1	Improved Cryptosporidium parvum oocyst propagation using dexamethasone
2	suppressed CF-1 mice
3	Michael W. Ware ¹ and Eric N. Villegas
4	
5	
6	
7	
8	
9	
10	
11	¹ Corresponding author
12	Michael W. Ware, U.S. Environmental Protection Agency, National Exposure Research
13	Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268-1320
14	Phone: 513-569-7731
15	Fax: 513-569-7117
16	Ware.michael@epa.gov

17 Abstract

- 18 This study evaluates *Cryptosporidium parvum* oocyst production in dexamethasone
- 19 suppressed CF-1 and C57BL/6 mice. Both models can yield 1×10^9 total oocysts over a
- 20 day production period; however, only 20 CF-1 mice are required to reliably achieve
- 21 this goal compared to 40 C57BL/6 mice. Although oocyst yields per mouse are similar
- 22 for both mouse strains, the survival rate for CF-1 mice is higher, resulting in reduced lost
- 23 production time per study when compared to the C57BL/6 mice. This study presents a
- 24 more efficient and cost effective dexamethasone suppressed murine model of propagating
- 25 high concentrations of *C. parvum* oocysts.
- 26
- Key words: *Cryptosporidium parvum*, oocysts, mouse, immunosuppression, C57BL/6,
 CF-1

29	To conduct research using Cryptosporidium parvum, large numbers of oocysts are
30	needed and so an efficient model for the propagation of oocysts is required. Several
31	animal models have been described in the literature ranging from neonatal calves or
32	sheep to immunosuppressed rodents (Arrowood and Sterling, 1987; Brasseur et al., 1988;
33	Petry et al., 1995; Yang et al., 2000). An in vitro cell free system has also been described
34	and could be adapted for oocyst production; however, it has poor oocyst yield and is very
35	difficult to perform. Therefore, an animal model remains the best option available to
36	propagate these oocysts (Girouard et al., 2006; Hijjawi et al., 2004; von Oettingen et al.,
37	2008).
38	Most mouse models using C57BL/6 mice immunosuppressed with
39	glucocorticoids administered either orally or by injection have been the model of choice.
40	Studies by Rasmussen and Healy reported that C57BL/6 mice had the highest oocyst
41	shedding intensity as compared with DBA/2N, CBA, C3H/HeN, and BALB/cAnN mice
42	and thus maybe the best strain for oocyst production (Rasmussen and Healey, 1992).
43	Miller and Schaefer recently reported that CF-1 mice immunosuppressed with
44	methylpredisolone can also be infected with C. parvum similar to C57BL/6 mice, but
45	they did not report oocyst yields (Miller and Schaefer, 2006). The C57BL/6 mice are
46	approximately three times more costly compared to CF-1 mice at the same ages. This
47	study compares the oocyst yield per mouse and mortality for C57BL/6 and CF1 mice
48	using an immunosuppression protocol previously described (Cicmanec and Reasoner,
49	1997). The overarching goal was to produce at least 1 x 10^9 C. parvum oocysts in a 20
50	day collection period using fewer and less costly CF-1 mice than the 40 C57BL/6 mice
51	required to reliably achieve this goal.

3 of 9

52	C. parvum oocysts (Harley Moon strain) were originally obtained from
53	Waterborne, Inc. (New Orleans, LA) and serially passed through mice. Female 3 to 4
54	week old CF-1 and C57BL/6 mice were acquired from Charles Rivers Laboratories
55	(Wilmington, MA) and housed in groups of 10 under barrier conditions (sterile cages
56	with 0.22 μ m cage isolator filters, raised wire mesh floor, and housed in an animal
57	isolator (NuAire model 602-400, Plymouth, MN)). They received irradiated Pico Lab
58	mouse diet ad libitum (Brentwood, MO). Briefly, the animals were immunosuppressed
59	with sterile water amended with 30 μ g/ ml dexamethasone phosphate (Sigma, St. Louis,
60	MO) on odd numbered days and 50 $\mu\text{g}/$ ml tetracycline (Sigma) on even numbered days
61	throughout the production cycle. On the eighth day of this immunosuppression regimen,
62	the oocyst inoculum was surface sterilized with 50 ppm hypochlorite for 10 min on ice
63	and was neutralized with sodium thiosulfate prior to dosing the animals. Mice were each
64	exposed to 5 x 10^4 sterilized oocysts by oral gavage using a 22 gauge feeding needle.
65	Feces were collected every 36 hours starting on day 11 and continuing through at least
66	day 25 of the immunosuppression regimen to collect all of the oocysts shed during this
67	production period (Cicmanec and Reasoner, 1997). Each fecal collection was processed
68	by sieving and discontinuous sucrose gradients as previously described (Arrowood and
69	Donaldson, 1996).
70	The oocyst yield for each collection was determined by hemacytometer as

