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Uncertainties in the CIIT Model for Formaldehyde-Induced 
Carcinogenicity in the Rat: A Limited Sensitivity Analysis–I 
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Scientists at the CIIT Centers for Health Research (Conolly et al., 2000, 2003; Kimbell et al., 
2001a, 2001b) developed a two-stage clonal expansion model of formaldehyde-induced nasal 
cancers in the F344 rat that made extensive use of mechanistic information. An inference of 
their modeling approach was that formaldehyde-induced tumorigenicity could be optimally 
explained without the role of formaldehyde’s mutagenic action. In this article, we examine the 
strength of this result and modify select features to examine the sensitivity of the predicted 
dose response to select assumptions. We implement solutions to the two-stage cancer model 
that are valid for nonhomogeneous models (i.e., models with time-dependent parameters), 
thus accounting for time dependence in variables. In this reimplementation, we examine the 
sensitivity of model predictions to pooling historical and concurrent control data, and to 
lumping sacrificed animals in which tumors were discovered incidentally with those in which 
death was caused by the tumors. We found the CIIT model results were not significantly 
altered with the nonhomogeneous solutions. Dose-response predictions below the range of 
exposures where tumors occurred in the bioassays were highly sensitive to the choice of control 
data. In the range of exposures where tumors were observed, the model attributed up to 
74% of the added tumor probability to formaldehyde’s mutagenic action when our reanalysis 
restricted the use of the National Toxicology Program (NTP) historical control data to only 
those obtained from inhalation exposures. Model results were insensitive to hourly or daily 
temporal variations in DNA protein cross-link (DPX) concentration, a surrogate for the dose-
metric linked to formaldehyde-induced mutations, prompting us to utilize weekly averages for 
this quantity. Various other biological and mathematical uncertainties in the model have been 
retained unmodified in this analysis. These include model specification of initiated cell division 
and death rates, and uncertainty and variability in the dose response for cell replication rates, 
issues that will be considered in a future paper. 
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1. INTRODUCTION	 

Two modes of action are thought to be poten­
tially relevant in the dose response for formaldehyde-

induced cancer: 1) formaldehyde is thought to be di­
rectly mutagenic (Grafstrom et al., 1985; Heck et al.,
1990; Speit & Merk, 2002); 2) at high exposures, 
formaldehyde is cytotoxic, resulting in cell injury 
and cell killing that induces increased cell replication 
(Monticello et al., 1991, 1996). The relative impor­
tance of cytotoxicity compared with the direct muta­
genicity to the observed tumorigenicity of the chem-
ical is of considerable debate. The biologically-based 
modeling of formaldehyde carcinogenicity carried out 
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by the CIIT Centers for Health Research (CIIT) fur­
ther contributes to this debate (Conolly et al., 2003). 
In the CIIT model, DNA protein cross-links formed 
by formaldehyde (DPX) was considered a surrogate 
for an unknown mutagenic pathway (Conolly et al., 
2003). The best fit of this model to the observed dose-
response data was obtained when the probability of 
formaldehyde-induced mutations per cell generation 
was estimated to be zero, lending weight to the point 
of view that the mutagenic component is not impor­
tant (Conolly et al., 2003, 2004; Slikker et al., 2004). In 
other words, the model explains the highly nonlinear 
tumor incidence seen in rats optimally by the effect on 
spontaneous mutations of the proliferative response 
induced at cytotoxic exposures. The authors of the 
CIIT model opted to make what they believed to be 
a conservative choice by 1) evaluating human risk at 
the upper statistical bound on the estimate for the pro­
portionality constant relating the DPX concentration 
to the probability of mutation, and 2) by presenting 
results obtained with both a hockey-stick as well as 
a J-shaped dose-response curve for the cell replica­
tion rate (Conolly et al., 2004). The model predicted 
negative added risk at low dose with the J-shaped 
curve. 

This article further advances the effort of Dr. 
Rory Conolly and other scientists at CIIT who have 
generously shared the bioassay data, other input files, 
and model code. In this article, we reimplement the 
CIIT modeling of the F344 rat bioassay data (Conolly 
et al., 2000, 2003; Kimbell et al., 2001a, 2001b) after 
modifying some of its features, including its use of data 
on historical control animals, while retaining other 
key assumptions and uncertainties, and examine the 
impact these changes have on the above inference. 
The changes we implement here serve as a base for 
carrying out further sensitivity analysis on other bi­
ological and mathematical uncertainties. The impact 
of other significant uncertainties in modeling the rat 
data and in extrapolation of these data to humans are 
being addressed separately. 

The CIIT formaldehyde model for cancer is in 
the form of a two-stage clonal expansion model of 
cancer (Moolgavkar & Venzon, 1979; Moolgavkar & 
Knudson, 1981). The solution of the two-stage model 
equations employed in Conolly et al. (2003) assumed 
homogeneous (time-independent) parameters. How­
ever, several authors have developed solutions to the 
nonhomogeneous two-stage clonal expansion model 
as well as the more general multistage clonal expan­
sion model (Crump et al., 2005a, 2006; Little, 1995; 
Little et al., 2002; Little & Wright, 2003; Moolgavkar 

& Luebeck, 1990; Heidenreich et al., 1997; Portier 
et al., 2000, 1996). Crump et al. (2005a) determined 
that applying solutions derived for homogeneous 
models to nonhomogeneous models could, in general, 
lead to substantial error. Since parameters in the CIIT 
model are time-dependent, this article examines the 
impact of this assumption on the CIIT model; this is­
sue was also examined in conference presentations by 
Crump et al. (2005b) and by Conolly et al. (2006). 

The analysis by Conolly et al. (2003) treated tu­
mors discovered incidentally in sacrificed animals the 
same as those found in animals that died naturally 
due to the tumor (which, in essence, assumes tumors 
are rapidly fatal). This was based on the consideration 
by these authors that tumors of this type were typi­
cally fatal within 1–2 weeks following detection in the 
laboratory (personal communication, R. Conolly). In 
the two formaldehyde bioassay data, however, animal 
sacrifices were scheduled at a number of times in ad­
dition to a final sacrifice of all surviving animals. In 
our reanalysis of these data, we found that 57 animals 
were observed to have tumors at the time of these sac­
rifices. In general, it is potentially problematic to as­
sume that a tumor was fatal when it was discovered in­
cidentally in an animal sacrificed at a scheduled time. 
Since we can readily differentiate between these two 
observations of tumor in a statistically rigorous man­
ner, we expanded the CIIT model to eliminate this 
assumption. 

In their analysis, Conolly et al. combined data 
on all historical control animals from National Tox­
icology Program (NTP) with the data from the two 
formaldehyde bioassays. We examine the sensitivity 
of model results to this procedure by 1) applying their 
model to only the concurrent data, and 2) including 
historical data only from NTP studies of inhalation 
exposures. 

Other issues examined in this article are the ex­
tent to which uncertainty in estimating DPX half-life 
propagates to the two-stage modeling, and the sensi­
tivity of the model to rapid temporal oscillations in 
DPX dynamics. In their physiologically-based phar­
macokinetic model (PBPK) simulation of DPX con­
centrations, Conolly et al. (2000) assumed a value of 
6.5 × 10−3 min−1 for the first-order rate constant for 
DPX clearance. This was the minimum value needed 
in the model to match the observation that virtually 
all of the DPX had cleared 18 hours following the 
cessation of exposure in a study in which rats were 
exposed to formaldehyde by inhalation (Casanova 
et al., 1994). Data from an in vitro study indicate a 
slower clearance, with an average rate constant of 
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9.24 × 10−4 min−1 (Quievryn & Zhitkovitch, 2000). 
We discuss how this slower clearance rate could be 
consistent with the in vivo DPX data of Casanova 
et al. 

