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Risk assessments include assumptions about sensitive subpopulations, such as the fraction of
the general population that is sensitive and the extent that biochemical or physiological at-
tributes influence sensitivity, Uncertainty factors {UF} account for both pharmacokinetic (PK)
and pharmacodynamic {PD) components, allowing the inclusion of risk-relevant information
to replace default assumptions about PK and PD variance (uncertainty). Large numbers of
human organ donor samples and recent advances in methods to extrapolate in vitro enzyme
expression and activity data to the intact human enable the investigation of the impact of PK
variability on human susceptibility. The hepatotoxicity of trichloroethylene (TCE) is mediated
by acid metabolites formed by cytochrome P450 2E1 (CYP2E1) oxidation, and differences in
the CYP2E1 cxpression are hypothesized to alfect susceptibility to TCE’s liver injury. This
study was designed specifically to examine the contribution of statistically quantificd variance
in enzyme content and activity on the risk of hepatotoxic injury among adult humans. We com-
bined data sets describing (1) the microsomal protein content of human liver, (2) the CYPZE1
content of human liver microsomal protein, and (3) the in vitro V,,, for TCE oxidation by
humans. The 5th and 95th percentiles of the resulting distribution (TCE oxidized per minute
per gram liver) differed by approximately sixfold. These values were converted to mg TCE
oxidized/h/kg body mass and incorporated in a human PBPK model. Simulations of 8-hour
inhalation exposure to 50 ppm and oral exposure to 5 g TCE/L in 2 L drinking water showed
that the amount of TCE oxidized in the liver differs by 2% or less under cxtreme values of
CYP2E1 expression and activity (here, selected as the 5th and 95th percentiles of the resulting
distribution). This indicates that differences in enzyme expression and TCE oxidation among
the central 90% of the adult human population account for approximately 2% of the difference
in production of the risk-relevant PK outcome for TCE-mediated hiver injury. Integration of
irt vitro metabolism information into physiological models may reduce the uncertainties asso-
ciated with risk contributions of differences in enzyme expression and the UF that represent
PK variability.
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and among humans, These two factors (UFA and
UFH, respectively), may be further subdivided into
their respective pharmacodynamic (PD) and phar-
macokinetic (PK) components.! ¥ WHO™ and the
International Programme on Chemical Safety!*6}
have provided guidance and application of the sep-
arate consideration of PD and PK, and the U.S, EPA
has also separately quantificd PD and PK variability
in the UFA applied to reference concentration (RfC)
values and reference dose (RfD)) values, where each
has been ascribed a default value of one-halflog (10",
or 3.16).7~% In addition, PD and PK components of
UFH for RIC values have also been scparately con-
sidered for some substances such as methyl methacry-
late.!'”? Studies with humans can be conducted to as-
sess the pharmacodynamics or pharmacokinetics of
environmental or occupational chemicals. While hu-
man clinical trials can assess the PK and PD of poten-
tial therapeutic substances, human studies with po-
tentially toxic environmental or occupational chem-
icals are not usually conducted over concentration
ranges known or predicted to result in adverse effects.
The limited information available {rom human studies
with environmental chemicals provides critical (but
often limited) information, which can be extended by
in vitro studies using preparations from human tis-
sues. Care must be taken so that the in vitro inves-
tigations arc focused on risk-relevant endpoints, and
are conducted with the relevant tissues, tissue prepa-
rations, and chemical concentrations, It is critical that
the concentrations used for in vitro studies are within
the range of tissue concentrations observed or pre-
dicted in vivo in humans following chemical exposure.
Studies with human subjects or human tissue prepara-
tions /n vitro can identify variability in PK outcomes
such as the blood concentrations of parent chemical
and metabolites or the rates of mctabolitc produc-
tion or elimination. When these PK outcomes over-
lap with the PK outcomes most linked to risk (verified
by results from mode of action and PK studies with
research animals), then additional information on the
variahility of these PK outcomes wilt advance our un-
derstanding of susceptibility, and provide information
with which to replace default values for uncertainty
in extrapolations of risk. Although data from multiple
human subjects may seem preferable as the basis from
which to determine human PK variability, those data
seldom exist, and when they do the data usually offer
little information on risk-relevant PK outcomes such
as target tissue dosimetry. Physiologically-based PK
(PBPK) models allow the application of physiologic
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Fig. 1. Application of PBPK medeling to link cxternal dose with
concentration ol toxicant in target organs. The approach builds
upon information on mode of action, which demonstrates the reta-
tionship between tissue response, a PIY phenomenon, and the PK
outcome directly related to that response. PBPK models are then
develoned and employed to deline the relationship between the ex-
ternal exposure and the target organ toxicant concentration. usu-
ally peirormed in test animal species. Once completed, and based
on assumptions about the similarity in the qualitative and gquanti-
tative nature of the PD effect (mode of action) between the test
specics and humans, parallel PBPK models are developed for the
human, and are excrciscd to “back-track™ the toxicant from a pre-
determined concentration in the target tissue to the corresponding
cxposure concentration {external dose).

and anatomic constraints to clarify the linkage be-
tween external concentrations and target tissue con-
centrations (Fig. 1) and offer a mechanism through
which information obtained ex viver or in virro may be
evaluated in the proper context. Results from PBPK
model simulations of relevant exposure secenarios pro-
vide a usetul approach for estimation of PK variabil-
ity between research animals and humans and among
humans when other data are limiting. This technique
offers the opportunity to extrapolate concentrations
of bioactive chemical moieties in target tissues across
species, doses, and routes of exposure. The inclusion of
data derived in vitro through the exposure of human
tissue preparations offers an advance over exposing
humans to noxious agents, and several studies have
demonstrated the applicability of in vitro findings in
refining PBPK models.

While in vitro measurements of specific biochem-
ical reactions from multiple human samples can yield
qualitatively valuable data on human variance, they
must be tied to human anatomy and physiology, and
the impact of their variance evaluated under real ex-
posurc scenarios, to be of quantitative value. This
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study was constructed on the framework for extrap-
olation of in vitro metabolic rate information and
PBPK model incorporation previously suggested.!!”

Enzymes are protein molecules that catalyze
chemical reactions.!1? Over 100 years ago, the study
of enzymes and their properties demonstrated that
the rates of enzyme-catalyzed reactions are directly
proportional to the total enzyme present in the sys-
tem.{!>1%) This property of enzymes provides the basis
for extrapolation of in vitro biotransformation data to
whole animals and humans.("¥ Therefore, data gener-
ated with subcellular fractions such as microsomes or
cytosols can be extrapolated to in vive based on pro-
tein content.'> Human liver is approximately 2.6%
of body weight.{%)

In addition to enzyme content or activity and or-
gan weight, the kinetic mechanism of the enzyme (the
comings and goings of substrates and products) needs
to be taken into account to extrapolate in vitro data to
whole animals or humans.('¥ The CYP2E1-catalyzed
oxidation of TCE follows Michaelis-Menten satura-
tion kinetics:('”

v = (Vmax * [S])/{( Ky + [S] (1)

where v is the initial velocity of the reaction, Vo, is
the maximal rate of the reaction at infinite substrate
concentration, [$] is the substrate concentration, and
Ky is the Michaelis constant for the reaction. The
Michaelis-Menten (Equation (1)) indicates that the
initial velocity of the reaction will increase hyperbol-
ically as a function of substrate concentration. The
Vimax 18 2 horizontal tangent to the top (saturated)
part of the curve, while the tangent to the initial lin-
ear portion of the hyperbolic curve is the initial rate
of the reaction, V/K. The V/K is the pseudo-first-
order rate constant for the reaction at low substrate
concentrations. The point where these two tangents
intersect corresponds to the K./ The Ky is de-
fined as the substrate concentration that gives one-
halfthe V.. The Ky for each substrate is an inherent
property of the enzyme.{'* A lower Ky for one sub-
strate compared to a second substrate indicates that
the first substrate has a more rapid initial rate (V/K)
of metabolism. The value of Kas can vary with the
structure of the enzyme: for example, in the polymor-
phism of the CYP2D6-mediated oxidation of debriso-
quine and related drugs.!'"” Experimentally, K can
vary with pH, temperature, and ionic strength in vitro.
Therefore, in vitro kinetic measurements intended for
extrapolation to intact animals and humans should be
done under experimental conditions mirroring the in
vivo situation as closely as possible./#
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The in vitro kinetic data can be incorporated into
PBPK models after rearrangement of the V gy to the
appropriate units. Values of Ky have units of con-
centration and can be used directly if the solubility of
the chemical in the in vitro system is known. Incor-
poration of the extrapolated kinetic parameters into
a PBPK model for humans allows prediction of tar-
get tissue dosimetry following a variety of exposure
scenarios,

