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Abstract

As described in this paper, Nonparametric Wind Regression is a source-to-receptor
source apportionment model that can be used to identify and quantify the impact of
possible source regions of pollutants as defined by wind direction sectors. It is described
in detail with an example of its application to SO, data from East St. Louis, IL. The
model uses nonparametric kernel smoothing methods to apportion the observed average
concentration of a pollutant to sectors defined by ranges of wind direction and speed.

Formulae are given for the uncertainty of all of the important components of the model,



21

22

23

24

25

26

2

28

29
30
31

32

33

34

35

36

37

38

39

40

41

42

43

and these are found to give nearly the same uncertainties as blocked bootstrap estimates:
of uncertainty. The model was applied to data for the first quarter (January, February,
and March) of 2003, 2004, and 2005. The results for East St. Louis show that almost 50
percent of the average SO, concentration can be apportioned to two 30°wide wind
sectors containiqg a zinc smelter and a brewery; a nearby steel mill did not appear to have

a significant impact on SO, during this period.

Keywords: Air pollution, source apportionment, statistics, receptor model, nonparametric

regression, St. Louis, East St. Louis, sulfur dioxide, zinc smelter, brewery

Introduction

Traditional sclource-oﬁented air quality models calculate the impact of sources using
emissions inventories, meteorological data, chemical reactions, and dispersion modeling.
In contrast, receptor-oriented models, such as the chemical mass balance or multivariate
receptor models, apportion the contributions of various air pollution sources based on
chemical composition profiles of sources and observed composition of pollutant samples
collected at monitoring site. A new hybrid source-receptor model is described that seeks
to locate and quantify local sources of air pollution through nonparametric regression of
1-hour average atmospheric concentrations of a pollutant on hourly resultant of wind
speed and direction. For this reason, it is called Nonparametric Wind Regression (NWR).
The NWR method described here can, under appropriate assumptions described below,
apportion source regions of a pollutant to multiple sources without use of chemical
fingerprints or emissions inventories. Although this is demonstrated using routine

monitoring data for a primary pollutant SO, from East St. Louis, Illinois, USA, the model
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is also applicable to more general source types (such as a combination of multiple
primary pollutants). It is also worth noting that this scheme can use higher resolution data
(for instance, 5-minute date) with the only .requirement that the meteorological data
associated with the data be similarly highly resolved.

A previous paper introduced the use of nonparametric regression of a pollutant
concentration on wind direction to accurately estimate the location of the source [1]. A
later paper demonstrated that additional information on the location and nature of a
source can be determined by nonparametric regression using both wind speed and
direction [2]. The only other method at all comparable to NWR is the Conditional
Probability Function (CPF) approach. A comparison of CPF and the earlier
nonparametric methods mentioned above is found in [3].

‘The previous work was essentially qualitative, showing the location and relative
strength of local sources. This paper develops a quantitative model that can estimate the |
weighted pollutant concentration in a range of wind directions and wind speeds and the

uncertainty of this estimate.

Nonparametric Wind Regression Methodology

The first step in NWR is to calculaﬁe the expected value of the pollutant as a function of
wind speed and direction using standard nonparametric regression formulae [2]. In this
paper the dependent variable is the hourly averaged concentration of a pollutant C at the
receptor site and the predictor variables are the hourly resultant wind direction & and
wind speed . The average concentration of a pollutant for a particular wind speed and
direction pair (€ u) is calculated as a weighted average of the concentration data in a

window around (&, u) represented by smoothing parameters o and % using a weighting
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function K(8 u, 0 ,h) = K;(6,6)K>(u,h), also known as the kernel function. The expected

value of C given #and u is estimated by:

ZK[&W)H(—;, W
E(C|6,u)=-=L 2 (1)
>k E-F)e[w=0)
g N\ o N oh

where C; U, and W; are the observed concentration of a particular pollutant, resultant
wind speed and direction, respectively, for the i-th observation in a time period starting at
time ¢; N is the total number of observations.