The analyses presented here do not examine the 
sensitivity of the CIIT model results to uncertainties 
in the assumed dose response for initiated cell repli­
cation and death rates, to uncertainty and variability 
in the dose response for normal cell replication rates, 
and to the extrapolation of the normal cell replication 
dose response for beyond the range over which it was 
characterized from empirical data. The dose depen­
dence of the growth advantage of initiated cell (I) di­
vision rates over those of normal (N) cells was given 
by the same functional form as assumed in Conolly 
et al. (2003). 

2. METHODS 

2.1. The CIIT Two-Stage Clonal Expansion Model 

The CIIT two-stage clonal expansion model for 
formaldehyde (Conolly et al., 2003) utilized a three-
dimensional computational fluid dynamic (CFD) 
model (Kimbell et al., 2001a, 2001b) to predict site-
specific flux of formaldehyde from inhaled air into rat 
nasal tissue. The rat nasal airway surface was parti­
tioned into 20 regions, termed “flux bins,” each de­
fined by a range of formaldehyde flux to the surface. 
The CFD model was used to predict, for each flux bin, 
the ratio of formaldehyde flux into the bin to the air 
concentration of formaldehyde (pmol/mm2-h-ppm). 
The number of cells at risk for forming tumors in each 
flux bin of an adult animal was also estimated. 

The two-stage clonal expansion model is defined 
in terms of the following parameters (the notation 
here is equivalent to, but differs from, that used by 
Conolly et al.): 

N – number of normal cells that are eligible for 
progression to malignancy; 

αN – division rate of normal cells (h−1); 
µN – rate at which an initiated cell is formed by 

mutation of a normal cell (per cell division 
of normal cells); 

αI – division rate of an initiated cell (h−1); 
βI – death rate of an initiated cell (h−1); 
µI – rate at which a malignant cell is formed by 

mutation of an initiated cell (per cell division 
of initiated cells). 

In the CIIT model, each of these parameters takes 
on a different value in each flux bin, resulting effec­

tively in 20 two-stage models. Definitions of these pa­
rameters in the Conolly et al. model and their modifi­
cations in our analysis are described below. 

2.2. Cell Division and Death Rates 

Several steps were involved in the construction 
of a dose-response relationship for normal cell repli­
cation rates (αN) in Conolly et al. (2003) using cell 
labeling index data (Monticello et al., 1991, 1996). In 
these studies, F344 rats were exposed to formaldehyde 
at the same six air concentrations as in the formalde­
hyde bioassays, and unit labeling indexes were mea­
sured at six different sites in the rat nose and at eight 
different times after the beginning of exposure (1, 4, 
and 9 days, and 6, 13, 26, 52, and 78 weeks). First, the 
data from separate pulse labeling (Monticello et al., 
1991) and continuous labeling experiments (Monti­
cello et al., 1996) were averaged over replicate animals 
and pooled. For a given formaldehyde exposure con­
centration, these unit-length labeling indexes were 
time-weighted and averaged over the six sites. Second, 
the unit-length labeling index was related to the label­
ing index, using data from an experiment where both 
quantities were measured (Monticello et al., 1990). 
Third, the labeling index values so derived were re­
lated to cell replication rates using a formula due to 
Moolgavkar and Luebeck (1992) derived for contin­
uous labeled data. Fourth, formaldehyde fluxes com­
puted using steady state CFD simulations were also 
averaged over the six sites. The modeling in Conolly 
et al. was based on these averages even though the 
labeling index varied both over anatomical site and 
with time at each air concentration, and flux and the 
number of cells at risk varied over site.3 Cell replica­
tion rate (αN) versus flux then showed a “J-shaped” 
curve; for averaged flux ≤ 1.24 × 103 pmol/mm2-h 
(corresponding to exposures at 0.7 and 2 ppm), αN 

was less than its value in unexposed animals. For 
this portion of the dose-response curve, Conolly et al. 
(2003) also considered a “hockey-stick” shaped dose-
response curve with a threshold at 2 ppm, and progres­
sively increasing rates at higher exposures. We refer 
the reader to Conolly et al. (2003) for further details 
of their model and to Table 1 of that paper for the 
derived time-weighted average of cell division rates 
as a function of flux averaged over the sites. Details 

3 Reasons given for this decision included uncertainty in how to ex­
trapolate temporal variations in cell division rates to humans, and 
site-to-site variations in cell division rates that were not consistent 
with predicted flux at these sites. 
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pertaining to the partitioning of the rat nasal lining 
into flux bins are provided in Table 1 of Kimbell et al. 
(2001a). 

Whereas the flux values in the tabulation of flux 
versus cell division rates in Conolly et al. (2003) only 
went up to 9.3 × 103 pmol/mm2-h, the predicted fluxes 
in the flux bins went up to 39.3 × 103 pmol/mm2-h. 
Therefore, Conolly et al. had to extrapolate the flux-
cell division rate relationship to higher flux values. 
This was accomplished by assuming a maximum divi­
sion rate (αmax, an estimated parameter) at the highest 
flux value of 39.3 × 103 pmol/mm2-h and linearly inter­
polating between this point and the flux-cell division 
rate point corresponding to a flux of 9.3 × 103 pmol/ 
mm2-h. This upward extrapolation has been retained 
in the current reimplementation. 

There are no separate data on the cell division 
rate of initiated cells (αI), and Conolly et al. (2003) 
assumed this rate to be the following function of αN, 
the division rate of normal cells: 

αI = αN × multb − multfc × [αN − αNbasal]+ , 

where αNbasal is the empirically obtained average cell 
division rate in unexposed normal cells, multb and 
multfc are estimated parameters, and the “[ ]+” stands 
for the maximum of the quantity in the brackets and 
zero. The value of αNbasal was equal to 3.39 × 10−4 

h−1 as determined by Conolly et al. (2003) from the 
raw averaged labeling index data. Conolly et al. (2003) 
state that this formulation provided the best fit of the  
model to the tumor data. The death rate for initiated 
cells was set equal to the cell division rate of normal 
cells for all formaldehyde flux values, i.e., βI = αN. 
These formulations for αI and βI were retained in our 
reimplementation; alternatives to these will be stud­
ied in future work. In our reimplementation, we en­
sured αI > 0 by constraining the parameter optimiza­
tion so that 1 < multb < 10 and 0 < multfc < 10. 

2.3. Mutation Rates and DPX 

Conolly et al. (2003) suggested that the mutagenic 
role for DPX in their current model could be inter­
preted as a surrogate for some other unknown mu­
tagenic pathway, and provided a discussion of uncer­
tainty about the role of DPX formation in mutation. 
DPX concentrations were estimated from a study by 
Casanova et al. (1994) in which rats were exposed for 
11 weeks (5 days/week) + 4 days, 6 hours/day, to fil­
tered air (naive) or to 0.7, 2, 6, or 15 ppm formalde­
hyde (preexposed). On the 5th day of the 12th week, 
the rats were then exposed for 3 hours to 0, 0.7, 2, 

6, or 15 ppm 14C-labeled formaldehyde (with preex­
posed animals exposed at the same concentration as 
the preceding 12 weeks and 4 days), the animals were 
sacrificed, and DPX concentrations were determined 
at two sites in the nasal mucosa. Conolly et al. (2000) 
used the naive4 rat data to develop a PBPK model that 
predicted the time-course of DPX concentrations as 
a function of formaldehyde flux at these sites (esti­
mated in the CFD modeling). In Conolly et al. (2003), 
this PBPK model was then used to predict DPX con­
centrations in each flux bin by hour over a week, at 
the bioassay exposure pattern of 6 hours per day, 5 
days per week. DPX concentrations thus calculated 
were incorporated into the two-stage clonal expan­
sion model by defining the mutation rate of normal 
and initiated cells as the same linear function of DPX 
concentration, 

µN = µI = µNbasal + KMU × DPX, 

where the unknown constants µNbasal and KMU were 
estimated by fitting to the tumor bioassay data. 