‘We have adapted an existing PBPK model to pre-
dict the difference among humans in the risk-relevant
PK outcome for the hepatotoxicity of trichloroethy-
lene {TCE) under conditions of human variance in
the rates of TCE oxidation. We focused on the hep-
atotoxicity of TCE because: (1) the PK of TCE have
been characterized and modeled in research animals
and humans (reviewed in Reference (20); (2) more
than 95% of an absorbed dose of TCE is oxidized
in research animals and humans;?V (3) CYP2E1 has
been demonstrated to be the enzyme responsible for
the oxidation of TCE in research animals and humans
and jn vitro preparations at low concentrations; > (4)
the hepatotoxicity of TCE has been demonstrated to
depend on acid metabolite(s) derived from oxidative
metabolites of TCE;{Z2% (5) the CYP2E1-mediated
oxidation of TCE is rate limiting in the further for-
mation of acid metabolite(s);*> (6) the expression of
CYP2E1 is modulated by genetic, environmental, and
lifestyle factors; and {7) large numbers of human liver
tissue samples and human liver tissue preparations
are currently available in contrast with preparations
and tissues from other human organs. The results on
the variance of the distribution of CYP2E1 in aduit
human liver will be especially applicable to other en-
vironmental contaminants that are also substrates for
this enzyme.

The investigation was accomplished by first char-
acterizing the variance about the CYP2E1-mediated
oxidation of TCE among human samples in vitro,
second by quantifving the variance of human hep-
atic CYP2E]1 content, and third by extrapolating the
bounds of variance of TCE oxidation among the adult
human population to a human PBPK model. Two sep-
arate statistical analyses were conducted—one based
on convenience and one based on technical accu-
racy. The amount of TCE metabolized (oxidized) in
the liver was simulated as a dose surrogate for the
hepatotoxicity of TCE. The goal of the present in-
vestigation was to quantify the variability in a risk-
relevant PK outcome for the hepatotoxicity of TCE,
and to demonstrate the usefulness of advanced data
on human biochemical individuality in quantifying the
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variability of risk-relevant PK outcomes for inclu-
sion in risk assessments. Data on the distribution of
CYP2E] in the intact liver has not been used to esti-
mate the degree of susceptibility to risk for metabo-
lized chemicals. We hypothesized that the degree of
natural variance in human hepatic levels of CYPZE1
would result in similar differences in the oxidation of
TCE in the intact human.

2. METHODS

Several sets of information describing or based
on microsomal protein (MSP) were collected for as-
similation, extrapolation, and incorporation into a
PBPK model. The objective of the extrapolation was
totransition expression of apparent Vo, from units of
“pmoles TCE oxidized/min/mg MSP” to units of con-
ventional PBPK modeling, mg/h/kg body mass. Nec-
essary data were compiled from multiple sources, and
used to describe the various parameters, whose distri-
butions were analyzed and combined. Table I demon-
strates the relationship between those data sets and
parameters. TCE is oxidized by CYP2EL, and that
metabolic rate had been previously measured and
presented in units of MSP (nmol/min/mg MSP). Thus,
the need to express apparent Vo, as pmol TCE oxi-
dized/min/pmol CYP2E1. CYP2E1isisolated in MSP,
thus the need to quantify CYP2E1 in MSP (pmoles
CYP2E1/mg MSP). Because MSP is one constituent
of liver, the amount of MSP per gram liver tissue (mg
MS&P/gram liver) needed compulting. These data facil-
itate the extrapolation of in vitro metabolic capacity
{comprising enzyme activity and enzyme content) to
theintact liver. Units of calculation cancel (pmol TCE
oxidized/min/pmol CYP2E1) x (pmol CYP2El/mg
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MSP) x (mg MSP/gram liver), leaving units of pmol
TCE oxidized/min/gram liver. Correction for molec-
ular weight of TCE, 60 min/h, and assumptions about
the fractional composition of body mass attributed to
the liver compartment (liver = BW x 0.026) resulits
in units of mg TCE oxidized/h/kg,

2.1. Human Samples and Quantification
of CYP Proteins

Both prepared MSP and intact liver tissue were
obtained for this investigation from various sources
{Human Cell Culture Center, Laurel, MD; Interna-
tional Institute for the Advancement of Medicine, Ex-
ton, PA; Vitron, Tucson, AZ; Tissue Transformation
Technologies, Inc., Edison, NJ}. All tissues and prepa-
rations were derived from adult human organ donors
that were devoid of antibodies directed against infec-
tious diseases. The MSP content of CYP2E1 and other
CYP forms was previously investigated and reported
for 40 donors.* In the present analysis, 20 samples of
intact tissue were obtained, and MSP prepared via the
method of Guengerich®® (Fig. 2). CYP2E! content
of aliquots of (post 100 x g) homogenate protein and
MSP were determined by enzyme-linked immunosor-
bent assay (ELISA) following the method of Snawder
and Lipscomb,1%)

2.2. Distribution of CYP2E1 to Human
Hepatic MSP

Data on the CYP2ZE] content from 40 samples
of human hepatic MSP were available from Snawder
and Lipscomb,"'? and data derived from an ad-
ditional 20 samples of human hepatic MSP were

Table I. Identitication of Data Sets and Parameters for Statistical Evaluation

Information Data Sel Units Paramelter Notes

CYP2E! pmol CYP2E}/gram liver A Directly measured via ELISA (n = 20);
content of and separately predicted statistically
intact liver

CYP2ELl con- Data Set | (n =60) pmol CYPZEl/mg MSP B Directly measured via ELISA
tent of MSP

MSP content of Data Set 2 {n = 20) mg MSP/gram liver C Derived: C = A/B
intact liver

TCE metaboli- Data Set 3 (n = 15) pmol TCE/min/ pmol CYP2E] D Original measurements from

7zed per unit

CYP2ZE1
TCE metaboli- pmol TCE oxidized/minute/gram E
zed per unit liver

of intact liver

Reference 11 corrected by CYP2E1
content from Reference 18

Statistically estimated: E=B x C x D;
extrapolated to Vi

B-5



Trichloroethylene and Human CYP2E1
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Fig. 2. Relationship between intact liver, microsomal protein, and
some CYP forms. The isolation of microsomal protein from intact
liver via homogenation of tissuc and differential centrifugation re-
sultsin a 100,000 x g pellet, which is enriched for endoplasmic retic-
ulum content. The enrichment results in an artificial increase in the
congentration of biological components associated with the endo-
plasmic reticulum. This isolation produces a fraction (microsomes;
MSP), which is subjected 10 in vitro investigations of metabolic ac-
tivity and enzyme content. However, a quantitative relationship to
the intact liver is not possibie without further information on the
distribution of microsomal protein to the intact liver.

combined to yield a total sample of 60 adult human or-
gan donors for which data on the CYP2EI content of
MSP (CYP2psp, parameter B, data set 1) were avail-
able®”) (Table 11, described in the following section).
Of this set of 60 samples of MSP (representing 60
organ donors), 15 were used to estimate the in vitro
metabolic parameters for TCE and CYP2E1 content
of MSP; 45 were subjected only to the determination
of CYP2E1 in MSP (and 20 of that 45 were paired
with liver homogenate to determine the MSP content
of liver).