described in Baker (1980), except only 1 chamber was counted. The oocyst yield per mouse for each collection was determined by dividing the total number of oocysts by the number of living mice at that point in the study. Table one shows data gathered from five production studies for each model. The CF-1 mice averaged 7.5 x $10^6 \pm 2.1 \times 10^6$

4 of 9

oocysts/ mouse and $1.6 \ge 10^9 \pm 6.6 \ge 10^8$ total oocysts per production study, compared to averages of $1.2 \ge 10^7 \pm 4.3 \ge 10^6$ oocysts/ mouse and $2.2 \ge 10^9 \pm 1.5 \ge 10^9$ total oocysts respectively for the C57BL/6 mice. Total oocyst yield per production cycle or oocyst yield per mouse were not statistically significant using a Student's T-test analysis (P> 0.05). Surprisingly, the production of $1 \ge 10^9$ oocysts required at least 40 C57/BL6 compared to only 20 CF-1 mice (Table 1).

81 The lost production percentages for both animal models were determined for the 82 same five studies. For all calculations, the production period was number of days after 83 exposure to C. parvum oocysts. The lost production percentage was the ratio of lost 84 mouse production days (L) divided the number of potential mouse production days (P) 85 times 100%; where L is the sum of the total number of lost mouse days during the 86 production study due to animal mortality, and P is the number of mice times the number 87 of production days. For example a 3 mouse 3 day study, in which 2 mice died on day 2, 88 L would be the 4 (2+2) and P would be 9 (3*3) and, the lost production percentage would 89 be 44% (4/9*100%). The lost production percentage averaged 7% (\pm 5.6 SD) for the CF-90 1 mice compared to 25% (\pm 9.4 SD) for the C57BL/6 and these two models statistically 91 are significantly different (P = 0.0068 by Student's T-test) (Figure 1). Because larger 92 numbers of oocysts were required for studies ongoing at that time, the production studies 93 were often extended, therefore, both the average number of days and the lost production percentages to produce 1×10^9 C. parvum oocysts was determined for both models. The 94 95 CF-1 mice on average required 14 ± 2 days with a lost production percentage of $3\% \pm 3$ 96 compared to 12 ± 5 days and $18\% \pm 7$ for the C57BL/6 mice, respectively. The lost 97 production percentage averages are significantly different (P = 0.01456) by the Student's

98	T-test while the production days are not significantly different (Table 1). Assuming the
99	number of oocysts shed per animal remains constant throughout the collection period, a
100	higher lost production percentage results in fewer oocysts being produced by the
101	remaining mice compared to a model with a lower lost production percentage.
102	These results revealed that CF-1 mice achieved similar oocyst yields with much
103	lower lost production percentages than observed with C57BL/6 mice. The lower lost
104	production percentage allowed the use of fewer animals to reliably achieve the total
105	oocyst goal. It is not known why the 3-4 week old CF-1 mice have a lower lost
106	production percentage when compared the same aged C57B/6 mice, but the CF-1 mice
107	weigh approximately 5 g more than the C57BL/6, 19-23 g compared to 13-17 g. It is
108	possible that the larger CF-1 mice are better able to withstand the immunosuppression;
109	however, larger and older C57BL/6 mice were not evaluated because of the increased
110	price of the mice at that size. In addition to improved survival during
111	immunosuppression and C. parvum infection, the CF-1 mice also appeared to be healthier
112	in that they had less ruffled fur and had weight gain or slower weight loss when
113	compared to the C57BL/6 mice (data not shown). Historically, some propagation studies
114	using C57BL/6 mice have failed to produce oocysts because of high mortality (data not
115	shown). In conclusion, CF-1 mice immunosuppressed with dexamethasone amended
116	drinking water is a reliable model for propagating C. parvum oocysts using fewer and
117	less costly mice when compared to the C57BL/6 mice.