In the development of the PBPK model for DPX, 
Conolly et al. assumed a value of 6.5 × 10−3 min−1 for 
the first-order rate constant for the clearance of DPX, 
such that the DPX predicted at the end of a 6-hour 
exposure to 15 ppm was reduced to exactly the detec­
tion limit for DPX in 18 hours.5 This determination 
of rapid clearance was based on an observation by 
Casanova et al. (1994) that the DPX concentrations 
observed in the preexposed animals were not signif­
icantly higher than those in naive animals (in which 
there was no significant DPX accumulation). How­
ever, in vitro data (Quievryn & Zhitkovitch, 2000) 
indicate a slower clearance, with an average rate con­
stant of 9.24 × 10−4 min−1. Given that there was 
considerable thickening of the nasal tissues in the 
more highly exposed preexposed animals and possible 
changes in the metabolic capacity of those tissues, we 
believe that the small amount of day-to-day DPX ac­
cumulation predicted using this slower in vitro clear­
ance rate constant is not inconsistent with the data 
of Casanova et al. (1994). This motivated the need for 
examining the sensitivity of the cancer model to uncer­
tainty in the DPX clearance rate constant. The DPX 

4 Conolly et al. state that they used the preexposed data. However, 
we compared their values to those given by Casanova et al. (1994), 
applying the DNA concentration of 4.1 µg DNA/mg tissue that 
they used, and determined clearly that they in fact used the naive 
rat data. 

5 Eighteen hours is the period between the end of one day’s 6-hour 
exposure during the preexposure period and the beginning of the 
next. 
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concentrations used in our modeling were obtained 
by refitting the PBPK model to the naive rat DPX 
data using this in vitro clearance rate; the fit we ob­
tained was as good as that in Conolly et al. (2000). 
It should be noted that this slower DPX repair rate 
was obtained in the in vitro study using transformed, 
immortalized, human cell lines. However, it appears 
that DPX repair in normal cells would only be even 
slower. When nontransformed freshly purified human 
peripheral lymphocytes were used instead, the half-
life for DPX repair was about 50% longer than in the 
cultured cells (Quievryn & Zhitkovitch, 2000). The re­
vised PBPK model and the above issues are described 
further in Appendix A. We next compared our cancer 
model results with those we obtained using DPX con­
centrations generated with the Conolly et al. (2000) 
PBPK model parameters. 

The experimental data on DPX concentrations, 
to which the Conolly et al. (2000) PBPK model was 
fit, was collected at a single time point (3 hours into 
one day’s exposure), along with the observation of 
no accumulation of DPX in animals preexposed to 
formaldehyde. The ability of PBPK models with dif­
ferent DPX half-lives to fit the same experimental 
data without time-course measurements is not partic­
ularly surprising, but the wide range in the above val­
ues for the DPX clearance rate led us to question the 
appropriateness of accounting for hourly variations in 
the PBPK model predicted DPX dynamics in the can­
cer modeling. These temporal oscillations were rapid 
relative to the variations of other time-dependent pa­
rameters in the CIIT two-stage cancer model, such as 
body weight. Further, the measured long-term trends 
in cell division rates were not incorporated into the 
CIIT model. Moreover, these oscillations in DPX con­
centrations translated to similar high frequency oscil­
lations in the tumor hazard (see Section 3); it seemed 
unlikely to us that the true probability of tumor (as 
opposed to the modeled probability) would be sensi­
tive to high frequency DPX oscillations. These con­
siderations prompted us to utilize weekly averages of 
the DPX data, after first determining that the CIIT 
model predictions were not sensitive to these varia­
tions. The large daily fluctuations in predicted DPX 
concentrations greatly increased the computational 
time required in our implementation of the two-stage 
clonal expansion model. 

2.4. Number of Cells at Risk 

We followed the procedure in Conolly et al. (2003) 
to estimate N, the number of cells in each flux bin at 

risk of malignant tumor formation as a function of 
time. This involved fitting a Gompertz curve to the 
body weight data from the Monticello et al. (1996) 
bioassay of formaldehyde, provided to us by CIIT.6 

2.5. Tumor Data 

Conolly et al. (2003) fit their model to the com­
bined data on squamous cell carcinoma (SCC) from 
the Kerns et al. (1983) and Monticello et al. (1996) 
formaldehyde bioassays, along with historical control 
data from all NTP bioassays as of 1999. The ages of 
the animals at death were obtained by adding 63 days 
(the age of the animals in the Monticello et al. study 
at the beginning of exposure) to the nominal days on 
study. Conolly et al. augmented the data from these 
two bioassays with data on 7,684 control animals from 
NTP bioassays, 13 of which were determined to have 
a nasal SCC. The actual ages at death were used by 
Conolly et al. in the modeling for animals with nasal 
SCC, and a common age at death of 794 days was used 
for the 7,671 control animals that died without a nasal 
SCC. 

Tumor rates in control groups from different NTP 
studies are known to vary due to genetic drift in an­
imals over time and differences in laboratory proce­
dures, such as diet, housing, and pathological proce­
dures (Haseman, 1995). In order to minimize extra 
variability when using historical control data, the cur­
rent NTP practice is to limit the historical control data, 
as far as possible, to studies involving the same route 
of exposure and to use historical control data from 
the most recent studies (Peddada et al., 2007). Bickis 
and Krewski (1989) analyzed 49 NTP long-term ro­
dent cancer bioassays, and found a large difference in 
determinations of carcinogenicity depending on the 
use of historical controls with concurrent control an­
imals. To investigate the effect of including historical 
controls in the CIIT model, we conducted analyses 
using the following sets of data for controls (fraction 
of animals with SCC is denoted in parentheses): 

1. only concurrent controls (0/347); 
2. concurrent controls plus all the NTP historical 

control data used by Conolly et al. (13/8,031); 
and 

6 The growth curve we used was substantially similar to that in 
Conolly et al., except that the maximum fractional body weight 
is 0.9 in the Conolly et al. work, while it is 1.0 in ours. This did 
not make a noticeable difference in the predictions of the clonal 
growth model. 
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Table I. Summary of F344 Rat Data on Squamous Cell 
Carcinoma (SCC) 

Formaldehyde Number of Number with Percent with 
Exposure (ppm) Animals SCC SCC 

All NTP historical controls (Conolly et al., 2003) 
0 7,684 13 0.17 

NTP inhalation historical controls 
0 4,602 1 0.02 

Concurrent dataa 

0 341 0 0 
0.07 107 0 0 
2 353 0 0 
6.01 343 3 0.87 
9.93 103 22 21.4 
14.96 386 162 42.0 

aCombined data from Kerns et al. (1983) and Monticello et al. 
(1996). 

3. concurrent controls plus data from historical 
controls we obtained from NTP inhalation 
studies (1/4,949) (NTP, 2005). This inhalation 
database contained information on 4,602 an­
imals, of which only three were diagnosed 
with a nasal SCC. Of these, two of the tumors 
in the inhalation historical controls were de­
termined to have originated in tissues other 
than the nasal cavity upon further review7 

(Dr. Kevin Morgan and Ms. Betsy Gross 
Bermudez, personal communication). These 
two tumors were therefore not included. 

To reduce computational time in our implemen­
tation of the CIIT model, animals without SCC were 
placed in one of 10 groups depending upon their age 
at death, and the average age at death for a group was 
applied to the entire group. The animals with SCC 
were assigned their actual ages. The ages at death of 
these control animals were calculated by adding the 
study-specific average at the beginning of the study to 
the days on study. As in Conolly et al. (2003), we also 
combined data from the Kerns et al. (1983) and Mon­
ticello et al. (1996) inhalation bioassays for formalde­
hyde. Both sets of historical control data, along with 
the data from the two formaldehyde bioassays, are 
summarized in Table I. 