The simplest kernel function is a constant defined as 1 between -1/2 and 1/2 and zero
elsewhere. In this case, the denominator in Eq. 1 is just equal to the number of data points
in the intervals given by the smoothing parameters, and Eq. 1 just reduces to a simple
moving average. The disadvantage of a simple moving average is the lack any
significant smoothing, which usually makes it difficult to determine the general wind
direction and speed of significant peaks in the concentration values. This can hinder
identification of local sources [1]. Two well-known .choices for the kernel functions, and
the ones used in this work, are the Gaussian kernel given by

K,(x)=27) " *exp(-0.5x?), —oo<x<ow ?)
and the Epanechnikov kernel |

K,(x)=0.750-x%), -l<x<l
=0 otherwise.

3)

The Gaussian kernel is used for wind direction since it is defined over an unbounded

range, i.e. a circular range. The Epanechnikov kernel is used for wind speed because it is



38

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

the simplest bounded kernel with a central peak. Other choices than the Gaussian and
Epanechnikov kernel functions are possible, but this article is intended as demonstration
of an idea using kernel functions. Also, there is no evidence in the applied statistical
literature that the results are particularly sensitive to the choice of the kernel function. In
fact, our experience is that the results are insensitive to the choice.

To apportion the weighted concentration to source areas, the above results must be
weighted by the frequency of the winds. Thus, the second step in the NWR model is to
calculate the empirical joint probability density of wind speed and direction using the

kernel density estimate [4]

_ 13 (H—W,-))K [(u—U,-)}
fOw=— O_hZK[ - e @)

The final step is to estimate the fraction of the weighted pollutant concentration
associated with wind speed u in the closed interval U = [u; u;] and wind direction in the
interval @ = [@; 6;] by multiplying A6 u) and E(C|6u) and integrating over the

appropriate ranges of wind speed of u and a wind direction of 6

S©U)= | | 10 EC|00)d6d )

u 6,
where S(© U) is the mean value of the pollutant concentration associated with winds
from the sector defined by the intervals U and @, which will be referred to as the sector
apportionment. If the winds from the intervals U and @ are associated with the impact of
a particular source, then the sector apportionment S(@,U) is an estimate of the average

concentration associated with that source; dividing by the average value of the entire data
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set gives the fraction of the average pollutant concentration associated with winds from
intervals U and @.

From equations 1 and 4, S(U, @) is estimated from the data by

’ —w U, -
o) -2 Y. Z 3 Z s [(ok JW,)]K{(% h ‘)]C,-- ©

‘gk & uy=uy =1

Where wind direction is quantized as equally spaced values & from 0 to 360 with
spacing A6, and wind speeds #; equally spaced values between u,,;, and u,,,ax'with spacing
Au. Sometimes it is more convenient to work with Cartesian coordinates instead of polar

coordinates. If the positive x-axis is east, then the wind speed and direction are replaced

with x,y coordinates by

X =ucos g,

y=using, 7
¢ = mrmod(450-6,360)/180

where the last equation converts the azimuth angle in degrees clockwise from north to the

mathematical angle ¢ in radians counterclockwise from +x-axis; here mod(a,b) is a

modulo b. In this case, since both predictors are bounded, K, in the above equations is
taken to be the Epanechnikov kernel rather than the Gaussian kernel, otherwise the

equations are the same as above with @and u replaced by x and y

Uncertainty Estimates
As shown by example later, estimates of the effects of random error can be particularly

useful in NWR. Oftentimes the receptor site might be impacted by abnormal values in all
three dimensions: wind speed, wind direction and pollutant concentration. A
methodology is needed to assess the likelihood that the NWR results for these abnormal

events could be real or be attributable to chance.
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e, ZK[(‘? W)]K [(" U)](c —EC|6u)
131 var(E(C | 6,u)) = = s (8)

[ZK[(S;—MJK[(_; @2_))}*

132  where

133 ce = | K2(x)dx, i=12.

134

135 The variance of f(B,u) is estimated as [3]

136

Jxfs, (0- W)] [(”_U")j
137 var(f(6,w) === f(B,1) = (NMZ] [ ). ©)

138
139 By standard propagation of errors, the variance of the product of the two is
140  approximately

141

s*(6,u) = var(f(B,u)E(C | 6,u))
142 =var(f(6,u))E(C | ,u)* + var(E(C | 6,u)) f (O,1)° (10)

+(? var(£(B,w) var(E(C | 6,u)))
143
i44 where 7 in the final term is the correlation of fand E(C|Qu). In many cases, as in the
145 example below, 7 is close to 0 and the final term may be ignored.