2.3. Estimation of Proteins in Intact Liver

In this analysis, 20 samples of intact liver tissue
were assayed (Table II). The total amount of protein
{CYP and non-CYP; microsomal and cytosolic pro-
teins) in intact liver (PROy;,) was empirically deter-
mined based on the protein content of the post 100 x g
liver supernatant, after correcting for volume accord-
ing to Equation (2). It was assumed that no protein
was lost during the sedimentation of nuclei and debris
at 100 x g.

{mg protein/ml homogenate)
x {ml homogenate/gram tissue)

= (mg homogenate protein/gram tissue)  (2)
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The content of CYP2E! in total hepatic protein
(CYP2p,) and in MSP (CYP2pgp: parameter B)
was determined so thai a measure of the liver con-
tent of MSP (MSPy;,; parameter C) could be de-
rived. The content of CYPZEL in liver (pmoles
CYP2El/gram liver; CYP2p;,; parameter A) was de-
rived empirically by combining two data sets {PROy;,
CYPpro). described in FEquation (3), and was esti-
mated via the statistical method of moments (Sec-
tion 2.5.1) and by computational statistics {Section
2.5.2). For the 20 individual organ donors, the sep-
arate amounts of CYP2E1 per gram liver were
empirically determined according to the following
equation:

(pmol CYPZE1/mg homogenate protein)
x (mg homogenalc protein/gram lissue)
= (pmol CYP2E1/gram tissue). 3)

The amount of MSP per gram liver was estimated ac-
cording to Equation (4). This is the data set (MSPL;;
parameter C, data set 2) that will be combined with
information on the distribution of CYP2E1L to MSP
(CYP2\sp; parameter B, data set 1) to determine the
distribution of CYP2EL to the intact liver (CYPy;;
parameter A}.

(pmol CYP2E1/gram tissue}/
{pmol CYP2E!/mg MSP)
= (mg MSP/gram tissue) (4)

2.4. CYP2E1-Dependent Oxidation of TCE

The Michaelis-Menten kinetic constants were
available for 23 samples of MSP from Lipscomb
et al!? The metabolism of TCE to chloral hy-
drate, representing oxidation by CYP2E1, was quan-
tified by measuring the formation of chloral hy-
drate. Apparent Vi, was expressed as pmol TCE
oxidized/min/mg MSP. From this set of 23 origi-
nal samples, 15 remained, and CYP2E1 content of
those microsomal protein samples was quantified by
ELISA.U" We sought to develop a more techni-
cal description of V. (the theoretical maximal ini-
tial rate of the reaction in the presence of unlim-
iting substrate concentration), and one that would
be more readily extrapolable to the in vive setting
through incorporation of the information on the hep-
atic content of CYP2EL. To accomplish this, the
Vmax values (pmoles/min/mg MSP) available from
the previously published study!”) were divided by the
CYP2E1 content of MSP (pmoles CYP2E1/mg MSP)
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Table IL. Liver Enzyme Data@?

Homog. Protein CYP2ZE] per mg Paramcter A = pmol Parameter B = pmol Parameter C = mg MSP

Samples {(mg/Gram Liver) Homog. Protein CYP2E] per Gram Liver CYP2EI per mg MSP per Gram Liver = A/B
1 134 16.1 21574 835.5 252
2 HO 25.6 2585.6 99.8 259
3 137 i7.9 2452.3 834 294
4 100 15.2 1520.0 230 66.1
5 113 10.9 12317 34.0 ' 36.2
6 151 12.2 1842.2 36.3 50.7
7 154 250 3850.0 70.8 Si1
8 148 12.4 1835.2 46.0 39.9
9 115 213 24725 69.0 358

14} 137 209 280633 3835 48.9

1L 181 24.6 4452.6 54.0 82.5
12 180 278 5004.0 64.0 78.2
13 126 21.4 2696.4 68.0 39.7

14 124 219 2715.6 53.0 512
15 122 223 27206 46.0 59.1

16 137 24.4 33428 66.0 50.6

17 152 16.3 2477.6 41.0 60.4

18 130 24.1 3133.0 24.0 130.5
19 69 252 1738.8 42.0 41.4

20 126 14.0 17640 41.0 43.0

21 525

22 94,0

23 46.5

24 90.0

25 11.0

26 64.0

27 . 41.0

28 64.0

29 30.6

30 575

3 535

32 55.0

33 2.0

34 29.0

35 39.0

36 3940

37 73.0

38 70.0

39 130.0

40 34.0

41 31.0

42 48.0

43 295

44 19.0

45 77.0

46 9140

47 37.0

48 74.0

49 44.0

50 50.0

51 75.0

52 29.5

53 69.0

54 91.0

55 48.0

56 36.0

57 41.0

58 26.0

59 26.0

60 53.0
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Table III. CYP2E1 Content and TCE Mectabelic Activity Used to Produce Data Sct 3, Describing Parameter 1D

Sample
Number

pmiol TCE

Oxidize d/min/mg

pmol CYPZEL/
mg MSP

pmol TCE Oxidized/
min/pmol CYP2E]

Samples {from Reference 17) MSP (from Reference 17) (lrom Reference 15) (Parameter D)
61 HHM 67 1113 11 101.2
62 HHM 84 1724 64 269
nh3 HHM 86 1139 44 23.6
64 HHM 88 1432 S0 28.6
65 HHM 55 1422 52,5 27.1
3] HHM 60 1746 91 19.2
67 HHM 77 943 19 49.6
68 HHM 78 1627 77 21.1
69 HHM 81 1416 37 383
70 HHM 82 2353 74 318
71 HHM 89 890 30 297
72 HHM 144 1584 ) 53.7
73 HHM 58 2078 94 22.1
74 HHM 61 2023 Of} 291
75 HHM 79 3455 91 R0
Geometric Mean 325
Geometric Standard Deviation 1.538

4Data not used in estimation of parameter B.

to vield V., values expressed as pmolcs TCE ox-
idized/minute/pmol CYP2E1 (Table I11). This mea-
sure (parameter D) and its distribution are referred
to as data set 3 and are described as TCEcyp..

2.5. Statistical Analysis

Tables IT and T summarize the data employed in
the statistical analyses.

Probability distributions were fitted by the
SASY8.0 Analyst routine to data describing the fol-
lowing variables (with mnemonic variable name):
A = pmol CYP2E l/gram liver (CYP2;,); B = pmol
CYP2El/mg MSP {CYP2umsp); C = mg MSP/gram
liver (MSPy;,) = A/B. StatFit softwarc was uscd to
determine an optimal distribution fit to the 15 ob-
servations for parameter D, pmoles TCE oxidized,
min/pmol CYP2E1 (TCEcvyp2). The log-normal dis-
tribution was selected with parameters p = 3.4812
and o = 0.4156 for the imbedded normal distribu-
tion, implying a geometric mean and standard devi-
ation of 32.5 and 1.515, and an arithmetic mean and
standard deviation of 35.4 and 15,4, This distribution
was accepted via chi-squared, Kolmogorov-Smirnov,
and Anderson-Darling statistical tests at the ¢ = 0.03
(95%) confidence level.

Three sets of data were available: a set of n =
60 samples, for which laboratory measurements were
available on B = (CYP2pgp), an # = 20 subset of
the 60 samples, for which several additional labora-

tory measurements were available (PROL;,. CYP2p,q.
CYP2ugp). and a set of n = 15 samples, for which one
laboratory measurement was available (TCEcyp).
These three sets of available data were first analyzed
scparately. The additional variables (CYP2y,;, and
C = MSPy;, ) were calculated from the measurement
data,

For all variables, normal, log-normal, exponen-
tial, and Weibull distributions were fit using stan-
dard statistical tests of goodness-of-fit (Kolmogorov-
Smirnoff, Cramer-von Mises, and Anderson-Darling)
and a visual examination of quantile-quantile plots.
The null hypothesis was that the distribution fit
the data well, with a rejection of the null at p
= 0.10. All these analyses were performed us-
ing SAS® Each of the distributions was ade-
quately approximated by a log-normal distribution,
the paramcters of which are the mean (u) and
standard dcviation (5) of the logarithms of the
observations.

