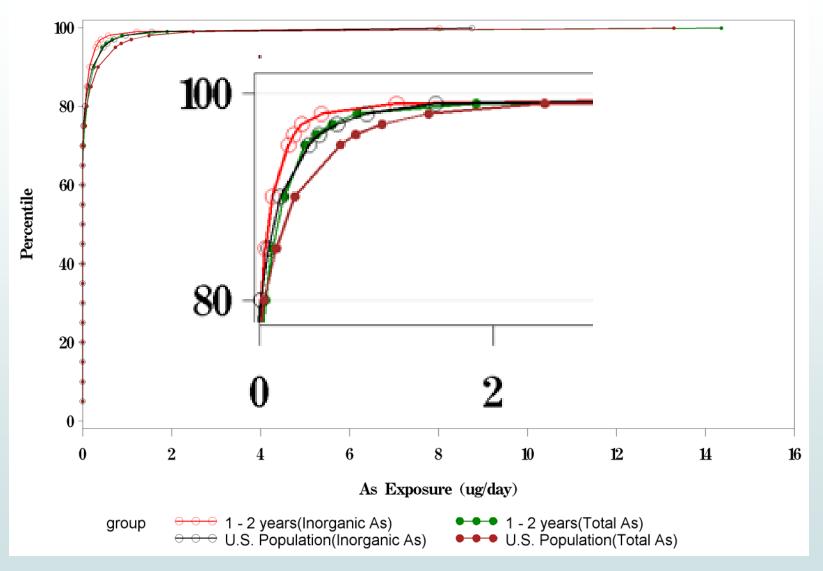
RESEARCH & DEVELOPMENT

CDFs of Carrot Consumption



Stochastic Human Exposure and Dose Simulation

- Probabilistic approach that involves both variability and uncertainty to predict distribution of a given exposure element.
- Population based exposure assessment for inorganic arsenic from carrots can be estimated.


RESEARCH & DEVELOPMENT

CDFs of Arsenic Exposure

RESEARCH & DEVELOPMENT

Explanation of Results

PTWI for inorganic arsenic is 0.015 mg/kg = 1.05 mg in a week or 1050 µg for 70 kg body weight

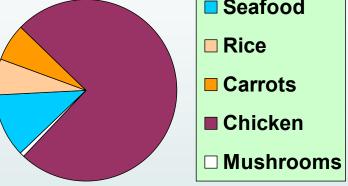
Population percentile	Carrot Consumed (g)	Total Arsenic (µg)	Inorganic Arsenic (µg)	% Contribution to PTWI
75 th	35	0.2	0.13	0.01
95 th	770	5.2	3.3	0.3

RESEARCH & DEVELOPMENT

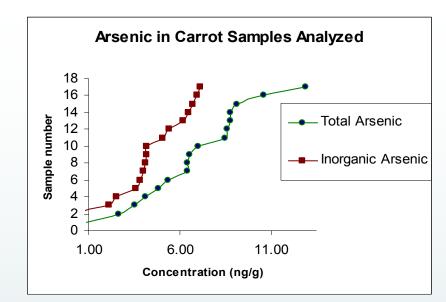
Explanation of Results

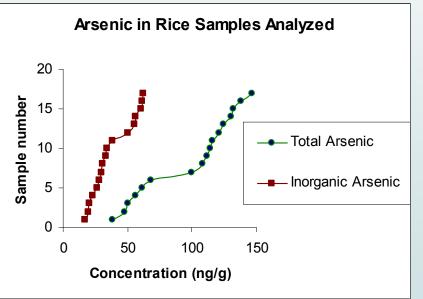
	1
	E- A
1	LE T
6	2 CA
6	
	Z II
	Ship

Population	Carrot	Total	Inorganic
percentile	Consumed	Arsenic	Arsenic (µg)
	(g)	(µg)	
75 th	150	0.8	0.5
95 th	475	3.0	2.0
99 th	725	5.7	3.6


Weight of the baby in kg	% of Inorganic Arsenic exposure via carrots based on PTWI values				
	75 th percentile consumption	95 th percentile consumption	99 th percentile consumption		
7.7 (6.5 month old)	0.4	1.7	3.0		
9.4 (10.5 month old)	0.3	1.4	2.5		
10.6 (14.5 month old)	0.3	1.2	2.2		
11.4 (18.5 month old)	0.3	1.2	2.0		

RESEARCH & DEVELOPMENT





- 1. Sample collection representative of production demographics
- 2. Bioavailability based extractions
- 3. Food habits in a given population
- 4. Modeling studies that consider uncertainty and variability

Rice data courtesy Heather Trenary

RESEARCH & DEVELOPMENT

- Concentration of Arsenic in carrots was not dependent on geographic location
- Inorganic Arsenic is the only arsenic species found in carrots analyzed
- Concentration of As_{Total} ranges from 2 10 ng/g while that of As_{Inorg} ranges from 2 7 ng/g of carrot
- Carrots contribute to less than 0.3% of PTWI of inorganic arsenic in average adults
- Carrots contribute to less than 4% of PTWI of inorganic arsenic even in high exposure cases (infant)

RESEARCH & DEVELOPMENT

Acknowledgments

- Dr. Jack Creed
- Dr. Jianping Xue
- Members of Dr. Jack Creed's group
- U.S. EPA
- Metallomics Organizers
- Dr. Joe Caruso
- Audience

RESEARCH & DEVELOPMENT