146 Finally, the uncertainty in the sector apportionment S(®,U) is estimated by

147 varS@,U) = Y. X.5(6,,u,)s(6, u)exl{—g[u] J (11)

0, e u u ell g
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The sum in the above equation is taken over all pairs of (6 ;) and (8, u,) that are in
intervals @ and U. This last equation is derived from the fact that the variance of a sum
of correlated random variables is the sum of all the elements of the covariance matrix. In
this case, the covariance is estimated to be the product of the standard deviations times
the correlation coefficient. The correlation coefficient between the nonparametric
regression estimates is pﬁmarily a function of wind direction and is approximated by a
Gaussian function with the same smoothing parameter as used in the nonparametric
regression. The equation does not have a similar term for wind speed u since
concentrations are not highly correlated with wind speed.

All these uncertainty estimates are based on assumptions concerning the independence
and distribution of the errors that are not always met by real world data; nonetheless they
are usually a realistic measure of the effects of random error. The estimates of these
formulae are compared to bootstrap estimates after presentation of the results for St.
Louis.

Application to East St. Louis SO, Data

Hourly data for criteria pollutants at several sites in the greater St. Louis metropolitan
area were retrieved from the Environmental Protection Agency’s (EPA) Air Quality
System (AQS) database. The data covered the entire period of 2003 through the end of
2005. Where available, hourly resultant wind speed, direction éncl other meteorological
parameters were retrieved for the same period. This paper -will | focus on SO, and
ﬁeteorological data collected at the 13"and Tudor site in East St. Louis, Illinois. Hourly
compliance monitoring data for SO, are routinely collected by the Illinois EPA; hourly

surface meteorology data (10 m height) were collected under the EPA-funded St. Louis -
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Midwest Supersite program. The East St. Louis site is located 3 km east of the City of St.
Louis, MO central business district and is separated from it by the Mississippi River.
There are several major industrial zones along the river including Sauget to the
soutlﬁsouthwest and Granite City to the north. The area is also a major national
transportation hub with a large rail yard 2.5 km to the southeast and many nearby heavily
traveled limited access highways, bridges, and barge traffic on the river.

The analysis was restricted to the first quarter of years 2003, 2004, and 2005 since the
meteorological conditions during a single season are fairly consistent and because this
period exhibits advective conditions (the lowest frequency of calm winds) and significant
variability in the wind direction. Another reason the first quarter was chosen is because
the concentrations of SO, are consistently high, as would be expected for a pollutant
dominated by local sources during the winter when wind speeds are moderate and mixing
heights tend to be lower than other times of the year. The basic statistics of SO, for this
period are given in Table 1. In the following analysis, only SO, values greater or equal to
1 ppb were used; there are 821 values less than this. The following parts of this section
present and discuss the SO, emissions inventory, distribution of wind speed and
direction, the nonparametric regression of SO, as a function of wind speed and direction,
and the apportionment of the average SO, for the period to nearby sources.

Sources of SO,
Large sources of SO2 in the area are listed in Table 2 and shown in . These are taken
from the National Emissions Inventory for 2002 compiled by the US EPA

(http://www.epa.gov/ttn/chief/net/2002inventory.html). There are three major sources

within 10 km of the East St. Louis monitoring site: a zinc smelter, a brewery, and a steel
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mill. The distance and directions to these from the monitor are given in the table. . The
zinc smelter is the closest and the direction to the whole facility ranges between 200° to
225° azimuth. There are other SO, sources in this wind sector at various distances from
the site, but the smelter is expected to be the most significant contributor to SO, at the
East St. Louis site due to its close proximity and since it also has a sulfuric acid
manufacturing plant. There are also five other large SO, sources listed in the table, two
oil refineries and three coal-fired power plants. However, these are 25 to 35 km distant,
too far to produce high concentrations of SO, at the monitoring site. Since the wind and
concentration data are 1-hour averages, local sources with travel times less than 1 hour

will be most amenable to NWR analysis.