2.5.1. Analysis via Method of Moments

For convenience, ignoring the dependence be-
tween data set 2 and the » == 20 (matched sub-
set) of data set 1, and because the consistency of
goodness-of-fit of the data to the log-normal dis-
tributions (excluding data set 3: TCEcypz; pmol
TCE oxidized/min/pmol CYP2E1), we applied the
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statistical method of moments (addition of errors,
(Equation (5)) to combine data sets 1-3 to estimate
parameter E, pmol TCE oxidized/min/gram liver. All
goodness-of-fit p-values were greater than 0.15. As a
convenience, the log-normal parameter will be rep-
resented by the geometric mean (GM = ¢*) and
geometric standard deviation (GSD = ¢*), respec-
tively, in this article. Equation (5) demonstrates the
method used to estimate the distribution of V., val-
ues, where the distributions for parameters B (pmol
CYP2El/mg MSP), C (mg MSP/gram liver), and D
(pmol TCE oxidized/min/pmol CYP2E1) are com-
bined mathematically. The values at the 5th (Xs)
and 95th (Xys) percentiles for the resulting distribu-
tion (parameter E, pmoles TCE oxidized/min/gram
liver) werc calculated by Equations (6) and (7),
respectively.

Loorm[pu=u1+uztuz.s=/ (st + 55+ 59| (5)

where u; is mcan of logs of observations, s; is stan-
dard deviation of logs of observations, 1 is data set
1—{(CYP2psp), 2 is data set 2—(MSPy;, ), 3 is data set
3I—~TCEcve2).

A]OS — e[,u—l.f)45xs] (6)
Xos = e[u+l.645x5] (7)

2.5.2. Analysis via Computational Statistics

We next sought to model the distribution of A =
pmol CYP2E1l/gram liver with greater precision by
using all of the available data, including the corre-
lation (Fig. 3) on variables B = pmol CYP2ZEl/mg
MASP and C = mg MSP/gram liver. Since A =B x C,
these three variables are not statistically independent.
Moreover, it is perhaps not obvious how or whether
the 40 measurements of B that are not matched to
measurements on A and C (observations 21-60 in
Table I1) can be used to improve estimation of the
distribution of A. However, we were able to synthe-
size and apply two techniques [rom computational
statistics—mixture distribution modeling?® and clas-
sification trees@3__to use all of the B and C data,
including the 40 unmatched measurements on B, to
model the distribution of A.

The methodology for estimating the frequency
distribution of A using all available measurements
(i.e., using the joint distribution of A and B, as well as
the derived variable C) was as follows.
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Fig. 3. Correlation between mg MSP/gram and pmol CYP2ZE1/mg
MSP. The slight. but statistically significant, corrclation between
the two parameters dictated the chotce of statistical methods. Data
from Reference 27.

1. The frequency distribution for A can be ex-
pressed using marginal and conditional prob-
abilities as follows:

Pr{iA=a) = Sp.oPr{AB=b& C =)
PiB=b & C=¢)

= E(b‘c)PI’(A|B =b&C= C)

Pr(B = b)Pr(C =¢c|B =b)

where the sum (or integral) is taken over all
{b. c) pairs of values. Thus, A is interpreted
as having a distribution that depends on the
{perhaps unobserved) values of B and C.

2. The terms Pr(A | B = b & C = ¢}, Pr(B =
b), and Pr(C = ¢ | B = b) are estimated em-
pirically from all of the available data using a
classification tree estimator, Fig. 4 shows the
classification tree fit to the first 20 cases in
Table I, i.e., those with data on both A and B
{and hence C). This tree provides an estimate
of the distribution of A conditioned on the
values of B and C. The fit was performed us-
ing the KnowledgeSeeker™ package (http:/
www.angoss.com/ProdServ/indexH.html). In-
terpretively, the distribution of A is mod-
eled as a finite mixture distribution®® with
a number of components to be estimated
from the data. These components correspond
to leaves in the classification tree in Fig. 4.
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Average A 2642.77
# of records 20

b |
| ]

[23,53] {53, 99.8]
| |
Ave=2029.23 Avg =3144.75
std=614.41
n=9 n=11
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[25.233, 36.226) (36.226, 59.143] [59.143, 130.542]
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Fig. 4. Classification tree modecl tor the distribution of A = pmol
CYP2El/gram liver. The distribution of A is modeled as 2 finite
mixture distribution with components corresponding to the leaves
in the depicted classification tree. The conditional distribution of A
depends on which component distribution a case belongs to. The
components arc bounded by breakpoints in the observed values for
B and C. The sample means and sample standard deviations for the
four component distributions arc estimated from the first 20 cases
in Table II.

The conditional distribution of A depends on
which component distribution a case belongs
to. Fig. 4 shows the sampie means and stan-
dard deviations for four component distribu-
tions (leaves), estimated from the first 20 cases
in Table II. Using only these data, the es-
timated distribution of A would correspond
to the following finite (4-component) mixture
distribution:

Cluster 1: weight = 9/20, sample mean =
2029.23, sample standard deviation
=61441

Cluster 2: weight = 4/20, sample mean =
2416.88, sample standard deviation
= 182.68

Cluster 3: weight = 5/2(, sample mean =
3093.62, sample standard deviation
= 496.97

Cluster 4: weight = 2/20, sample mean =
4728.3, sample standard deviation
=389.9

Here. the four components are termed “clus-

ters” since they correspond (o sets of cases for
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which the distribution of A values is approx-
imately the same (i.e., the classification tree
algorithm is unable to find any statistically sig-
nificant difference among them).

3. This mitial tree based on the first 20 (full-
data) cases in Table II was refined by using
the remaining 40 observations of B values in
Table I1 (i.e, cases 21-60) to better estimate the
fraction of all cases for which B < 53 {the defin-
ing characteristic of Cluster 1). The pooled es-
timate from all 60 cases is that 32/60 (= (.53,
95% CI = 0.40 to 0.66) of A values arc drawn
from Cluster 1. The revised cluster weights us-
ing all 60 observations on B are: 0.53 for Clus-
ter 1; 0.17 for Cluster 2; 0.21 for Cluster 3; and
0.09 for Cluster 4. While the cluster-specific
sample sizes are very small (n = 2 for Clus-
ter 4), this decomposition of the distribution
of A into a weighted mixture of component
distributions actually decreases the variance in
estimates of the true mean (and other statis-
tics) of A compared to using a single estimated
distribution.(*h)

The methodology summarized in Steps 1-3 can be
further refined, e.g., by using resampling to establish
robust boundaries for the classification tree splits, or
by using a Bayesian posterior distribution for the frac-
tion of cases belonging to different clusters. However,
given the small number of cases (n =20) with full data,
additional refinements of the tree estimator in Fig. 4
with the cluster weights obtained from all 60 measure-
ments for B are not expected to greatly improve the
estimation of the distribution of A.

2.6. Combination of Data Sets

A program was developed in the MATLARB soft-
ware (see Appendix A) to produce A, D, and A x D
random variates in accordance with the distributions
for A and D derived above. The distribution of A was
taken from that determined by computational statis-
tics. This program identified 100,000 random variates.
Eight thousand of the generated A x D values were
selected at random and were subjected to a further
analysis to find an optimal distributional fit (StatFit
has a limit of 8,000 values).

