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Anatomical homeostasis in a self-regulating 
multicellular system

SOURCE: Tim Otter, – with permission
Andersen, Newman and Otter (2006) Am. Assoc. Artif. Intel.



Can a computer model of the developing 
embryo translate cellular disruptions 

into a prediction of dysmorphogenesis?

and if so …
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How might such models be used with 
high-performance computing  

analytically (to understand) and 
theoretically (to predict) adverse 

developmental outcomes for different 
exposure scenarios? 

e.g., chemicals, non-chemical stressors, 
drugs, mixtures, lifestages, …
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1. In patterning the embryo, genetic signals setup spatial information 
that cells then translate into a coordinated biological response.

2. A hallmark of multicellular organization is the ability of cells to 
interact with one another via well-conserved signaling pathways.

3. Just as ‘the Cell’ is the fundamental unit of biology, so too should it 
be the computational unit (‘Agent’) for modeling embryogenesis.

Organizing Principles



Cell Signaling Domains

• Kinematics: range of activity varies by distance and geometry.

Autocrine Lateral 
(e.g., Notch-Delta)

Paracrine
(e.g., FGF, BMP, SHH)

< 300 uM

Endocrine
(e.g., estrogen, androgen)

• Dynamics: spatial relationships in a developing system vary over 
time and space.

FGF8 SHH

3

This complexity can 

be captured in a 

‘virtual tissue’.



o Built from the known biology of an embryological system and 
structured to recapitulate key cell signals and responses.

o Running the models with real (in vitro) or synthetic (in silico) data 
can be used to predict emergent responses to perturbation. 

o Simulated outcomes can be validated against experimental 
phenotypes to assess model performance and analyze sensitivity.

o Models can help translate screening-level data from chemical-
biology into predictive toxicology of a developmental hazard.  
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Cellular Agent-Based Models (ABMs)



Predictive Toxicology &
Human Development

o Evaluating and assessing impacts to development is an Agency 
priority – EPA’s Children’s Environmental Health (CEH) Research Roadmap. 

o Too many chemicals (~80K) to test each by traditional animal-
based methods (cost, time, 3Rs).

o Profile the ‘human exposure universe’ of chemicals in vitro with 
high-throughput (HTS) assays (ToxCast/Tox21).

o ToxCast >1060 chemicals evaluated in over 600 assays; >27M data 
points and ~1.7M concentration response curves.
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http://actor.epa.gov/dashboard/



1. ToxCast Predictive Signature: developmental toxicity

8
8

136 of 1065 ToxCast chemicals tested 
(12.8%) were positive in an embryonic  

stem cell assay predicting 
teratogenicity in a human system

Knudsen et al (2016) in preparation

Sipes et al (2011) Toxicol Sci 124

univariate  DevTox features
angiogenesis



pVDCs: chemicals sorted for potential vascular disruption (pVDCs)
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This synthetic thalidomide 
analogue disrupts microtubule 
function in endothelial cells of 

immature blood vessels.

AngioKB

ToxPi

AOP-based prediction model is 
85% accurate in discriminating 
pVDCs from non-pVDCs in an 

OECD-validated human 
complex angiogenesis assay.

T Heinonen



Cellular Response Network (CRN): how cellular systems 

translate spatial information into higher-order function

Cell A

Cell B

input x

input y

input z

behavior A

behavior B

behavior C FUNCTION 1 …
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SOURCE: M Cohn
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Cellular Agent-Based Models (ABMs) 

o individual rules are assigned to 
low-level ‘agents’ (here = cells)

o agents then interact in a shared 
environment (CompuCell3D*) 

o running the simulation executes 
this biology (emergence)

o models run differently each 
time (stochastic)

o each run reveals one possible 
solution (outcome)

* CompuCell3D.org is an open-access environment for cell-oriented 
modeling developed at Indiana University by J Glazier and colleagues 

VEGF165
MMPs
VEGF121
sFlit1
TIE2
CXCL10
CCL2



control 3 µM 30 µM

control 4 µM 40 µM

5HPP-33 concentration response predicted in silico from ToxCast
and demonstrated in vitro with a human endothelial cell assay
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SOURCE: Kleinstreuer et al. (2013) PLoS Comp Biol