2.6. Tumor Probability and Corrections 
to Likelihood Function 

The unknown parameters in the model were esti­
mated by maximizing the log-likelihood of the tumor 

7 Two control animals with nasal SCCs from the NTP inhalation 
study on methyl methacrylate (NTP TR314) were determined to 
have tumors that originated in the posterior palate (Animal 12) 
and the buccal cavity (Animal 26). 

incidence data (Cox & Hinkley, 1974). The rat bioas­
say data exhibit significant site-specificity in nasal can­
cer risk, but in many cases the tumors were too large 
to exactly identify the site or flux bin in which they 
originated (Monticello et al., 1996). Conolly et al. did 
not partition the computed risk across these sites but 
instead combined results from the individual flux bins 
to calculate the overall probability of a tumor (in any 
flux bin).8 To compute the combined hazard (instan­
taneous or integrated) at a given time point, the in­
dividual (instantaneous or integrated) hazards from 
the bin-specific two-stage models were summed over 
the 20 flux bins. The resulting hazards were for the 
occurrence of the first malignant cell. 

We modified the likelihood expression con­
structed by Conolly et al. (2003) by assuming that tu­
mors discovered in animals that died naturally (i.e., 
animals that were not part of a scheduled sacrifice) 
were fatal, and tumors found in animals at a sched­
uled sacrifice were incidental. Two time delays, as sug­
gested by Dr. Christopher Portier (personal commu­
nication), are required to implement the approach: 

DO = the delay from the occurrence of the first 
malignant cell until the resulting tumor is 
large enough to be observed at necropsy, 

and 

DOF = the additional delay from when the tumor 
resulting from the occurrence of the first 
malignant cell is large enough to be ob­
served at necropsy until it causes the death 
of the animal. 

There are three cases to consider: (1) an animal 
that dies without a tumor; (2) an animal that dies with 
an incidental tumor; and (3) an animal that dies with 
a fatal tumor. 

1) If an animal dies at time t (either naturally 
or by sacrifice) and no tumor is observed, the 
contribution to the likelihood is 
1 – P(t – DO) = Probability [a tumor has not 

become observable by time 
t], = Probability [no malig­
nant cell has appeared by 
time t – DO]; 

2) If a tumor is observed in an animal subject 
to a scheduled sacrifice at time t, the tumor is 
assumed to be incidental, and the contribution 
to the likelihood is 

8 However, since the model is effectively composed of distinct two-
stage models for each flux bin, it allows one to calculate site-
specific tumor risk. 
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P(t – DO) – P(t – DO – DF) = Probability 
[a tumor has become observable 
by time t, but has not yet re­
sulted in the death of the ani­
mal]; 

3) It a tumor is observed in an animal that dies 
naturally at time t, the tumor is assumed to be 
fatal, and the contribution to the likelihood 
is 
p(t – DO – DF) = P′(t – DO – DF) = Probabil­

ity density of [death from a 
tumor at time t]. 

2.7. Statistical and Computational Methods 

Our reimplementation of the CIIT two-stage 
clonal expansion model involved seven adjustable pa­
rameters (αmax, multb, multfc, µNbasal, KMU, DO, and 
DOF), which includes all those in the Conolly et al. 
(2003) implementation, except that we required an 
additional time delay in order to handle both fa­
tal and incidental tumors. These parameters were 
estimated by maximizing the log-likelihood of the 
tumor bioassay data. Statistical confidence bounds 
were computed using the profile likelihood method 
(Cox & Hinkley, 1974; Cox & Oakes, 1984; Crump, 
2002). 

Our computer code was written in Microsoft Ex­
cel 2002 SP3 Visual Basic. The Excel Solver was used 
to make the required function optimizations. Our im­
plementation of the two-stage model (i.e., compu­
tation of tumor hazard and tumor probability) in­
volved numerically solving the differential equations 
for computing the functions in Crump et al. (2005a) 
labeled A (eq. 9), B (eq. 10), E (eq. 14, which yielded 
the bin-specific instantaneous hazards), and G (below 
eq. 14, which yielded the bin-specific cumulative haz­
ards). In all results presented herein, these systems of 
differential equations were solved using a Cash-Karp 
variable step size Runge-Kutta routine (Press et al., 
1992) with a tolerance of 10−10. 

3. RESULTS 

We first attempted to reproduce the Conolly et al. 
(2003) results under similar conditions and assump­
tions. The results of this comparison are provided in 
Appendix B. 

3.1. Evaluation of the Hoogenveen 
et al. Formulation 

As noted earlier, the differential equation in 
Hoogenveen et al. (1999), which was solved in the 
calculations reported by Conolly et al. (2003), is 
not generally valid for a two-stage model having 
time-dependent parameters. To evaluate the effect 
of this assumption, the hazard and the probability 
of tumor in the 15 ppm exposure group were calcu­
lated by applying the same set of parameter values 
in the Hoogenveen et al. equation and the Crump 
et al. (2005a) equations. Graphically, the two solutions 
were very similar. 

3.2. Revision of the Conolly et al. (2000) 
DPX Model 

The weekly average DPX concentrations pre­
dicted with our revision to the Conolly et al. (2000) 
PBPK model (as described earlier and in Ap­
pendix A) were larger than the Conolly et al. concen­
trations by essentially a constant ratio equal to 4.21 
(range of 4.12–4.36) when averaged over flux bin and 
exposure concentrations. Accordingly, cancer model 
fits using the two sets of DPX concentrations provided 
very similar parameter estimates, except that the pa­
rameter KMU was 4.23 times larger with the Conolly 
et al. DPX concentrations. The two optimization runs 
were identical except for the DPX concentrations. In 
the remainder of this article, only results based upon 
our revised DPX parameters will be presented. 

3.3. Comparison of Results Using Hourly DPX 
Data Versus Weekly Average DPX Values 

Table II compares results obtained using weekly-
averaged or hourly DPX concentrations in one case. 
These calculations utilized the J-shape cell replication 
model and the NTP inhalation controls along with the 
concurrent CIIT controls. The optimized value of the 
parameter KMU obtained using hourly-varying DPX 
values is twice that obtained using weekly-averaged 
values and the optimized value of µNbasal from the use 
of hourly-varying values is only 64% of that obtained 
when weekly averages of DPX were used. Despite 
these differences in parameter estimates, there is good 
agreement between the log-likelihoods (difference of 
only 0.43), and the tumor probabilities (Fig. 1A). Al­
though the log-likelihoods obtained from these two 
fits are similar, there are some differences in the 
parameter values. However, the instantaneous haz­
ard obtained using the hourly DPX values (Fig. 1B) 
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Table II. Comparison of Results Obtained Using Hourly or 
Weekly DPX Data 

DPX Data 
Ratio 

Parameter Hourly Weekly Hourly/Weekly 

Log-likelihood −1,518.96 −1,519.39 
µNbasal 7.61·10−7 1.20·10−6 0.64 
KMU 1.03·10−6 4.93·10−7 2.09 
DO 244.6 236.9 1.03 
DOF 72.6 71.3 1.02 
multb 1.069 1.060 1.01 
multfc 3.174 2.332 1.36 
αmax 0.042 0.045 0.94 

Note: Both analyses used inhalation historical controls and 
J-shaped cell replication data. The SCC of two animals in the 
historical controls were determined to have originated outside the 
nasal cavity. In contrast to the rest of this article, these were not 
excluded here because the purpose was only to evaluate the need 
for using hourly-varying DPX concentrations. 

exhibited very rapid oscillations around the haz­
ard obtained using weekly-average DPX predictions. 
These oscillations closely mimicked those predicted 
for the DPX concentrations, but are not apparent in 
the probability graph because the integration process 
tends to smooth them out. Weekly averages of DPX 
concentrations are used in results presented in the re­
mainder of the article. 

3.4. Reimplementations of the CIIT Model 

Table III compares results from runs using either 
the J-shape or hockey stick cell replication model, in 
conjunction with modeling the three choices for con­
trol data discussed earlier. All of these runs used our 
revised DPX parameters, computed the likelihood in 
a manner that distinguished between tumors found 
at a scheduled sacrifice and those found in animals 
that died naturally, and used the time inhomogeneous 

Fig. 1. Comparison of probabilities and 
hazards estimated from fits in Table II 
using hourly or weekly-averaged DPX 
concentrations. (A) Probability function 
for 6, 10, and 15 ppm exposure 
concentration. (B) Hazard function for 
15 ppm exposure concentration. 
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solutions to the two-stage model. In each analysis, 
αmax was restricted to be no larger than 0.045 h−1, 
the largest value considered by Conolly et al. (2003) 
to be biologically plausible. 