2.7. PBPK Model

Human metabolism of TCE was simulated us-
ing the PBPK model of Allen and Fisher®® and
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SimuSolv software (Dow Chemical Co., Midland,
MI). The model structure consisted of four tissue
compartments (liver, rapidly perfused tissues, slowly
perfused tissues, and fat) and a gas exchange compart-
ment (lung) connected by blood flows. All TCE bio-
transformation was assumed to take place in the liver
and follow Michaelis-Menten kinetics, The liver was
described as a well-stirred homogeneous compart-
ment. Previous studies have demonstrated that more
complex heterogeneous models of the liver, such as
the parallel tube and dispersion models, were not bet-
ter than the simple well-stirred model at predicting the
in vivo clearance of 28 drugs from in vitro data.* The
model was set to simulate two extreme exposurc sce-
narios: (1) simulating a higher, but permitted, occupa-
tional exposure at the Threshold Limit Value (TLV)
for TCE, which is 50 ppmi in air for an 8-hour working
day,"* and (2) simulating a low-dosc environmen-
tal exposure via drinking water containing the max-
imally allowable concentration of TCE (5 ug/L).%
With knowledge that the hepatic me¢tabolism of TCE
in vivo is limited by blood flow. the model was set
to simulate a “worst case” scenario of an oral bolus
dose, because this (rather than a slower oral inges-
tion rate) would be the more likely scenario (o pro-
duce differences in the amount of TCE metabolized
{(AML). AML is presented in units of mg TCE me-
tabolized over the course of the simulation per liter of
liver tissue. Simulations of AML (amount of TCE me-
tabolized in the liver compartment) were evaluated
because the CYP2E1-dependent oxidation of TCE is
a requircd step in the formation of the hepatotoxic
metabolite, trichloroacetic acid (TCA), in vivo. Chlo-
ral hydrate, the oxidative metabolite of TCE, does
not have a measurable half-life in vivo following its
formation from TCE, but is immediately converted

Lipscomb ef al.

to TCA and trichloreethanol. For these simulations,
the model incorporated both extremes of the distri-
bution of the V.« for TCE oxidation (5th and 95th
percentiles).

3. RESULTS

3.1. Distribution of CYP2E1L to Human
Hepatic MSP

Analysis of 60 samples of MSP derived from in-
dividual adult human organ donors for the content
of CYPZEL (pmoles CYP2E1/mg MSP, parameter B,
data sct 1) indicated that the log-normal distribution
adequately represented the set of observations, The
geometric mean and geometric standard deviations
required to reconstruct the overall distribution and
simulate the value for a percentile of interest arc pre-
sented in Table I'V. These values agree well with those
reported by Shimada et al.%® Variance between the
values at the 5th and the 95th percentiles of the dis-
tribution was approximated fourfold.

3.2. Distribution of CYP2E1 to Intact Human Liver

Three types of analytical procedurcs were used to
determine the distribution of CYP2EL! to intact liver
tissue (pmoles CYP2E 1/gram liver, parameter A) de-
rived from adult human organ donors. First, the most
direct measure, but one for which only 20 observa-
tions are available, is depicted in Equations (1) and
{(2) and involved the application of the ELISA tech-
nique to liver homogenate (post 100 x g) protein. The
empirical distribution of the 20 observations indicates
that the magnitude of variance between the obser-
vations representing approximately the 5th and 95th

Table I'V. Distributions of TCE Mctabolism Rate Constant, Microsomal Protein, and CYPZE1 Content of Adult Human Liver

Parameters A B C D E
Description CYP2.. (Derived) CYPZRISP {Data Sct 1) MSPFy;, (Data Set 2) TCE?.Y[,2 {Datu Set 3) TCES,, (Derived)
Distribution Discrete LLog Normal [.og Normal Log Normal Log Normal
GM 2562 48.9 529 325 78,810

GSD 930 1.6 1.476 1.515 1.7274
Range 1232-5004 11-130 27-108 19.2-101.2 -

5th Percentile 1232 225 279 16.4 32,069

95th Percentile 4453 106 100 64.4 193.67Y

dpmoles CYP2El/gram liver; data are prescnted as the arithmetic mean, arithmetic standard deviation, and values at the 5.8%9th and 95.5th

percentiles, #r = 20. GM and GSD derived by computational statistics,

bpmoles CYP2E 1/mg MSP. 11 = 60.
‘mg MSP/gram liver. n = 20.

A ax of CYP2E] in human liver MSP toward TCE, pmoles/min/pmol CYP2EL n = 15.
“Vmax as pmeles TCE oxidized/min/gram liver, derived via computational statistics.

B-11



Trichloroethylene and Human CYP2E1

percentiles of the empirical distribution is approxi-
mately threefold. These raw data indicate a mean
value of 2,643 and a standard deviation of 962 pmoles
CYP2E1/gram liver.

Second, the application of the statistically lim-
ited method of moments required the characteriza-
tion of the two undertying distributions: (1) param-
eter B, pmoles CYP2E1/mg MSP, data set 1 and (2)
parameter C, mg MSP/gram liver, data set 2. Because
the observations in these two sets of data were ad-
equately fit by a log-normal distribution, the values
for the geometric mean and geometric standard devi-
ations for each data set (Table IV) were combined
(Equation (4)). The Jog-normal distribution of the
liver content of MSP (parameter C) was characterized
by a peometric mean of 52.9 mg MSP/gram liver and
a geometric standard deviation of 1.476 (arithmetic
mean and standard deviation of 57 + 23 mg MSP/gram
liver), The MSP content of CYP2E1 (parameter B)
was determined in a sample set of 60, and demon-
strated a log-normal distribution, with a geometric
mean of 48.9 pmoles CYP2E1/mg MSP and a geomet-
ric standard deviation of 1.6. The arithmetic mean &
standard deviation was 54 + 23 pmoles CYP2E1l/mg
MSP. When combined, the results indicated a geo-
metric mean of 2,587 pmoles CYP2El/gram intact
adult human liver, with a geometric standard devi-
ation of 1.48. From analysis via Equations (5) and
{6), these parameter values indicate values at the Sth
and 95th percentile of the distribution to be 949 and
7,053 pmoles CYP2ELl/gram. These values are simi-
lar to those indicated by the direct measurement of
CYP2E] in homogenate protein, above. These data
indicate that the central 90% of the population rep-
resented by these 60 adult organ donors expresses a
CYP2E1 content that varies 7.4-fold.

Finally, a specific probability distribution for the
parameter A was developed, based upon the clusters
derived in Section 2.5.2. Recall that clusters of values
for A were identified, into which values for param-
eter B (pmoles CYP2E1l/mg MSP) were segregated.
In this manner, the influence of parameter B, or its
determinant qualities, on parameter A was character-
ized. A continuous probability distribution was not
fit to the individual clusters due to the small num-
ber of observations within each cluster; instead, the
distribution of A was assumed to be discrete and con-
sist only of the observed values (4th column, Param-
eter A, of Table 1I). Clusters were assumed to occur
with proportional frequencies equal to the weights
{0.53, 0.17, 0.21, 0.09} and to have counts of {9, 4,
5, 2} as described previously. Within a cluster, each
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value belonging to that cluster is assumed to oceur
with equal frequency. This approach provides prob-
abilities of 0.53/9 (= 0.0589) for values in Cluster
1, 0.17/4 (= 0.0425) for values in Cluster 2, 0.21/5 (=
0.0420) for values in Cluster 3, and 0.09/2 (= 0.0450)
for values in Cluster 4. Cluster statistics are presented
in Fig. 4. If we usc x; to represent the /th value of pa-
rameter A, and p; to represent the probability of the
ith value, then the mean of the resulting distribution is

20
> pix; = 2561.77 (8)
i=1

while the variance of the distribution is

20 20 2
> pixl? - (Z pfx,) = 865,563.40  (9)
i=l i=1

providing a standard deviation of 930.36.

Note that the mean of the raw data for parameter
A (Table IT) is 2,642.8 while the standard deviation
(using Equation (9)) is 937.21 (the sample standard
deviation is 962). We see that accounting for the in-
fluence of parameter B has shifted our estimates of
parameter A slightly downward, and has slightly de-
creased the standard deviation. This is a result of the
individual probabilities being shifted slightly upward
or downward from 0).05 in accordance with the distri-
bution shown in empirical distribution. This distribu-
tion was used in the recombination of data describing
parameter A with data describing parameter D, as
discussed below.

