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Recent Cheminformatics Developments

• We are building a new cheminformatics architecture

• PUBLIC dashboard gives access to “curated chemistry”

• Focus on integrating EPA and external resources

• Aggregating and curating data, visualization elements and 
“services” to underpin other efforts

• QSAR
• Read-across
• Non-targeted screening
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OPERA Models

• Interest in physicochemical properties to include in exposure 
modeling, augmented with ToxCast HTS in vitro data etc.

• Our approach to modeling:
– Obtain high quality training sets
– Apply appropriate modeling approaches 
– Validate performance of models
– Define the applicability domain and limitations of the models
– Use models to predict properties across our full datasets

• Work has been initiated using available physicochemical data 
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PHYSPROP Data: Available from:
http://esc.syrres.com/interkow/EpiSuiteData.htm

Abbreviation Property
AOH Atmospheric Hydroxylation Rate

BCF Bioconcentration Factor

BioHL Biodegradation Half-life

RB Ready Biodegradability

BP Boiling Point

HL Henry's Law Constant

KM Fish Biotransformation Half-life

KOA Octanol/Air Partition Coefficient

LogP Octanol-water Partition 
Coefficient

MP Melting Point

KOC Soil Adsorption Coefficient

VP Vapor Pressure

WS Water solubility 
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The Approach

• To build models we need the set of chemicals and their 
property series

• Our curation process 
– Decide on the “chemical” by checking levels of consistency
– We did NOT validate each measured property value
– Perform initial analysis manually to understand how to clean the data 

(chemical structure and ID)
– Automate the process (and test iteratively)
– Process all datasets using final method
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Check and Curate Public Data

• Public data should always be checked and curated 
prior to modeling. This dataset was no different.

• The data files have FOUR representations of a 
chemical, plus the property value.
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Check and Curate Public Data

• Public data should always be checked and curated 
prior to modeling. This dataset was no different.
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Covalent Halogens Identical Chemicals

Mismatches
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KNIME Workflow 
to Evaluate the Dataset
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LogP dataset: 15,809 structures
• CAS Checksum: 12163 valid, 3646 invalid (>23%)
• Invalid names: 555 
• Invalid SMILES 133
• Valence errors: 322 Molfile, 3782 SMILES (>24%)
• Duplicates check:

–31 DUPLICATE MOLFILES 
–626 DUPLICATE SMILES
–531 DUPLICATE NAMES

• SMILES vs. Molfiles (structure check)
–1279 differ in stereochemistry (~8%)
–362 “Covalent Halogens”
–191 differ as tautomers
–436 are different compounds (~3%)
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Remove of 
duplicates

Normalize of 
tautomers

Clean salts and 
counterions

Remove inorganics 
and mixtures

Final inspection 
QSAR-ready 

structures

Initial 
structures

QSAR-ready standardization procedure

KNIME workflow
UNC, DTU, EPA Consensus
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Property Initial file Curated Data Curated QSAR ready
AOP 818 818 745

BCF 685 618 608

BioHC 175 151 150

Biowin 1265 1196 1171

BP 5890 5591 5436

HL 1829 1758 1711

KM 631 548 541

KOA 308 277 270

LogP 15809 14544 14041

MP 10051 9120 8656

PC 788 750 735

VP 3037 2840 2716

WF 5764 5076 4836

WS 2348 2046 2010

Curation to QSAR Ready Files
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Development of a QSAR model

• Curation of the data 
» Flagged and curated files available for sharing

• Preparation of training and test sets
» Inserted as a field in SDFiles and csv data files

• Calculation of an initial set of descriptors 
» PaDEL 2D descriptors and fingerprints generated and shared

• Selection of a mathematical method
» Several approaches tested: KNN, PLS, SVM…

• Variable selection technique
» Genetic algorithm

• Validation of the model’s predictive ability
» 5-fold cross validation and external test set

• Define the Applicability Domain
» Local (nearest neighbors) and global (leverage) approaches
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QSARs validity, reliability, applicability 
and adequacy for regulatory purposes

ORCHESTRA. Theory, 
guidance and application 
on QSAR and REACH; 
2012. http://home. 
deib.polimi.it/gini/papers/or
chestra.pdf. 
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Principle Description

1) A defined endpoint Any physicochemical, biological or
environmental effect that can be measured and
therefore modelled.

2) An unambiguous algorithm Ensure transparency in the description of the
model algorithm.