In all cases, the J-shape and the hockey stick cell 
replication models provide similar fits (i.e., similar 
log-likelihoods). In particular, the two maximum like­
lihood estimate (MLE) fits that use only concurrent 
tumor data are essentially identical. This is expected 
because both cases predict a zero probability of back­
ground SCC so that the reduced cell replication rate 
predicted at the lower doses has no effect, and at 
higher exposures the cell replication rates predicted 
by the J-shape and hockey stick cell replication mod­
els are identical (Table 1 in Conolly et al. (2003)). 

Estimates of DO, DOF, multb, and multfc from 
different analyses are very similar, and in each case 
αmax is estimated at its assumed maximum biologi­
cally plausible value of 0.045 h−1 (Table III). All of 
these estimates are roughly similar to those obtained 
by Conolly et al. (2003) (see Appendix B for details), 
even though the analyses differ in the definition of the 
likelihood and in the DPX model. Note that one must 
add DO and DOF in order to compare with the time 
delay obtained in Appendix B. The MLE estimates 
of µNbasal are zero for concurrent control data, which 
makes the ratio, KMX = KMU/µNbasal, undefined or 
infinite. 

Conolly et al. (2003) estimated KMU to be zero 
for both the hockey stick and J-shape cell replica­
tion models. However, our estimate for the coeffi­
cient KMU (obtained using the solution of Crump 
et al., 2005a) is zero only for the case of the model 
with the hockey stick curve for cell replication and 
with control data as used by Conolly et al. It is pos­
itive in all other cases, and statistically significantly 
so in all cases in which either inhalation control data 
or concurrent controls were used. As a further ex­
ercise on the sensitivity of the dose-response model­
ing on the control data, we also examined the case 
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Table III. Results from Different Control Animals and Cell Replication Models 

A D B E C F 

Control Animals (Combined NTP NTP 
with Concurrent Controls) All NTP All NTP Inhalation Inhalation Concurrent Concurrent 
Cell Replication Historical Historical Historical Historical Only Only 
Dose Response J-Shaped Hockey J-Shaped Hockey J-Shaped Hockey 

Log-likelihood −1,692.65 −1,693.68 −1,493.21 −1,493.35 −1,474.29 −1,474.29 
µNbasal 1.87·10−6 2.12·10−6 7.32·10−7 9.32·10−7 0.0 0.0 
KMU 1.12·10−7 0.0 6.84·10−7 6.18·10−7 1.20·10−6 1.20·10−6 

KMX (KMU/µNbasal) 0.06 0.0 0.94 0.66 ∞ ∞ 
KMX 90% CI (0.0, 0.40) (0.0, 0.25) (0.26, 6.20) (0.2, 5.20) (0.42, ∞) (0.41, ∞) 

DO 238 238 237 237 243 243 
DOF 67.4 67.3 67.3 70.9 68.8 68.8 
multb 1.05 1.05 1.06 1.06 1.08 1.08 
multfc 1.87 1.77 2.44 2.54 3.35 3.35 
αmax 0.045 0.045 0.045 0.045 0.045 0.045 

αmax 90% CI (0.029, 0.045) (0.029, 0.045) (0.026, 0.045) (0.027, 0.045) (0.027, 0.045) (0.027, 0.045) 

(but do not include in the tabulated results) when the 
two nasal tumors in the historical NTP inhalation con­
trols determined to have originated elsewhere (pos­
terior palate and buccal cavity) were also included as 
nasal SCC. KMU varies considerably depending on 
the NTP historical controls lumped with the concur­
rent controls. It progressively increases in the follow­
ing sequence: 1) including all NTP historical controls; 
2) only NTP inhalation controls with the two tumors 
from non-nasal tissue; 3) only NTP inhalation con­
trols without these two tumors; 4) using only concur­
rent controls. With concurrent controls only and the 
J-shape cell replication model, the MLE estimate for 
KMU (1.2 × 10−6) is larger than the statistical upper 
bound obtained by Conolly et al. (2003) (8.2 ×10−7). It 
should also be kept in mind that our estimate would 
be about 4.2 times larger still had the Conolly et al. 
DPX model been used. Excluding the two nonnasal 
SCC from the inhalation historical controls increases 
the ratio KMU/µNbasal by 1.7- or 2.3-fold, depending 
on whether the hockey stick or J-shape, respectively, 
is used for the cell replication dose response, and that 
of the upper confidence bound on this ratio by 4.4- or 
4.6-fold. 

Fig. 2 compares the predicted probability of death 
from a SCC as a function of age to the correspond­
ing graphs of Kaplan-Meier nonparametric estimates 
of this probability in the rat bioassays, for the cases 
listed in Table III. These six fits are all virtually in­
distinguishable for formaldehyde concentrations ≥ 6 
ppm. The model appears to provide an excellent fit 
to the 15 ppm data, where most of the SCC occurred. 
The fits to the 10 ppm data are less satisfactory and the 

models predict a somewhat larger response at older 
ages in the 6 ppm group than observed. The curves 
for 0.7 ppm and 2 ppm are indistinguishable from each 
other in Panels A, B, D, and E. The models incorporat­
ing either all NTP historical control data or the NTP 
inhalation historical control data also fit the control 
data reasonably well, although it must be kept in mind 
that there were very few SCC in these groups. In the 
fits that used only concurrent controls, no SCCs were 
present and the predicted MLE probability of a SCC 
was zero. It may be noted, however, that absence of 
tumors in the limited number of concurrent animals 
does not imply that the calculation will necessarily 
predict a zero background probability of tumor. 

Table IV examines the contribution of the DPX 
component, which in this model represents the di­
rectly mutagenic potential of formaldehyde, to the 
calculated tumor probability. This is demonstrated 
for the optimized models that use the NTP inhala­
tion historical control data (cases B, E in Table III) by 
expressing the tumor probability resulting from the 
DPX term as a fraction of the absolute overall added 
tumor probability, |P(d) – P(0)|, at exposure concen­
tration d. For a given optimized model, the DPX-
related tumor probability was obtained by subtracting 
from the overall tumor probability the value calcu­
lated by setting the DPX concentration to zero. In 
the range of exposures where tumors were observed 
(6.0 ppm – 15.0 ppm), the DPX term is responsible 
for 58–74% of the added tumor probability. Below 
6.0 ppm, the DPX contribution varies between 2% 
and 80% depending on the dose-response curve used 
for cell replication. It must be noted that in the case 
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Fig. 2. Graphs of probability of a fatal SCC predicted by best fitting model, compared to Kaplan-Meier curves for fatal SCC. Dark gray line 
is Kaplan-Meier curve and is zero for 0.7 and 2 ppm. (A) All NTP historical controls, J-shaped cell replication curve (Table III-A). (B) NTP 
inhalation historical controls,∗ J-shaped cell replication curve (Table III-B). (C) Concurrent controls only. J-shaped cell replication curve 
(Table III-C). (D) All NTP historical controls, hockey stick cell replication curve (Table III-D). (E) NTP inhalation historical controls,∗ 
hockey stick cell replication curve (Table III-E). (F) Concurrent controls only, hockey stick cell replication curve (Table III-F).∗ SCCs in 
controls originating from nonnasal tumors were excluded. 
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Tumor 
Tumor Probability Due 

Exposure, Probabilitya to DPX Termb 

Model d(ppm) P(d) PDPX(d) 
PDPX(d) × 100 
|P(d) − P(0)| 

B 0.0 2.54·10−4 0 
(J-shape α) 0.7 2.17·10−4 6.10−7 2% 

Table IV. Contribution of DPX to Tumor 2.0 2.21·10−4 5.10−6 14% 

Probability (for Models in Table III with 
Inhalation Historical Controls) 

6.01 
9.93 

14.96 

0.023 
0.581 
0.845 

0.016 
0.431 
0.600 

68% 
74% 
71% 

E 0.0 2.71·10−4 0 
(Hockey shape α) 0.7 2.71·10−4 7.10−7 80% 

2.0 3.10·10−4 6.10−6 14% 
6.01 0.028 0.016 58% 
9.93 0.590 0.377 64% 

14.96 0.833 0.501 60% 

aCumulative probability at 900 days of fatal SCC.
 
bCalculated subtracting from P(d) the probability obtained setting the DPX concentration to
 
zero.
 

of 0.7 ppm and 2.0 ppm exposure concentrations, the 
numerator and denominator of the ratio in the last 
column of Table IV are both obtained by subtracting 
two very small quantities, each of which is rather im­
precise. Therefore, numerical error in estimating this 
ratio is to be expected when the added tumor proba­
bility is very small. 