3.3. In vitro Metabolic Rate Constant (V yay)

The V. for the oxidation of TCE by CYP2EL
{pmoles TCE oxidized/min/pmol CYP2E1L, param-
eter D, data set 3, Table III} was evaluated in
a data set of 15 samples. The apparent V. ob-
served in vitro (pmoles TCE oxidized/min/mg MSP)
was converted to the more specific units of pmol
TCE oxidized/min/pmol CYP2E] by dividing the ob-
served Vi, value by the content of CYP2EL1 in the
MSP (pmoles CYP2E1l/mg MSP). The resulting set
of 15 observations (pmol TCE oxidized/min/pmol
CYP2E1) were fit optimally with the log-normal dis-
tribution; its parameters were g = 34812 and o=
0.4156 for the embedded normal distribution, im-
plying a geometric mean and standard deviation of
32.5 and 1.513, and an arithmetic mean and stan-
dard deviation of 35.4 and 15.4. This distribution was
accepted via chi-squared, Kolmogorov-Smirnov, and
Anderson-Darling statistical tests at the « = 0.05
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{95%) confidence level. The difference between val-
ues at the 5th and 95th percentiles of the distribution
approximated fourfold.

3.4. Determining the Metabolic Capacity of Intact
Tissue and Extrapolation of Units

MATLAB results of the simulations of 100,000
random variates of A x D revealed a plot (not shown)
suggestive of a log-normal distribution, and a nor-
mal distribution (not shown) of the logs of values
of A x D. StatFit analyzed 8,000 of these variates,
and indicated that the most likely distribution was
the log-normal, with parameters ;& = 11.2748 and o=
(.5466. The log-normal distribution was accepted via
chi-squared, Kolmogorov-Smirnov, and Anderson-
Darling statistical tests at the o = 0.05 (95%) confi-
dence level. The parameters of the log-normal distri-
bution indicate a geometric mean of 78,810 pmoles
TCE oxidized/minute/gram liver, and a geometric
standard -deviation of 1.7274. Applying these values
in Equations (6) and (7) results in 5th and 95th per-
centile values of 32,069 and 193,679 pmoles TCE ox-
idized/minute/gram liver, respectively. These values
were corrected for molecular weight, time, and frac-
tional composition of the body represented by the
liver (liver weight = 2.6% body mass) to yield val-
ues of 23.514 and 142.01 mg/h/kg at the 5th and 95th
percentiles of the distribution, respectively.

3.5. PBPK Model Predictions

The PBPK model for TCE was used to simulate
exposure of a 70 kg male human to 50 ppm TCE for
8 hours. This exposure scenario represents the maxi-
mum recommended exposure of an individual to TCE
in the workplace. The extremes of expression of the
CYP2E1-mediated oxidation of TCE in the liver used
here (approximately six-fold) resulted in a difference
in TCE hepatic metabolism of approximately 2%
{Table V). For this simulation, the amount of TCE
oxidized over the exposure period per volume of liver
{1g/L) was used as the dose metric most linked with
hepatotoxic injury/risk. Simulation of the oral inges-
tion of TCE (5 ug/L) in 2 L of drinking water using
the 5th and 95th percentiles of the TCE oxidation rate
gave similar results (Table V). These data indicate that
physiological processes limit the full impact of the dif-
ferences in CYP2E1 activity toward TCE mediating
the formation of toxic metabolites. Previous PK anal-
yses of the effect of enzyme induction on the bioacti-
vation of TCE and other volatile organic compounds
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Table V. Effect of Human Hepatic CYP2E1 Activity Distribution
on the Bioactivation of TCE Following an [nhalation
and an Oral Exposurc

Liver Metabolites (ug/L.)

Oxidation Rate Inhalation® Orall
5th percentile (23.514 mg/h/kg) 2583 54
95th percentile (142.01 mg/h/kg) 264.9 3.5
Difference (%) 2 2

A Simulations of 8-hour exposure to TCE (50 ppm) by a 70 ke maie
human as described under Metheds.

b Simulations of exposure to TCE in drinking water (5 pg/L: 2 L)
over 24 hours by a 70 kg male human as described under Methods.

indicated a hepatic blood flow limitation of the bioac-
tivation process.(!*) The rate of blood flow delivery of
these substances to the liver is much slower than the
rate of bioactivation in the liver, limiting the impact of
enzyme induction or interindividual variability. This
study focused on the issue of whether enzymic vari-
ance alone could contribute substantially to suscep-
tibility to hepatotoxic injury, and did not attempt to
capture or examine the effect of other factors (e.g.,
differences in hepatic blood flow) on the PK of TCE.

4. DISCUSSION

Advanced PK studies and PBPK modeling allow
the development of the linkage between external dose
and target tissue dosimetry. PBPK models can predict
target tissue concentrations associated with specific
levels of response in animals or humans {(LOAEL,
NOAEL, or BMD-derived level of response). Human
PBPK models can examine the risk-relevant PK out-
come of chemical exposure (i.c., tissue levels of bicac-
tive metabolite) and predict the external exposure
(i.e., mg/kg/day) required to produce this PK cutcome
at the same level observed in research animals at the
corresponding level of toxicity. When adequate infor-
mation is available to quantify the metabolism to or
from the bioactive chemical form, the human PBPK
model can be further refined to include data on en-
zyme (metabolic) variance in human tissues. Then the
PBPK models can be exercised to examine not only
animal to human differences in the risk-relevant PK
outcome, but also the human interindividual variance
in the expression of that PK outcome.

Biotransformation is a critical determinant of
both PK and risk since metabolism is involved in
the bioactivation and detoxication of xenobiotics.
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Fig. 5. Extrapolation and incorporation of in virro derived
metabolic rates in PBPK modeling. This figure depicts the frame-
work for deriving appropriate in virro measures and their extrap-
olation into a PBPK model. The model was exercised 1o simulate
environmentally and occupationally relevant exposures.

Genetic polymorphisms and enzyme induction due to
environmental and lifestyle factors can affect the level
of expression of xenobiotic metabolizing enzymes.
Thus, genetic polymorphisms become critical to risk
only when they alter PK outcomes. The refinement of
human health risk assessments for chemicals metab-
olized by the liver to reflect data on human interindi-
vidual PK variability can be accomplished through
(1) the characterization of enzyme expression in large
banks of human liver samples, (2} the employment of
appropriate technigues for the quantification and ex-
trapolation of metabolic rates derived in vitro, and (3)
the judicious application of PBPK modeling.
Numerous PK outcomes may be simulated by
PBPK modeling; the identification of the risk-relevant
PK outcome(s) from toxicity studies allows the study
of their variability through adequately constructed
PBPK models. When PK models are constructed to
include metabolic rates (and rate constants) derived
in vitro, several extrapolations are necessary, not the
least of which is the extrapolation of enzyme con-
tent (Fig. 5). PBPK models include the apparent
Vmax e€xpressed as mg/h/kg body mass, while typi-
cal in vitro studies express V., in terms of nmoles
product formed/minute/mg microsomal protein. Ac-
curate extrapolation requires initially that enzyme
content be expressed per unit intact liver (i.e.. pmoles
CYP2El/gram liver), and the extrapolation has usu-
ally included a numerical estimation of the MSP con-
tent of liver (i.e., 50 mg MSP/gram liver}. The MSP
content of intact liver has been measured and used
to exirapolate in vitro-derived metabolism kinetic
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constants for use in PBPK modeling efforts in hu-
mans®73% and to infer measures of intrinsic clear-
ance (Clint) in traditional rat-based PK models.%”
In the previous PBPK-based approach for TCE,"*"
samples expressing extreme values for kinetic con-
stants (Ky and V) were chosen for extrapolation
to a PBPK model. Those extrapolations were based
on the hepatocellularity of intact liver tissue, and on
microsomal protein content of liver, rather than the
content of CYP2ET1 of liver. The V., value was not
previously extrapolated on the basis of CYP2E1 con-
tent as no data existed at the time through which
to quantify the distribution of the key metabolic
enzyme within human liver. With respect to the
distribution of the cytochromes P450 in one prepa-
ration of human liver (microsomes), several inves-
tigations17#4041) have revealed quantitative infor-
mation about the content of these multiple enzyme
forms in this preparation, but reveal no direct infor-
mation on the type of distribution (i.e., log-normal)
of the enzymes within MSP, their content or distribu-
tion to the intact liver ix sifue. In the present study, we
developed measures of the liver content of microso-
mal protein, of which the CYP enzymes (and other
important xenobiotic-metabolizing enzymes, i.e., glu-
curonyl transferases) are a constituent. This key piece
of information is necessary to estimate the content of
the enzyme(s) in the intact liver. By combining the
two data sets on (1) the MSP content of CYP {pmoles
CYP/mg MSP), and (2) the liver content of MSP (mg
MSP/gram liver), we derived the liver content of CYP
(pmoles CYP/gram liver), and developed measures of
that variance, employing a total number of 60 sam-
ples derived from adult human organ donors. The ap-
proach also included the determination and inclusion
of the human interindividual variance in metabolic
activity toward TCE derived in an additional set of
{5 samples. This analysis allowed the variance of that
critical enzyme kinetic parameter (Viay ) to be exam-
ined among humans, and expressed as pmoles TCE
oxidized per minute per pmol CYP2E1. This parame-
ter (pmol TCE oxidized/min/pmol CYP2EL) did vary
among the human samples evaluated, not surprisingly.
This may be explained, in part, by potential under-
lying genetic differences impacting CYP2E1 activity,
differences in the presence of other CYP forms that
also metabolize TCE at highey concentrations, and
human-to-human interindividual differences in the
lipid composition (both qualitative and quantitative)
of isolated MSP preparations. The activity of isolated
enzymes represents the functional status of their re-
spective donors. The stability of these enzymes upon
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isolation and storage seems not to be a major contrib-
utor to this variance. The level of detail in this expres-
sion of V4, allowed for a direct combination with in-
formation on the variance of CYPZE1 in intact human
liver, which enabled the resulting PBPK analysis of
the impact of that variance on the risk-relevant phar-
macockinetic (PK)} outcome, amount of TCE metabo-
lized in the liver, among adult humans. Together, these
data sets separately describing enzyme activity and
enzyme content combine to describe the metabolic
capacity of the liver. The resulting combined distribu-
tion for the V., value demonstrated that this param-
eter (mg/h/kg) differed more than six-fold between
the values at the 5th and 95th percentiles of the dis-
tribution. When these values were separately inte-
grated into the PBPK model, resulting estimates of
the amount of TCE oxidized over the exposure pe-
riod differed by only 2%. Thus, widely divergent val-
ues for apparent V., resilting from both variance
in enzyme content and activity, had little effect on the
in vivo metabolism of TCE, and will have little effect
on the hepatotoxic injury following TCE exposure in
humans.

