BIOTRANSFORMATION OF TRIADIMEFON TO TRIADIMENOL: ENANTIOMER ANALYSIS AND ENANTIOSELECTIVITY IN SOIL SLURRIES

ARTHUR W. GARRISON, JIMMY K. AVANTS, W. JACK JONES REBECCA D. MILLER

U.S. ENVIRONMENTAL PROTECTION AGENCY NATIONAL EXPOSURE RESEARCH LABORATORY EOCSYSTEMS RESEARCH DIVISION, ATHENS, GA

ACKNOWLEDGEMENTS

JOHN KENNEKE – FOR REVIEW AND TECHNICAL ADVICE

JOHN WASHINGTON – FOR SOIL SAMPLES

DISCLAIMER: Although this work was reviewed by EPA, it may not necessarily reflect official Agency policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

INTRODUCTION

- CONAZOLES ARE IMPORTANT FUNGICIDES ABOUT 60 IN USE
- USED AS BOTH AGRICULTURAL AND MEDICINAL FUNGICIDES
- INHIBIT STEROL C-14 DEMETHYLATION THROUGH INTERFERENCE WITH A CYTOCHROME P-450 MONOOXYGENASE ENZYME
- MOSTLY 1,2,4-TRIAZOLES, e.g.: PROPICONAZOLE ALL ARE <u>CHIRAL</u>

 CONAZOLES OCCUR AS ENVIRONMENTAL CONTAMINANTS: Kahle M, Buerge, IJ, Hauser, A, Muller, MD, Poiger, T. Environ.Sci.Technol. 2008 (ASAP)

Enantiomers of the Chiral Herbicide Dichlorprop

CHIRALITY AND ENANTIOSELECTIVITY

The (-)-enantiomer degrades twice as fast as the (+)

RESEARCH IN ENVIRONMENTAL CHIRAL CHEMISTRY

- Analysis of enantiomers
 - GC, HPLC, CE
- Occurrences of chiral chemicals and their enantiomers
 - soil, sediment, water, biota, food
- Bioaccumulation
 - fish, plants, other organisms
- Biotransformation of chiral chemicals
 - enantioselectivity, kinetics, metabolism
- Effects

 separation of enantiomers for testing with various end points

HYPOTHESIS

TRIADIMEFON AND PROPICONAZOLE, IMPORTANT REPRESENTATIVE CONAZOLES, WILL BE TRANSFORMED ENANTIOSELECTIVELY BY SOIL MICROBES

METABOLOMIC TRANSFORMATION OF TRIADIMEFON TO TRIADIMENOL. THE REDUCTION OF A CARBONYL GROUP TO AN ALCOHOL YIELDS A SECOND CHIRAL CENTER AND 4 STEREOISOMERS.

(slide courtesy of John Kenneke)

<u>APPROACH / METHODS</u>

 SELECT 3 SOILS WITH DIFFERENT PROPERTIES **PREPARE 20mL OF SLURRY, 1 PART SOIL 5 PARTS STERILE WATER, IN TRIPLICATE** SPIKE SOIL SLURRY MICROCOSMS WITH **TRIADIMEFON OR PROPICONAZOLE, 50 mg/L** AUTOCLAVE CORRESPONDING SPIKED **SLURRIES AS CONTROLS, IN TRIPLICATE** SHAKE CONTINUOUSLY IN THE DARK

APPROACH / METHODS, CONTINUED

•AT SELECTED TIMES, REMOVE 1mL **ALIQUOTS OF EACH SLURRY** ANALYZE BOTH WATER AND SOIL PHASES **BY GC-MS, SOME BY CE, USING CHIRAL ANALYSIS TECHNIQUES** CALCULATE KINETIC VALUES AND **MEASURE ENANTIOSELECTIVITY** [first eluting enantiomer] EF = [both enantiomers]

GC-MS

H-P 5973 MSD interfaced with a 6980 GC

BGB 172 chiral column with 20% chiral phase (*tert*-butyldimethylsilylated-B- cyclodextrin) (BGB Analytik AG, Switzerland)

Inj. Temp: 275°; Temp. program: 150-220° @ 2°/min, hold for 60 min; helium flow: 1.5mL/min.

Detection by selected ion monitoring.

GC-MS (SIM) OF TRIADIMEFON AND TRIADIMENOL MIXED COMMERCIAL STANDARDS. ALL ENANTIOMERS SEPARATE ON THE BGB-172 CHIRAL GC PHASE.

EF=[1st enantiomer]/[1st +2nd enanantiomers]

GC-MS (SIM) OF TRIADIMENOL STEREOISOMERS PRODUCED BY REDUCTION OF TRIADIMEFON AFTER EXPOSURE TO RAINBOW TROUT MICROSOMES FOR 480 MIN. (Courtesy of John Kenneke) INSET: GC-MS OF COMMERCIAL TRIADIMENOL STANDARD.

Triadimefon, after 2 hours (t_0) , in water phase of UGA soil-water slurry spiked at 50 mg/L. GC-MS

Triadimefon being biotransformed to triadimenol, after 19 days, in water phase of UGA soil-water slurry. GC-MS

Triadimefon completely biotransformed to triadimenol after 96 days, water phase of UGA soil-water slurry; GC-MS. Inset: GC-MS of commercial triadimenol standard. 16

Propiconazole in water phase of UGA soil-water slurry, spiked at 50 mg/L. GC-MS shows reduction in concentration with time, but no enantioselectivity.

Degradation of triadimefon in 3 soil-water slurries measurements made in water phase 18

19

Enantiomer patterns are similar at each time and for all soils

but enantiomer ratios are similar with time ²⁰

SOIL CHARACTERIZATION

SOIL	рН	CEC meq/100g	SAND %	SILT %	CLAY %	TOC %	k d ⁻¹
USDA	6.2	8.9	70	19	11	3.0	0.057
UGA	6.3	13.9	72	18	10	5.4	0.107
ERD	4.8	11.3	58	20	22	0.7	0.047

Correlation of Soil %TOC with Triadimefon Biotransformation Rates

Triadimenol Standard

Triadimenol in Soil (after 96 days)

<u>Concluding Question</u>: How would one assess the risk of Triadimenol in Soil?

CONCLUSIONS

•Concentrations of the individual enantiomers of Triadimenol as a metabolite do not match those of triadimenol in its commercial standard

Enantiomers may have different toxicities

•Stereochemistry must be considered for accurate risk assessment of chiral xenobiotics and their metabolites