118 Acknowledgements

119 The United States Environmental Protection Agency through its Office of Research and

120 Development funded and collaborated in the research described here under contract EP-

- 121 D-06-100 to the McConnell Group. It has been subjected to Agency review and approved
- 122 for publication. Mention of trade names or commercial products does not constitute
- 123 endorsement or recommendation for use. The authors wish to acknowledge Sharon
- 124 Detmer, Katrina Pratt, Diana Miller, and Paula McCain for technical support and animal
- 125 care, and Drs. Frank W. Schaefer III and Sam Hayes for their critical reviews.

126 **References**

127	Arrowood, M.J., Donaldson, K., 1996. Improved purification methods for calf-derived
128	Cryptosporidium parvum oocysts using discontinuous sucrose and cesium
129	chloride gradients. J. Eukaryot. Microbiol. 43, 89S.
130	Arrowood, M.J., Sterling, C.R., 1987. Isolation of Cryptosporidium oocysts and
131	sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J.
132	Parasitol. 73, 314-319.
133	Baker, B., 1980. Fundemental skills in hematology. Charles C. Thomas, Springfield, IL,
134	p 497.
135	Brasseur, P., Lemeteil, D., Ballet, J.J., 1988. Rat model for human cryptosporidiosis. J.
136	Clin. Microbiol. 26, 1037-1039.
137	Cicmanec, J.L., Reasoner, D.J., 1997. Enhanced production of Cryptosporidium parvum
138	oocysts in immunosuppressed mice. In: Fricker, C.R., Clancy, J.L., Rochelle, P.A.
139	(Eds.), International symposium on waterborne Cryptosporidium proceedings.
140	American Water Works Assoc., Denver, CO, 1997, pp. 127-131.
141	Girouard, D., Gallant, J., Akiyoshi, D.E., Nunnari, J., Tzipori, S., 2006. Failure to
142	propagate Cryptosporidium spp. in cell-free culture. J. Parasitol. 92, 399-400.
143	Hijjawi, N.S., Meloni, B.P., Ng'anzo, M., Ryan, U.M., Olson, M.E., Cox, P.T., Monis,
144	P.T., Thompson, R.C., 2004. Complete development of Cryptosporidium parvum
145	in host cell-free culture. Int. J. Parasitol. 34, 769-777.
146	Miller, T.A., Schaefer, F.W., 3rd, 2006. Characterization of a single dose
147	methylprednisolone acetate immune suppression model using Cryptosporidium
148	muris and Cryptosporidium parvum. Vet. Parasitol. 141, 66-83.

149	Petry, F., Robinson, H.A., McDonald, V., 1995. Murine infection model for maintenance
150	and amplification of Cryptosporidium parvum oocysts. J.Clin.Microbiol. 33,
151	1922-1924.
152	Rasmussen, K.R., Healey, M.C., 1992. Experimental Cryptosporidium parvum infections
153	in immunosuppressed adult mice. Infect. Immun. 60, 1648-1652.
154	von Oettingen, J., Nath-Chowdhury, M., Ward, B.J., Rodloff, A.C., Arrowood, M.J.,
155	Ndao, M., 2008. High-yield amplification of Cryptosporidium parvum in
156	interferon gamma receptor knockout mice. Parasitology 135, 1151-1156.
157	Yang, S., Benson, S.K., Du, C., Healey, M.C., 2000. Infection of immunosuppressed
158	C57BL/6N adult mice with a single oocyst of Cryptosporidium parvum. J.
159	Parasitol. 86, 884-887.
160	

161