3) A defined domain of applicability Define limitations in terms of the types of
chemical structures, physicochemical properties
and mechanisms of action for which the models
can generate reliable predictions.

4) Appropriate measures of 
goodness-of-fit,   robustness and 
predictivity

a) The internal fitting performance of a model
b) the predictivity of a model, determined by

using an appropriate external test set.
5) Mechanistic interpretation, if 
possible

Mechanistic associations between the
descriptors used in a model and the endpoint
being predicted.

Following the 5 OECD Principles*

http://www.oecd.org/chemicalsafety/risk-assessment/37849783.pdf
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Prop Vars 5-fold CV (75%) Training (75%) Test (25%)

Q2 RMSE N R2 RMSE N R2 RMSE

BCF 10 0.84 0.55 465 0.85 0.53 161 0.83 0.64

BP 13 0.93 22.46 4077 0.93 22.06 1358 0.93 22.08

LogP 9 0.85 0.69 10531 0.86 0.67 3510 0.86 0.78

MP 15 0.72 51.8 6486 0.74 50.27 2167 0.73 52.72

VP 12 0.91 1.08 2034 0.91 1.08 679 0.92 1

WS 11 0.87 0.81 3158 0.87 0.82 1066 0.86 0.86

HL 9 0.84 1.96 441 0.84 1.91 150 0.85 1.82

OPERA Models 
What you would report in a paper
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Prop Vars 5-fold CV (75%) Training (75%) Test (25%)

Q2 RMSE N R2 RMSE N R2 RMSE

AOH 13 0.85 1.14 516 0.85 1.12 176 0.83 1.23

BioHL 6 0.89 0.25 112 0.88 0.26 38 0.75 0.38

KM 12 0.83 0.49 405 0.82 0.5 136 0.73 0.62

KOC 12 0.81 0.55 545 0.81 0.54 184 0.71 0.61

KOA 2 0.95 0.69 202 0.95 0.65 68 0.96 0.68

BA Sn-Sp BA Sn-Sp BA Sn-Sp

R-Bio 10 0.8 0.82-0.78 1198 0.8 0.82-0.79 411 0.79 0.81-0.77

OPERA Models 
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LogP Model: 
Weighted kNN Model, 9 descriptors

Weighted 5-nearest neighbors
9 Descriptors
Training set: 10531 chemicals
Test set: 3510 chemicals

5 fold CV:    Q2=0.85,RMSE=0.69
Fitting:         R2=0.86,RMSE=0.67
Test:             R2=0.86,RMSE=0.78

(https://github.com/kmansouri/OPERA.git)

https://github.com/kmansouri/OPERA.git
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OPERA Standalone application:
Input:
–MATLAB .mat file, an ASCII file with only a matrix 

of variables 
–SDF file or SMILES strings of QSAR-ready 

structures. In this case the program will calculate 
PaDEL 2D descriptors and make the predictions.

• The program will extract the molecules names from the input csv or 
SDF (or assign arbitrary names if not) As IDs for the predictions.
Output 

• Depending on the extension, the can be text file or csv with

–A list of molecules IDs and predictions
–Applicability domain
–Accuracy of the prediction
–Similarity index to the 5 nearest neighbors
–The 5 nearest neighbors from the training set: Exp. 

value, Prediction, InChi key

(https://github.com/kmansouri/OPERA.git)

https://github.com/kmansouri/OPERA.git
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Predictions for >720,000 Chemicals

• OPERA predictions were built on curated training 
sets

• All chemicals in DSSTox, accessed via the 
CompTox Dashboard, were pushed through all 
predictive models

• Predicted data made available, with detailed 
MODEL REPORTS
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CompTox Chemistry Dashboard
https://comptox.epa.gov

https://comptox.epa.gov/
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Predicted Data

Calculation Result 
for a chemical 

Model Performance
with full QMRF

Nearest Neighbors from Training Set 

https://comptox.epa.gov

https://comptox.epa.gov/
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QMRF Reports
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Conclusion

• QSAR prediction models (kNN) produced for all properties

• 700k chemical structures pushed through OPERA 

• Supplementary data will include appropriate files with flags –
full dataset plus QSAR ready form

• Full performance statistics available for all models

• OPERA Models will be deployed as prediction engines in the 
future – one chemical at a time and on the fly batch processing 
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Thank you for your attention
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