4. DISCUSSION 

The aim of this article was to examine the sensitiv­
ity of the two-stage clonal expansion model in Conolly 
et al. (2003) for predicting formaldehyde carcino­
genicity in the F344 rat to some key assumptions and 
use of control data. In this article, we implemented 
solutions to this model that are valid for nonhomoge­
neous models. The mathematical methods used here 
for the solution account for time-dependence in vari­
ables, while the solution implemented by Conolly et al. 
(Hoogenveen et al., 1999) is valid only for homoge­
neous models, that is, when variables do not change 
in time. For the cases examined here, our solutions 
were not very different from those obtained with 
the Hoogenveen et al. method. Thus, the use of the 
Hoogenveen et al. formalism is not likely to have re­
sulted in any significant error in the Conolly et al. 
solutions. However, we present this conclusion with 
the caveat that the analyses presented in this arti­
cle retained the time-independent form of the cell 
replication rates (time-weighted averages) as used in 

Conolly et al. (2003). On the other hand, the label­
ing index data of Monticello et al. (1991, 1996) from 
which these rates were derived clearly vary with time. 
Crump et al. (2005a) showed that the error in using the 
Hoogenveen et al. equation can be substantial when 
there is considerable time-dependence in cell repli­
cation rates. Therefore, the formulation that is valid 
for nonhomogeneous models should be preferred be­
cause of the generally unknown amount of error asso­
ciated with applying the Hoogenveen et al. formula­
tion to a nonhomogeneous model. The Hoogenveen 
et al. solution used by Conolly et al. has a significant 
advantage in computing speed. However, simulations 
with our approach did not require a large investment 
of computational resources, even though a single cal­
culation of the likelihood required solving more than 
8,000 sets of four coupled ordinary differential equa­
tions,9 with hundreds of likelihood calculations often 
necessary for parameter optimization. 

The CIIT cancer risk assessment for formalde­
hyde was based on pooling the large number of all 
NTP historical controls with controls that were con­
current to the Kerns et al. (1983) and Monticello et al. 
(1996) formaldehyde bioassays. As seen from Table I, 
the incidence of nasal SCC is substantially different in 

9 The two formaldehyde bioassays involved more than 400 unique 
ages at death, not counting the additional death times in the histor­
ical control data. Furthermore, the hazard calculation for a single 
time point required solving a two-stage clonal expansion model 
for each of the 20 flux bins. 
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all NTP historical controls when compared with only 
the NTP inhalation historical controls. In our calcula­
tions, inclusion of historical controls had a strong im­
pact on the tumor probability curve below the range 
of exposures over which tumors were observed in the 
formaldehyde bioassays. This can be seen in Fig. 2. 
The MLE probabilities of a fatal tumor for expo­
sure concentrations below 6 ppm were roughly an 
order of magnitude higher when all the NTP histor­
ical controls were used (Panels A and D) than that 
predicted when historical controls were drawn only 
from inhalation bioassays (Panels B and E, corre­
spondingly; these had lower tumor incidence), and 
by many orders of magnitude than that predicted 
when only concurrent controls were used in the anal­
ysis (Panels C and F, correspondingly). Note that this 
comparison should not be inferred to apply to up­
per bound risk estimates as there were many fewer 
concurrent than historical controls, so error bounds 
could be much larger in the case where concurrent 
controls were used. This will be addressed in a fu­
ture paper. However, model fits to the tumor data in 
the 6–15 ppm exposure concentration range (that is, 
exposures where tumors were observed) were quali­
tatively indifferent to which of these control data sets 
were used. This observation emphasizes the statistical 
aspect of the CIIT modeling—that significant inter­
play among the various adjustable parameters allows 
the model to achieve a good fit to the tumor incidence 
data independent of the control data used. However, 
our results show that changes in the control data af­
fect KMU, the proportionality constant relating DPX 
with the mutational probability, resulting in signifi­
cantly different tumor predictions at lower exposure 
concentrations. Our analysis indicates that detailed 
evaluation of bioassays from which control animals 
are drawn is necessary if historical controls are to be 
combined with concurrent controls. The bioassays in 
consideration need to be similar, and comparable to 
the concurrent control group, with regard to the many 
factors that are known to affect tumor and survival 
rates of the control animals (Haseman, 1995). 

Induction of a proliferative response to cytotoxi­
city plays a critical role in the carcinogenesis of many 
compounds that are also mutagenic. For formalde­
hyde and vinyl acetate, two-stage cancer modeling 
has been used to reflect upon the relative importance 
of cytotoxicity-induced cell proliferation versus the 
chemically-induced direct mutations in explaining the 
observed tumorigenicity in rodent bioassays (Bog­
danffy et al., 1999, 2001; Conolly, 1995; Conolly et al., 
2003, 2004; Slikker et al., 2004). The reanalyses pre-
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sented in this article (in particular, the conclusions 
from Table IV) indicate that, based on existing mech­
anistic data, a large contribution from formaldehyde’s 
mutagenic potential may be needed in the mathemat­
ical model to explain formaldehyde carcinogenicity. 
The choice of control tumor data had substantial bear­
ing on the biological inferences one might draw from 
the two-stage cancer modeling. In the Conolly et al. 
(2003) model where all NTP historical controls were 
included, the constant of proportionality relating the 
probability of mutation per cell generation to DPX 
concentrations (KMU) was estimated to be zero when 
either J-shape or hockey-stick shaped curves were 
considered for the cell replication dose response. In 
our reimplementation of this model, KMU was esti­
mated to be zero only when the hockey stick shape 
was used in conjunction with the inclusion of all NTP 
historical controls. In all cases that included only the 
NTP inhalation historical controls with the concurrent 
or used only the concurrent controls, KMU was esti­
mated to be statistically significantly positive. When 
only concurrent controls were used, the MLE esti­
mate of KMU is roughly twice that obtained when in­
halation historical controls were included. With con­
current controls only and the J-shaped cell replication 
curve, the MLE estimate for KMU is about 1.5-fold 
higher than the statistical upper bound obtained for it 
by Conolly et al. (2003), and would have been about 
6 times higher had the Conolly et al. DPX model pa­
rameters been used. 

The ratio of this constant to the probabil­
ity of spontaneous mutation per cell generation 
(KMX = KMU/µNbasal) is of particular interest since 
KMU/µNbasal was assumed to be invariant between 
rodent and human in the extrapolation carried out in 
the CIIT human model (Conolly et al., 2004). While 
the MLE estimate of KMX is zero in the CIIT animal 
model (Conolly et al., 2003), it takes a range of values 
from zero to 0.9 mm3/pmol and undefined (or infinite, 
when µNbasal = 0) in the various cases examined in this 
article. The 95% upper confidence bound on this ra­
tio ranges from 0.25 to 6.2 (values that would be four 
times larger had the Conolly et al. DPX concentra­
tions been used) to infinite. Thus, the extrapolation 
to human risk using the approach in Conolly et al. 
(2004) becomes particularly problematic when only 
concurrent controls are used. 

