Formation and Occurrence of Disinfection By-Products

Susan D. Richardson

### U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, GA



U.S. Environmental Protection Agency

Office of Research & Development

# **Drinking Water DBPs**

- Formed by the reaction of disinfectants with natural organic matter
- Concern over possible human health risk:
- Epidemiologic studies: risk of bladder cancer; some cause cancer in laboratory animals
- Recent concerns about possible reproductive & developmental effects (from epi studies)





- How DBPs are formed
- Occurrence of regulated and emerging DBPs
- Issues with alternative disinfectants
- Ways to minimize DBPs
- Next steps for future research



**Fig. 12.7** Chemical network structure of humic acids according to Schulten and Schnitzer.<sup>7</sup> Reproduced by permission of Springer-Verlag.

## **DBPs Regulated by the U.S. EPA**

| DBP                                                                                     | MCL (µg/L) |
|-----------------------------------------------------------------------------------------|------------|
| Total THMs<br>(Chloroform, bromoform,<br>bromodichloromethane,<br>Chlorodibromomethane) | 80         |
| 5 Haloacetic acids<br>(Chloro-, dichloro-, trichloro-,<br>bromo-, dibromo-acetic acid)  | 60         |
| Bromate<br>Chlorite                                                                     | 10<br>1000 |

But more than 600 DBPs have been identified Little known about occurrence, toxicity of unregulated DBPs

#### What we know about Total Organic Halide (TOX)



Data courtesy of Stuart Krasner, Metropolitan Water District of Southern California

~50% of TOX >1000 Da: Khiari, et al., Proc. 1996 AWWA Water Quality Technology Conference

# Unlike other contaminants that may or may not be present in drinking water...

# DBPs are ubiquitous

## **DBPs from Different Disinfectants**

## Chlorine Halogenated organic DBPs Chlorate (contaminant from hypochlorite bleach) Non-halogenated aldehydes, ketones, carboxylic acids Nitrosamines (with nitrogen-containing coagulants) Chloramine Halogenated organic DBPs (but generally lower levels than chlorine) **Iodo-THMs and iodo-acids** Nitrosamines (higher levels than chlorine) **Inorganic chloramines (di-, tri-chloramine)** Haloamides, haloacetonitriles may be increased

## **DBPs from Different Disinfectants**

#### Ozone

Non-halogenated aldehydes, ketones, carboxylic acids (e.g., formaldehyde)

Halonitromethanes (with post-chlorine/chloramine)

Bromate and other brominated DBPs (when bromide is present)

#### **Chlorine dioxide**

Chlorite, chlorate

A few brominated DBPs when bromide is present (but generally lower levels than chlorine or chloramine)

Non-halogenated aldehydes, ketones, carboxylic acids

## Concentrations

| THMs                         | Low to mid-ppb |
|------------------------------|----------------|
| HAAs                         | Low to mid-ppb |
| Oxyhalides                   |                |
| Bromate                      | Sub to low-ppb |
| Chlorite                     | High ppb       |
| Chlorate                     | High ppb       |
| Haloacetonitriles            | Sub to low-ppb |
| Haloaldehydes                | Sub to low-ppb |
| Haloketones                  | Sub to low-ppb |
| Haloamides                   | Sub to low-ppb |
| Halonitromethanes            | Sub to low-ppb |
| Iodo-THMs                    | Sub to low-ppb |
| lodo- and other halo-acids   | Sub to low-ppb |
| Halofuranones (MX analogues) | Low to mid-ppt |

# **Non-halogenated DBPs**

| Aldehydes and ketones | Sub to low-ppb |
|-----------------------|----------------|
| Carboxylic acids      | Sub to low-ppb |
| Nitrosamines          | Low to mid-ppt |

## Nationwide DBP Occurrence Study

- Prioritized >500 unregulated DBPs reported in literature (likely to cause cancer)
- Measured these in waters across U.S.
- Important findings:
  - New emerging DBPs identified (e.g., iodo-acids)
  - Alternative disinfectants increased formation of many priority DBPs
  - Many priority, unregulated DBPs found at significant levels

Krasner, Weinberg, Richardson, et al., Environ. Sci. Technol. 2006, 40, 7175-7185.

#### **Iodo-THMs**



Highest levels found at a chloramination plant

Krasner, Weinberg, Richardson, et al., Environ. Sci. Technol. 2006, 40, 7175-7185.

#### **Iodo-DBPs Maximized with Chloramines**



HOCI also competes for rxn with NOM, so much lower iodo-DBPs with chlorine



## **New lodo-Acids**



Initially discovered using GC/MS Highly genotoxic Increase in formation with  $NH_2CI$  vs.  $CI_2$  (up to 1.7 ppb) Occurrence Study now completed (23 cities in U.S. & Canada)

Richardson et al., Environ. Sci. Technol. 2008, ASAP.

#### **Iodide vs. Iodo-Acid Concentrations**



## Nitrosodimethylamine (NDMA)

#### • On the UCMR-2

- Formed as a DBP from chloramine and chlorine (DADMAC coagulants)
- Probable human carcinogen



- 2004: Found up to 180 ng/L in finished water from Canada
- *N*-nitrosopyrrolidine, *N*-nitrosomorpholine, N-nitrosopiperidine, N-nitrosodiphenylamine also now found as DBPs
- Initially detected in Calif. groundwater wells in 1998 at 0.15 ppb
- Action level is 10 ppt (ng/L) (in Calif.)
- Ontario has MCL of 9 ng/L in drinking water

# How can we minimize DBPs?

#### Before

 Remove NOM (or Br/l) before treatment (e.g., enhanced coagulation, membranes)

During
Change disinfectant or treatment conditions (e.g., pH)

#### After

Remove DBPs after they are formed (e.g., biological filtration, GAC)

# What's Next?

- Human health effects not solved yet—need more toxicity studies
- Studies on route of exposure
- DBPs are present as complex mixtures—need toxicity studies addressing this Four Lab Study
- What is in the unidentified fraction—anything of concern? High Molecular Weight DBP Study
- What about DBPs from alternative disinfectants—do we know everything we need to know before plants switch?
- UV disinfection? Membrane disinfection?
- What about 'pollutant' DBPs?

# 'Pollutant' DBPs...

- Pesticides
- Pharmaceuticals
- Antibacterial agents
- Estrogens
- Textile dyes
- Pesticides
- Bisphenol A
- Parabens
- Alkylphenol ethoxylate surfactants
- Algal toxins



FIGURE 1. Reaction scheme showing reaction mechanisms and chemical structures for triclosan and its decay products. As detailed in ref 14, all species were identified either by mass spectral analysis ((chlorophenoxy)phenols and chlorophenols) or comparison of retention times of the analyte to known standards (chloroform).

Fiss, Rule, and Vikesland, Environ. Sci. Technol. 2007, 41, 2387-2394.

#### Acknowledgments

**Coauthors on Mutation Research Review:** Michael Plewa, Elizabeth Wagner, Rita Schoeny, David DeMarini

Nationwide DBP Occurrence Study: Stuart Krasner, Howard Weinberg, Sal Pastor, Russell Chinn, Michael Sclimenti, Gretchen Onstad, Al Thruston

Iodo-DBP Occurrence Study: Francesca Fasano, Jackson Ellington, Gene Crumley, Kate Buettner, John Evans, Ben Blount, Lalith Silva, Tim Waite, George Luther, Bruce McKague, Dick Miltner, Elizabeth Wagner, Michael Plewa



**Michael Plewa** 



Tony DeAngelo