The present work demonstrates a significant ad-
vantage over earlier studies in that statistically valid
and robust measures of enzyme content and enzyme
activity have been developed and incorporated into
the PBPK-based approach. This advance allows the
application of the approach to estimate population
distributions of risk, when chemical dose-response
parameters (e.g., slope factors) are available. With
the availability of large banks of well-characterized
subcellular fractions {mainly hepatic MSP) derived
from the livers of human organ donors comes the
opportunity to determine several measures of hu-
man biochemical individuality, which will be appli-
cable to many environmental, occupational, and ther-
apeutic compounds. Although several investigations
have failed to identify an inverse relationship between
post mortem cold-clamp time (the time interval be-
tween the perfusion, removal, and refrigeration of
liver tissue and the freezing of the tissue or micro-
somal protein isolation) and microsomal enzyme ac-
tivity, the assumption that the activity of these en-
zymes in vitro represents their activity in vivo must
be recognized as such. From these samples, we can
measure interindividual differences in enzyme ac-
tivity and differences in enzyme content in isolated
MSP. The in vitro metabolism of several CYP2E1 sub-
strates, such as furan,*¥ perchloroethylene,*” and
trichloroethylene,®® have been successfully extrap-
olated to the in vive setting through application of
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adequately developed and validated PBPK models.
The additional validation of the extrapolation proce-
dure for metabolic activity based on enzyme recovery
data is important. This demonstrates the applicabil-
ity of the methodology to determine the interindi-
vidual differences of risk-relevant PK outcomes (i.e.,
the amount of metabolite formed in the liver for a
bioactivated hepatotoxicant) for xenobiotics to which
humans cannot be safeily exposed for the genera-
tion of experimental data. 1t is anticipated that tox-
icological data can be generated in test species in
vivo and in vitro to determine the metabolic species
responsible for toxicity, the PK of the xenobiotic
and metabolite(s), and the identity of the enzyme
responsible for metabolism. With this information,
an adequate test animal-based PBPK model can be
extrapolated to humans, using human tissue partition
coefficients and the appropriate physiological param-
eters. Data on human enzyme recovery could be used
to develop appropriate bounds on the distribution
of metabolic activity for evaluation with the PBPK
model to represent predefined proportions of the
population.

The successful application of this approach re-
quires the avoidance of several pitfalls. 1t requires
{1) the metabolic process under investigation must
be as directly linked to the risk-relevant PK ouicome
as possible: the correct identification of the critical
toxic effect, against which protection is warranted,
or toward which susceptibility requires evaluation.
In the absence of a defined link between this effect
and its most closely related and measurable or pre-
dictable PK outcome (e.g., AML), then further effort
will not advance the goals of the approach. (2) The
tissues/preparations included in the experiments must
be viable. The reliance on human tissues of research
grade can he troublesome; the comparison of in vitro-
derived metabolic rates and rate constants, especially
in humans, requires some justification that these ex
vive or in vitro systems maintain the metabolic ca-
pacity they possess in vivo. The isolated hepatocyte
model is more closely related to the in vive situation
than the isolated microsomal protein preparation, but
metabolic rates from both systems require extrapola-
tion based on recovery information to the in vivo situ-
ation. Reliance upon data derived from compromised
int vitro systems can lead to underpredictions of in vive
metabolism. The inclusion of data from compromised
systems (i.c., lengthy 37° incubations of microsomal
protein, the application of immortalized cell lines,
etc.} must be avotded. The evaluation of metabolic
activity toward recognized marker substrates and
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assessment of cellular viability provide some evidence
of in vitro system stability. (3) There must be suffi-
cient data to enable extrapolation based on protein
recovery. Lack of data or uncertainty in the available
data quantifying the relationship between the in vitro
system and the in vive situation greatly complicate
the extrapolation procedure. Values for hepatoccllu-
larity in rats and humans, and values for microsomal
protein content of rats and humans, are available for
use in extrapolation procedures. (4) The derivation of
metabolic rate constants must be accomplished under
valid experimental conditions. Rate constants must be
derived under conditions where rate is proportionate
to an increase in protein content, over time and with
increasing substrate concentrations (for first-order re-
actions). The value of such data is enhanced when rate
constants are tied specifically 1o the enzyme, rather
than the subcellular fraction (e.g., pmoles/min/pmol
CYP2E1 vs. pmoles/min/mg MSP). (5) Data should
be used to identify the pertinent enzyme; the contri-
bution of more than onc enzyme complicates enzyme
kinetic evaluations, Additional uncertainty is encoun-
teredin the metabolicevaluation of substrates, toward
which multiple enzymes are active. Given the human
interindividual variability on enzyme cxpression as a
result of genetic, dietary, and lifestyle choices, differ-
ent ratios of two potentially active enzymes may be
observed. In this instance, the approach to in vitro en-
zyme kinetic investigations must be robust enough to
separately identify the kinctic constants applicable to
each of the enzymes. Kinetic constants derived for the
preparation, without regard Lo the pertinent enzymes,
can falsely indicate that the apparent V. value is
shifted upward due to the contribution of a low affin-
ity form, when ir vive substrate concentrations would
nol be sufficient to drive an appreciable contribution
of this enzyme to the reaction. (6) This approach re-
lies on the availability of a “validated” PBPK model.
While generalization of model structure and physio-
logical components across chemicals is often the case,
the models must include parameters demonstrated or
judged to be relevant to the study chemical. In addi-
tion to metabolic rate constants, tissue partition coeffi-
cients {PC) are highly chemical-specific. and differ for
the same tissue type among species. The application of
PCvalues derived in other species or adapted [rom PC
values of related chemicals requires justification. (7)
Finally, the approach is aimed specifically at quanti-
fying human interindividual differences in metabolic
capacity. This approach is not specifically aimed at
quantifying human interindividual PK difference for
TCE oxidation; it was developed to test the hypothesis
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that variability in metabolic capacity alters suscepti-
bility to hepatotoxic injury from TCE exposure. The
approach here demonstrates the applicability of the
statistical bounds established for the population un-
der investigation. In that regard, the application of a
representative sample set is required. The data must
support the identification of distribution type and in-
clude enough observations so that confidence can be
placed in the identification of values at predetermined
points of the distribution. While these are some of the
general pittalls, investigators trained in the disciplines
of the individual investigatory steps will be quite fa-
miliar with many of the more technical pitfalls.