Joint Probability Distribution of Wind Speed and Direction

A wind rose is the traditional way of looking at the joint distribution of wind direction
and wind speed. A wind rose of the 1-hr resultant wind speed and direction for the 6504
hours of the 9 first quarter months from 2003 to 2005 is shown in Figure 2. The wind
direction bins are 10° wide. A much more detailed view is given by the joint probability
distribution of wind speed and direction given in Figure 3. The distribution was estimated
by Eq. 4 with a Gaussian kernel for the wind direction with a Full Width at Half
Maximum (FWHM) of the of 10 degrees and the FWHM for the Epanechnikov kernel for
wind speed being 1.5 kmh™, with a maximum wind speed of 15 kmh™. The area
encompassed by the white line is the contour of a signal-to-noise ratio of 2, where the
variance of the noise is calculated by Eq. 9; areas encompassed by this contour have too

few data points to reliably estimate a value for the density.
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The distribution has a number of features that impact the nonparametric regression

analysis. The predominant winds are from the southeast between 5 and 15 kmh™; thus, -

even if there are no large sources in this direction, a relatively large fraction of the
average pollutant concentration may be explained by winds from the southeast.
Northerly winds are the next most frequent with wind speeds between 5 and 15 km/hr
being prevalent. Winds from the northwest exhibit very few hours with wind speeds less
than 10 km/hr, which is consistent with occasional strong advection from the northwest in
the wintertime. The paucity of lower wind speeds from the northwest is shown by the
white contour in l;igure 3, which shows that the signal-to-noise ratio of the distribution
estimate in this region is less than 2, indicating that there are too few points to estimate
the distribution accurately. Another anomaly in the distribution that will be important in
the later discussion is in the direction of 225 degrees azimuth, the approximate direction
of a nearby zinc smelter. In this direction wind speeds of 5 to 10 km/hr are much more
frequent than other wind speeds, paﬂicularly low wind speeds. This is also seen in the

wind rose but not nearly so clearly.

Nonparametric Wind Regression of SO,

A pollution rose is the traditional way of looking at the relation-ship of wind direction

and pollutant concentrations. The SO, pollution rose with 10° bins is shown in Figure 4.

~ From this plot, the prevalence of high concentrations in the region of 200° to 250° is

clear, as well as the fact that winds from this direction are not common. However, a
much more detailed picture of the relationship of SO, and wind direction and speed

emerges in the NWR plot of SO, seen in Figure 5. The white areas in the plot are regions
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where the signal-to-noise ratio as estimated by Eq. 10 is less than 2, i.e., there are too few -
points for a reliable estimate. The highest concentrations lie between 200° and 255°
azimuth with the highest peak at 221° and wind speed of 10 km/hr, the next highest peak
at 221° and 12 km/hr, another peak at 213° and 7 km/hr, and finally a smaller peak at
247° and 12 km/hr. The direction of the peaks at 221° and 213° is consistent with the
zinc smelter and its sulfuric acid plant and the small peak at 247 ° may be associated with
the brewery. |

Is the peak at 247° really a peak or is it perhaps a statistical variation caused by a few
errant, large values? Fortunately, this question can be addressed quantitatively since the
NWR produces estimates of the uncertainties, as discussed in detail in the previous
section. In this case, the question is restated as: is the difference between the peak and
the surrounding background level large compared to the uncertainties in these value;s.
The variance of the difference of two random values is given by

var(X - Y) = var(X) + var(¥) — 2Cov(X.Y) (12)

In this case X is 30.45 ppb the peak value at azimuth angle 247° with a standard error

~ of 7.17 ppb. Yis 16.9 ppb; the minimum value between this peak and the larger peak at

221° and it has an estimated standard error of 4.93 ppb. The difference X-Y is 13.55
ppb. The uncertainty in this difference is given by [7.17* + 4.93% - 2(7.17)(4.93)exp(-
0.5((247-234)/4.2)")]"* = 8.67. The exponential term estimates the covariance of the two
estimates, as explained after Eq. 11; 4.2 is the sigma corresponding to a Gaussian with a
full width at half maximum of 15 degrees. The ratio of the difference to the uncertainty is
1.56. This statistic is approximately normally distributed with mean 0 and standard error

1. From the inverse cumulative normal function, the probability of getting a value this
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large or larger by random variation is about 6 percent. Putting it another way, the peak is
different from the background with a confidence level of about 94 percent. In
conclusion, the peak at 247° is very probably real and related to the major source in that

direction, the brewery.

