

Computational Modeling of the Neurovascular Unit to Predict Microglia Mediated Effects on Blood-Brain Barrier Formation

Todd Zurlinden¹, Katerine Saili¹, Aymeric Silvin², Andrew Schwab³, Sid Hunter³, Richard Spencer⁴, Nancy Baker⁵, Florent Ginhoux², Thomas Knudsen¹

¹National Center for Computational Toxicology (NCCT), ORD, US EPA, Research Triangle Park, NC ²Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore ³National Health and Environmental Effects Research Laboratory (NHEERL), ORD, US EPA, Research Triangle Park, NC

⁴ARA, Research Triangle Park, NC

⁵Leidos, Research Triangle Park, NC

Models of Brain Disorders and Disease 10th World Congress: Alternatives and Animal Use in Life Sciences August 21, 2017

U.S. Environmental Protection Agency

This work does not necessary reflect EPA policy

Zurlinden.Todd@epa.gov

Computational neurovascular unit (cNVU) focus

Stolp wt al., Front. Integr. Neurosci. 2013

Cell-Cell interactions of the NVU

E8.25-E8.5

E9.25-E9.5

NVU systems map (K Saili, NCCT)

Ginhoux et al., Science, 2010

- Microglia, resident macrophages of the brain.
- During development...
 - Orchestrate neurovascular ramifications, surveillance of local injury where hyperactivation can invoke an adverse neuroinflammatory response
 - Are they mediators of developmental toxicity?

Cell Agent-Based Modeling

- Agent-Based Modeling and Simulation (ABMS): a heuristic approach to reconstruct tissue dynamics using knowledge of biochemistry and cell-by-cell interactions.
 - Program each agent (cell) to follow specific rules
 - Interactions of agents gives rise to emergent features (phenotypic outcomes)
 - Qualify emergent feature with experimentally derived phenotypes (tissue level morphology)
 - Make toxicodynamic predictions by integrating biological knowledge & high throughput data
- CompuCell3D*: open source modeling environment
 - Rules (steppables) for distinct cell behaviors (growth, proliferation, apoptosis, differentiation, polarization, motility, ECM, signal secretion, ...);
 - Rules coded in Python for cell-autonomous 'agents' that interact in shared microenvironment and self-organize into emergent phenotypes.
 - Methodology applied to past systems: vasculogenesis, genital tubercle, palate fusion, etc.

Cell type Chemotaxis Ligand **Tip/Stalk Cell Selection Phenotype** Receptor Antagonist Neuroepithelium notch Stalk Cell CSF1 dll4 Tip Cell NICD Microglia induced Csf1r NICD anastomoses notch Microglia VEGF-C dll4 Vegfr3 Vegfr2 Vegfr1 Vegfr2 Vegfr3 NICD > Threhold **Vessel migration** Stalk Cell sVegfr1 **SVP** formation VEGF-A Ventricle/NPC population Reduced VEGF-A/C response

Modeling Brain Angiogenesis

Qualitative response: microglia abundance

Translating HTS Data

<u>0.03 μΜ</u>

No significant reduction in any receptor

0.3 μM 50% **Ψ** CSF1R

2 μM 50% Ψ VEGFR3 80% Ψ CSF1R

6 μM
50% ♥ VEGFR2
85% ♥ VEGFR3
95% ♥ CSF1R

Experimental validation

HTS Cell-based Assays

ArunA:

Migration/Proliferation hNP/hNC/hNN cells

VALA:

Tubulogenesis/Proliferation **HUVEC** cells

Cell-based assay to inform model

ABM including neurogenic features

Develop corresponding control network with ToxCast assays to describe neurogenic component of NVU

Wednesday August 23, 4:15pm Best practices for Modeling Data

Towards a functional cNVU model

- Biological pathway perturbations
 - 'Cybermorphs' for investigating single pathway knockouts
 - Continuum response following chemical exposure
- Neurogenesis submodel
 - Proliferation of radial glia cells (neuroprogenitor cells)
 - Differentiation/migration to neurons and astrocytes
 - Utilize signaling pathways from microcephaly AOP
 - Endothelial network interacting with neural network (3D)

Initial model comprising NVU cell types

Phenotype quantitation

- Microglia abundance, vessel branch points, network complexity (cortical angiogenesis)
- Neuron proliferation/differentiation (neurogenesis)
- Barrier permeation for chemical distribution to neural compartment (barriergenesis)

Acknowledgements

- Tom Knudsen (mentor)
- Kate Saili (NCCT)
- Sid Hunter (NHEERL-ISTD)
- Andrew Schwab (NHEERL-ISTD)
- Nancy Baker (Leidos)
- Richard Spencer (ARA-EMVL)
- Florent Ginhoux (A*STAR)
- Aymeric Silvan (A*STAR)
- Virtual Tissue Modeling

Virtual Tissue Models: Predicting How Chemicals Impact Human Development

Thank You

Questions?