The bioassay data at high exposure concentra­
tions have maximum impact on model calibration, 
and thereby, on model inferences. On the other hand, 
the strong influence of using all the NTP historical 
controls on the low-dose region of the time-to-tumor 
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curves presented in Fig. 2 suggests that large uncer­
tainties may arise in extrapolating to human from such 
considerations alone. 

We examined the sensitivity of the CIIT two-stage 
model to the temporal variations in DPX as predicted 
by PBPK modeling. Model results remained substan­
tially unchanged, prompting us to utilize weekly aver­
ages of the DPX data. It is possible that the time-
dependence of DPX concentrations could become 
relevant when temporal variations in cell replication 
rate is incorporated in the clonal growth modeling. 
Our decision to ignore the DPX time-dependence was 
also prompted by other considerations. Whereas the 
cumulative probability of tumor occurrence remained 
relatively unaffected when weekly averages of DPX 
were considered, the hourly variation in DPX pre­
dicted by Conolly et al. (2000) resulted in rapid vari­
ations in the tumor hazard predicted by the model. 
This is because the formation of malignant cells de­
pends on the DPX level, and tumors are modeled to 
occur following a fixed time delay after the first malig­
nant cell. However, because of these rapid variations, 
the exact time of tumor occurrence could impact sig­
nificantly upon the likelihood function, which does 
not make sense biologically. Thus, we believe that the 
use of hourly-varying DPX levels in two-stage mod­
eling seems inappropriate as it could result in artifac­
tual variation in predicted cancer rates. The variations 
may also point to inherent limitations in the two-stage 
clonal expansion model in handling such rapid tem­
poral oscillations in input data. It may be possible 
to overcome this difficulty by modeling the growth 
kinetics of malignant clones as implemented by 
Sherman and Portier (2000). Alternatively, the time 
from the formation of a malignant cell until the time 
the resulting malignant clone is large enough to pro­
duce an observable response can be considered a ran­
dom variable. The time to observable response in the 
whole animal would be the minimum of such times. 
Hazelton et al. (2001) used a gamma distribution to 
represent the lag time between generation of the first 
malignant cell and death from lung cancer. 

In addition, it is uncertain as to whether DPX is 
indeed completely removed in 18 hours as modeled in 
Conolly et al. (2000). As explained in Section 2, such 
an interpretation of the Casanova et al. (1994) data 
assumes no significant induction of formaldehyde or 
aldehyde dehydrogenase (enzymes that metabolize 
formaldehyde) during the 12-week exposures, and 
ignores the possible reduction of DPX concentra­
tion levels due to thickening of tissue upon exposure. 
These factors could, however, readily offset the small 

amounts of DPX accumulation that is predicted when 
the experimental in vitro rate constant for DPX re­
moval (Quievryn & Zhitkovitch, 2000) is used in the 
model. Compared to the value in Conolly et al. (2000), 
this removal rate constant corresponds to a 7-fold 
longer mean half-life for DPX. Given these uncer­
tainties in the PBPK model predicted DPX dynamics, 
weekly-averaged DPX concentrations are more reli­
able. 

DPX concentrations obtained with a revised 
PBPK model that fixed DPX half-life at the 7-fold 
higher in vitro value resulted in weekly-average DPX 
values that were generally 4-fold higher than those 
predicted by Conolly et al. (2000). These revised 
higher DPX values were offset by a 4-fold lower value 
for the linear coefficient, KMU, that was estimated by 
likelihood optimization against the tumor data. Other 
than this parameter, the revised DPX values did not 
affect the quality of model fits or the value of any other 
parameter. However, revised DPX profiles could af­
fect human risk estimates obtained using the CIIT 
model. 

Our construction of the likelihood function dis­
tinguished between tumors discovered incidentally in 
sacrificed animals and tumors found in animals that 
died naturally due to the tumor. This allowed us to ex­
amine whether the assumption of rapidly fatal tumors 
was reasonable in the context of the formaldehyde 
two-stage cancer model. In our reimplementation of 
the model, the estimates for the constant DOF (the 
lag between the time when a tumor is large enough 
to be detectable by necropsy and the time when the 
tumor kills the animal) ranged from 67 to 71 days and 
estimates for DO (the time lag for a detectable tumor 
to manifest from the occurrence of the first malig­
nant cell) ranged from 237 to 243 days. That is, DOF 

was found to be a significant fraction of (DO + DOF). 
It must be noted that the use of these constant time 
delays represents a considerable approximation as it 
assumes that a malignant cell will lead to a tumor after 
a fixed time. We are in the process of modifying the 
approach to include a distribution in delays. 

The use of weight of evidence in considering 
mode of action of a putative carcinogen is empha­
sized in the U.S. EPA’s cancer guidelines (USEPA, 
2005). While generally not perceived as being cen­
tral to the weight of evidence process, mathematical 
dose-response modeling has played a role in the sci­
entific literature in debating the relative weights to 
be placed on different possibilities in the case of car­
cinogens with multiple modes of action. The results 
of this article point to some caveats, and illustrate the 
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importance of detailed sensitivity analyses of parame­
ter uncertainties and model specification as a prereq­
uisite to such use. The modifications made in this arti­
cle provide the basic changes we perceived necessary 
to enable further sensitivity analyses on assumptions 
in the CIIT model. These additional issues include ex­
amining the strength of biological assumptions on the 
model structure for initiated cell division and death 
rates, uncertainty and variability in the dose response 
for cell replication rates in the rodent, and its rele­
vance to humans, and uncertainty in the extrapolation 
of modeled DPX concentrations to humans. These 
are substantial questions not examined here that have 
the potential to impact the risk characterization pre­
sented in the CIIT human health risk assessment for 
formaldehyde. 
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APPENDIX A: REVISION TO CONOLLY 
ET AL. (2000) DPX MODEL 

The PBPK DPX model of Conolly et al. (2000) 
was refit to the regional DPX data of Casanova et al. 
(1994),10 using the DPX removal rate measured by 
Quievryn and Zhitkovitch (2000) in vitro in three hu­
man cell lines. Quievryn and Zhitkovitch obtained a 
mean half-life for DPX removal of 12.5 hours (range 
11.6–13.0 hours). Since DPX repair rates were not 
directly measured in rat tissues, we used this value 
for the half-life in our model, yielding a rate con­
stant, kloss = 9.2·10−4 min−1. Because we did not scale 
the DPX data to a per volume basis (i.e., we kept 
them as pmol DPX/mg DNA rather than scaling to 
pmol/mm3 tissue), the value of the binding constant 
we used was 1.56·10−3 mm3/mg DNA/min rather than 
6.4·10−6 min−1 as used by Conolly et al. but the values 
are equivalent based on that linear scaling. 

The CFD model for the rat was used to predict 
the average flux to the “whole-nose” region of the rat 
nasal passages. The CFD model predicts flux to be 
proportional to the exposure level: 

Flux(region) = fHCHO(region) ppmexp, 

where ppmexp is the exposure level in ppm, 
Flux(region) is the amount of formaldehyde deliv­
ered to a given region the nasal mucosa per unit sur­
face area per unit time, and fHCHO(region) is the pro­
portionality constant relating the two (flux at 1 ppm 
for a region). The model equations for formaldehyde 
dosimetry and DPX formation in the nasal lining were 
then: 

d 
[HCHO] = (fHCHO ppmexp/δ(resion))

dt 

Vmax [HCHO] 
�− − kf [HCHO]

Km+[HCHO]j 

− kb [HCHO] 

d 
[DPX] = kb [HCHO] − kloss [HCHO].

dt 

10 For which the individual values are listed by Georgieva et al. 
(2003). 
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Table AI. Parameter Values for PBPK DPX Model 

Conolly 
Parameter Revised Value et al. (2000) 

Vmax (pmol/min-mm3) 967 1,008 
Km (pmol/mm3) 42.6 70.8 
kf (min−1) 1.76 1.08 
kloss (min−1)a 9.2·10−4 6.5·10−3 

kb 
b 1.56·10−3 mm3/mg DNA-min 

δ(low tumor region) 0.095 mm 
δ(high tumor region) 0.067 mm 
fHCHO(low tumor region) 7.0 pmol/mm2-min-ppm 
fHCHO(high tumor region) 12.5 pmol/mm2-min-ppm 

aRevised value from Quievryn and Zhitkovitch (2000); Conolly
 
et al. (2000) value interpreted from naive versus preexposed rat
 
DPX data.
 
bDifferent units from those used by Conolly et al. (2000).
 