Sector Source Apportionment

The fraction of the average SO, coming from a sector 30 degrees Iwide and centered on
each degree of azimuth is shown in Figure 6 as calculated using the formulae given in the
first part of this paper. The 2-sigma error bars are also given. 30° wide sectors were used
sinlce 15° is approximately the median value of the standard deviation of the wind
direction in 1 hour. In addition to the expected peak in the direction of the smelter, there
are lesser peaks to the south and north because the winds frequently come from.these

directions.

Table 3 gives the sector gpportionment for 30 °wide sectors centered on the direction to
the three nearest major sources. Assigning all the SO, from a sector to the source, the
smelter accounts for almost 40 percent of the average SO, for the period, even though the
winds only came from that direction about 7 percent of the time. Also, the average SO,
concentration for winds from this sector is 20 ppb, much greater than the 4.6 ppb overall
average. The winds came from the brewery sector less than 5 percent of the time, but this
sector accounted for almost 10 percent of the average SO, and an average SO, of 10.3
ppb. These are all signs that the known sources of SO, in these sectors are impacting the

site. The surprise is that there are no high concentrations in the NWR plot seen in the
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direction of the steel mill. There is nothing in Table 3 to indicate that the sector
containing the steel mill has a SO, source that is influencing the site. Winds are quite
frequent from this direction and yet it explains little of the average SO, and the average
concentration with winds from this sector is 3.8 ppb, which less than the overall average
of 4.6 ppb. Thus, there is no evidence that the steel mill SO, emissions have a noticeable
effect on the site. Altogether winds from the direction of the two major local sources
account for 47.0 + 11.8 percent or almost half of the average SO,.

Overall, the NWR method is superior to the pollution rose in identifying nearby
sources in that it is not sensitivel to the selection of the number and width of the wind
direction bins. It is better at separating sources that lie in the same general direction, as
with the brewery and zinc smelter sources. The existence of uncertainfy estimates for all
the parts of the method is important; for example, th¢se were used to show that the peak
associated with the brewery is a real peak and not an artifact. While the NWR has many
more strengths than the pollution rose, the two have similar weaknesses. The primary

one being not a weakness of the methods but of the data; if there are nearby obstructions

to the air flow or if for some other reason the wind data not representative of local

transport, then both methods will produce erroneous results.

Bootstrap Uncertainty Estimates

Table 3 gives uncertainties of the sector contributions calculated by Eq. 11. However,
these estimates may not be reliable as the assumptions inherent in these formulae may not

all be valid in this application. Furthermore, the wind speed, direction, and
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concentrations all have significant positive serial correlation caused by 24-hour diurnal
periodicities that may result in under estimation of the uncertainties. The reliability of
the calculated uncertainties can be tested by comparison with uncertainties independently
estimated by bootstrap methods. However, the serial correlation in the data must be
preserved by the bootstrap samples. This was done in this case by randomly resampling
blocks of 24 values for a given day, not the individual hours as with a classic bootstrap;
this is a version of the blocked bootstrap. In this way, the 24-hour periodicities in the
data are preserved in the bootstrap samples, as well as large, positive serial correlations.
Fourier analysis of the seasonal data found no significant periodicities greater than 1 day
[4].

The bootstrap estimates of the 1-sigma errors for 30-degree sectors for SO, are shown
in Figure 7, along with the bootstrap estimate of the bias. As evident from this figure, the
bias is small compared to the uncertainty, which is an important requirement for the
validity of the bootstrap method. The bootstrap estimates of the uncertainties in the wind
speed.and direction probability density were found to be very close to the uncertainties
estimated by Eq. 9. This was also the case for the bootstrap estimates of the uncertainty
in the nonparametric regression of pollutant concentrations on wind speed and direction
and the uncertainties calculated by Eq. 8. As the bootstrap estimates include serial
correlation effects in wind speed, wind direction, pollutant concentrations, it is evident

that these have little impact on the estimated uncertainties.
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