To members of the risk assessment community
who are advocating the development of approaches
that provide more information than just “safe expo-
sure limits” (e.g., RfC and RfD values), the present
approach may be useful. The approach is centered
on the identification of the risk-relevant PK outcome
through evaluation of toxicity and PK investigations,
not necessarily through PBPK investigations. Under
optimal conditions, the linking of PBPK modeling
approaches with data describing human biochemi-
cal individuality (enzyme content and enzyme activ-
ity) will allow the quantification of the PK compo-
nent of UFH. The collection of advanced measures
of human biochemical individuality (e.g., differences
in the liver’s content of critical xenobiotic metabo-
lizing enzymes) will broaden the applicability of this
approach to other chemicals whose PK are modulated
by the same enzyme. It is conceivable that when this
parameter (enzyme content and activity) modulates
the production of the risk-relevant PK outcome, in-
formation about the population distribution of the pa-
rameter (i.e., hepatic content of CYP2E1) will lead to
applications demonstrating the fraction of the popu-
lation that will be protected by regulations that spec-
ify a given level of chemical exposure. Simitarly, with
carcinogenicity slope factors, risk-relevant PK out-
comes can be converted directly to measures of risk,
indicating the level of risk corresponding to a given
level of enzyme content and activity. By converting
exposure to tissue dose, and having information to
link tissue dose to risk, the PBPK modeling approach
may be usefully employed to develop distributions of
risk, rather than simply assessing or demonstrating
the health protective nature of a given exposure.

The purpose of the present study was to explore
the potential advantage of including additional, spe-
cific information on human biochemical individuality
as a process torefine the human health risk assessment
process. Because an ever-increasing amount of data is
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being developed through the analysis of tissues de-
rived not only from surgical resections, but also from
human organ donors, these sources of tissues offer
a unique potential to increase our knowledge about
human biochemical individuality.

5. SUMMARY AND CONCLUSIONS

Human interindividual PK variability is impor-
tant both for chemicals with adequate human PK
data and for those chemicals to which humans cannot
be experimentally exposed. Because CYP2E1 activity
limits (in vitre) the production of oxidative, hepato-
toxic metabolites of TCE, we evaluated the distribu-
tion of that enzyme in liver from up to 75 adult human
organ donors by applying published and accepted bio-
chemical and statistical methods. The extrapolation
of in vitro data captured both the variance in enzyme
content and enzyme activity among adult humans.

CYP2E1 content and metabolic activity toward
TCE are described by log-normatl distributions. The
central 90% of the human population represented by
these adult organ donors differs by less than fourfold
in the hepatic content of this critical xenobiotic me-
tabolizing enzyme; that same fraction of the popula-
tion differed by approximately sixfold with respect to
the oxidation of TCE. The finding and additional in-
formation to be gained from the now-characterized
distribution of CYP2E]1 to intact human liver will be
useful not only to the assessment of risk from TCE
exposure, but also to the assessment of risks from
other environmental chemicals that are also metab-
olized by this enzyme, including chloroform, carbon
tetrachloride, benzene, toluene, and styrene. Because
the metabolism of TCE is limited by blood flow to
the liver, divergent values of ¥V, do not result in
appreciable differences in the risk-relevant PK out-
come, the amount of TCE metabolized in the liver.
Therefore, factors that increase the hepatic expres-
sion of CYP2E1 and/or its metabolic activity will not
always result in proportionate changes in key PK out-
comes. This is because of the relatively low solubil-
ity of TCE in blood, and the relatively high capacity
of the liver to metabolize TCE (due to a relatively
high level of expression of the enzyme and the rela-
tively high metabolic activity of the enzyme toward
TCE), the limiting factor, ir vive, for TCE oxidation
becomes the rate at which TCE is delivered to liver tis-
sue by hepatic blood flow. In this situation, increases
in TCE metabolic capacity, even from the 5th to the
95th percentiles of the distribution, result in only a
2% increase in the amount of TCE metabolized. With
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respect to the hepatotoxicity of TCE resulting from
exposure scenarios similar to those employed in this
analysis, these data indicate that the amount of PK
variability attributed to enzymic variance among hu-
mans is approximately 2%. The approach described
here is especially applicable to chemicals to which hu-
mans cannot be experimentally exposed for ethical
reasons. The application of actual, not hypothesized,
bounds of variance and the definition of the distribu-
tion of enzyme content and activity among humans
can allow the calculation of finite levels of risk {when
dependent on the PK outcome) at different chosen
percentiles of the distribution of enzyme content and
activity.

Several conditions must first be met for this strat-
egy to be successful:

1. The target organ, mode, or mechanism of ac-
tion, and metabolic species responsible for
toxicity must be known.

2. The target tissue-toxic chemical species dose-
response relationship must be known.

3. The biotransforming enzyme must be known
and information on the variance and type of its
distribution among humans must be known.

4. The kinetic mechanism of metabolism must be
known and expressed per unit of enzyme.

5. An adequately characterized PBPK model
must be available for adaptation.

We have quantified the extent of variance in en-
zyme content of a critical xenobiotic metabolizing
enzyme, CYP2E], and the variance in the hepatic
biotransformation of a key environmental contami-
nant, trichloroethylene. The parameters of the resuit-
ing log-normal distributions can be used to identify
the bounds of biochemical and pharmacokinetic vari-
ance (e.g.. 90% of the population), within which sus-
ceptibility can be determined and allows the replace-
ment of hypothesized magnitudes of difference with
actual measurement of such when determining the
impact of enzyme variance on risk.

This article identifies the conditions and types of
data required, communicates and applies a logical ap-
proach, and describes the limitations of the approach
in estimating the human interindividual variance of
risk-relevant PK outcomes that may signify suscepti-
bility to chemical injury. While data set 3 is unique
to TCE, data set 2 will be useful in estimating the
hepatic content of all enzymes contained in the mi-
crosomal fraction, when their distribution character-
istics are known, and the information derived from
the combination of data sets 1 and 2 are directly
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applicable to other environmental contaminants that
are also substrates for CYP2EL.
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APPENDIX A: MATLAB CODE TO
GENERATE A x D

numReps = 250000;

cluster{1} = [1520 1231.7 1842.2 1835.2
2720.6 2477.6 3133 1738.8 1764];

cluster{2} = [2157.4 2585.6 2452.3 2472.2];

cluster{3} = [3850 2863.3 2696.4 2715.6
3342.8];

cluster{4} = [4452.6 5004];

¢lusterCDF = [.53 .70 .91 1.0];

A = zeros(1,numReps);

result = zeros{l,numReps);

for i = 1:numBeps
D = exp(3.4812 +.4156*randn);
clusterNum = min{find{rand <

clusterCDF));

clusterSize=length(cluster{clusterNum});
clusterIndex = ceil(rand * clusterSize);
A(i) = cluster{clusterNum}(clusterIndex);
result(i) = A{i) * D;

end
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writeArray = result’;

save Dvalues.txt writeArray -ASCII

disp(‘A parameters’)

disp([mean(A) std(A)]1)

disp(‘AxD parameters’)

disp([mean(result) std(result)])

hist(result,100)

title(‘Empirical Distribution of A x D)

figure(2)

hist(log(result),100)

title(‘Empirical Distribution of 1n(A x
D))
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