Here, [HCHO] is the concentration of formaldehyde 
in the tissue, δ(region) is the tissue thickness of a 
region, Vmax and Km are the maximum metabolic 
removal rate and saturation constant, respectively, 
kf is the rate constant for first-order removal pro­
cesses, kb is the rate constant for DPX formation 
(binding), and kloss is the rate of DPX removal or 
loss. 

The resulting parameter values, as compared to 
those of Conolly et al., are listed in Table AI, while 
the resulting fits to the DPX data of Casanova et al. 
(1994) are shown in Fig. A1, with simulations obtained 
using the Conolly et al. (2000) parameters shown 
for comparison. As can be seen in Fig. A1, the re­
vised parameter values give virtually identical fits to 
those obtained with the parameters of Conolly et al. 
Model simulations and parameter optimization were 
performed using Matlab software (version 7.3, The 
MathWorks, Inc., Natick, MA), in particular using the 
fminsearch (Nelder-Mead) optimization algorithm. 
Goodness of fit was quantified using a log-likelihood 
function (LLF; for a derivation, see the appendix of 
Cole et al., 2001) with the objective function written 
as: 

n 

−LLF = n · [log(2π) + 1] + γ log(fi) 
i=1 

n1 (zi − fi)2 

+ n · log ,
fγ n 

i=1 i 

where n is the number of measurements, γ is a het­
eroscedasticity parameter estimated simultaneously 

Fig. A1. PBPK model fits to DPX data of Casanova et al. (1994). 
Symbols are data from high (circles) and low (diamonds) tumor 
regions of the F344 rat nasal epithelium. Smooth lines (solid and 
dashed) are simulations with the revised parameter values listed 
in Table AI. Dotted lines are simulations with parameter values of 
Conolly et al. (2000) and cannot be distinguished from our curves. 

with other parameters, fi is the model prediction of 
the ith data point, and zi is the ith measurement. 

The key difference in these parameter values is 
that Conolly et al. (2000) selected their value of the 
DPX removal rate constant, kloss, by interpreting the 
data of Casanova et al. (1994) for DPX formation in 
naive versus preexposed rats (air-exposed controls vs. 
those exposed for 11 weeks + 4 days) as indicating 
that DPX removal must be high enough to completely 
eliminate the DPX formed in a single 6-hour exposure 
by the beginning of the next day; i.e., in 18 hours. 
Their kloss value is the smallest value, which would 
reduce the highest measured level of DPX in those 
experiments to just below the limit of detection in 18 
hours. 
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However, examination of the Casanova et al. 
(1994) data shows that there was a significantly 
decreased (∼40%) level of the DPX in high tumor 
regions of preexposed animals versus naive animals 
at 6 and 15 ppm, and that the weight of the tissues 
dissected from those regions increased substantially, 
indicating a thickening of the tissues. After testing the 
result of changing the tissue thickness in the PBPK 
model for DPX, we found that such a change alone 
could not account for the dramatic reduction in DPX 
levels after preexposure, even with the higher value 
of kloss used by Conolly et al. (2000). Therefore, we 
concluded that in addition to the gross increase in 
tissue weight, these data indicate either an induc­
tion in the activity of enzymes that remove formalde­
hyde (aldehyde and formaldehyde dehydrogenase) or 
other changes in the biochemical properties of the 
tissue. Given such a change, it is entirely possible 
that those experimental results are consistent with the 
smaller experimental value of kloss used here. In par­
ticular, if Vmax increases with exposure (in a tissue 
region- and dose-specific manner), then it is possi­
ble to explain the naive versus preexposed data of 
Casanova et al. with the value of kloss effectively mea­
sured in vitro by Quievryn and Zhitkovitch (2000). 
Given that this value was measured directly, rather 
than obtained by indirect interpretation of measure­
ments made at only two time points where significant 
changes in the tissue had occurred, and that the fit 
we then obtained to the acute DPX data (Fig. A1) 
was excellent, we believe that use of this lower value 
for kloss and corresponding values for the remaining 
parameters is justified. 

APPENDIX B: REPRODUCING RESULTS 
FROM THE CIIT MODEL 

We first attempted to reproduce the results of 
Conolly et al. (2003) by maximizing the log-likelihood 
for both the J-shape and hockey stick cell replica­
tion models under conditions similar to those em­
ployed by Conolly et al. To do so, we assumed 
all tumors were fatal, used the Hoogenveen et al. 
(1999) solution, and used the Conolly et al. values 
for DPX and body weight. However, we used aver­
age weekly values of DPX, whereas Conolly et al. 
used hourly values. Table BI compares the param­
eter estimates we obtained with those obtained by 
Conolly et al. Although the two sets of parameters 
are similar, there are some differences. The Conolly 
et al. log-likelihoods are considerably smaller than 

Subramaniam et al. 

Table BI. Comparison of Conolly et al. (2003) Model Fits with 
Those We Obtained Using the Same Computational Methods 

and Assumptions 

J-Shape Hockey Stick 

Parameter Conolly 
This 

Analysis Conolly 
This 

Analysis 

Log-likelihood 
µNbasal 
KMU  
DO 
multb 
multfc 
αmax 

−2,131.5 
1.35·10−6 

0 
290.9 
1.072 
2.583 

0.0435 

−2,053.3 
1.84·10−6 

0 
299.4 
1.079 
3.128 

0.0403 

−2,133.1 
1.47·10−6 

0 
297.4 
1.070 
2.515 

0.0435 

−2,055.1 
2.08·10−6 

0 
301.6 
1.084 
3.665 

0.0355 

ours. In addition, the parameter “multfc” (which de­
termines the dose-dependence of the initiated cell 
growth advantage over normal cells) is considerably 
higher in our analysis, and in the case of our analysis 
with the hockey stick curve, our estimate for αmax is 
lower. 

To further explore these differences, we com­
pared in Fig. B1 the predicted probabilities obtained 
by Conolly et al. and those obtained using our best-
fitting model for the case of a J-shaped dose re­
sponse for the cell replication (Table BI), with the 
corresponding Kaplan-Meier curves. Our fit seems 
better for 15 ppm, where most of the tumors oc­
curred, as the Conolly et al. fit lies below the Kaplan-
Meier curve. Our fit also appears better for 0 ppm, 
and possibly for 10 ppm. The Conolly et al. fit ap­
pears to be better for 6 ppm, where three tumors 
occurred. 

The discrepancy in likelihood and fit may be pri­
marily due to an error in the likelihood calculation in 
the computer program used to implement the CIIT 
model (Liao, 2006), wherein the log-likelihood for 
the survivor data was double-counted. It is possible 
that this error may not impact on predictions of risk 
at low dose significantly (the Conolly et al. model 
predicts a two-fold lower tumor probability for the 
controls). After correcting this error, Dr. Liao (2006) 
found that the likelihood in the CIIT model improved 
from −2,131.5 to −2,067.7 (J-shape cell replication), 
which is much closer to our value of −2,053.3. It is pos­
sible that the remaining discrepancy would likely be 
further reduced if the CIIT model were reoptimized 
after correcting this error. 
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Fig. BI. Comparison of Conolly et al. (2003) fit and our fit to the Kaplan-Meier curves for probability of a fatal SCC, using the Conolly et al. 
assumption that all SCC were fatal. 
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