2. Limb Development

Stage 16
GD9

Stage 18
GD10

Stage 19
GD12

Stage 20
GD12.5

Stage 21
GD13

Boehm et al. (2011) Development 138
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Dewoskin – NCCT, unpublished

Control Network



cell field FGF8 FGF4 FGF10

SHH GREM-1 BMP4 BMP7
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Spatial dynamics: patterning early limb outgrowth

SOURCE: unpublished, manuscript in preparation 14



FGF8

FGF4

FGF10

SHH

BMP4

GREM1

Gli3

dHand

HoxD13

vE-LM.3

ISH (mouse literature) vs ABM
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Failability: exposures may disrupt signaling domains directly

Predicted impact of SHH 
disruption on limb outgrowth

SHH



control weak

moderate strong

Predicted impact on the 
Shh-cell lineage

Failability: exposures may disrupt signaling domains indirectly
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Predicted impact of SHH 
disruption on limb outgrowth



A 1
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HIGH-DOSE

TEMPERED

1

3

DELAYED

TEMPERED

2

4

2

4

a.u.c. = 300 a.u.c. = 300

‘What-if’? simulating different exposure scenarios
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http://actor.epa.gov/dashboard/

3. Chemical-Target Bipartite Network: translates ToxCast 

bioactivity profiles into predicted mode-of-action for an AOP

• BPN for 54 ToxCast chemicals that 
produce male developmental toxicity.

• Functional annotation revealed 4-5 
target biological processes.

Leung et al. (2016)
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How do chemical-bioactivity bipartite networks interact 
with control networks in disrupting development? 

EXAMPLE: hypospadias, a urethral closure defect
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Leung et al. (in preparation)



Genital Tubercle (GT) development

o sexually indifferent at MCS 0 (GD13.5)
o androgen production by fetal testis introduced at MCS 2000 (GD15.5)
o sexual dimorphism evaluated at MCS 4000 (GD17.5) 21

Cell field - androgen SHH field FGF10 field no androgen

Embryonic GT            Abstracted GT                   Control Network (mouse)

ABM simulation for sexual dimorphism (MCS 4000 = GD13.5 – 17.5)



• Driven by urethral endoderm (contact, fusion apoptosis) and 
preputial mesenchyme (proliferation, condensation, migration).

• Disruption of SHH, FGF10, or AR signaling leads to urethral 
closure defects (e.g., hypospadias).
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Urethral Closure

Androgenization
(n = 10 sims)

100%
67%
33%

0%

Phenotype (MCS 4000)
Septation        Fusion          Conden.     Closure Index

6/10 8/10 10/10 0.80
2/10             5/10              10/10 0.57
0/10             4/10                0/10 0.13
0/10             2/10                0/10 0.07



Programmed Fusion of Opposing Surfaces

o Disruption is a key event in AOPs for many human birth defects: 
NTDs, coloboma, cleft palate, valvuloseptal defects, hypospadias, gastroschisis, … 

o Emergent property orchestrated by CRNs: EMT, apoptosis, epithelial 
cell adhesion / migration / intercalation are recurring themes.
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4. Palatal Closure: complex process disrupted in ‘cleft palate’.
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63 cleft palate teratogens in ToxCast 
N Baker - NCCT, unpublished

RARs

Triazoles
GPCRs



Palatal Closure: ABM recapitulating cellular dynamics of 

Medial Edge Epithelium (MEE) contact and seam (MES) breakdown.
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Hacking the Control Network

o in silico knockouts of elements in the 
underlying signaling network

o predicted impacts on MEE contact and 
seam breakdown (critical events)

Hutson et al., unpublished
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normal switch 1.2-fold (+) EGFR1.4-fold (+) EGFRnormal switch 1.2-fold (+) EGFR 1.4-fold (+) EGFR TGFß3 knockout

MES Differentiation: TGFβ3/EGF switching

Predicted imbalance 
disrupting the timing of

MES differentiation
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Fusion-Competent hMSC Spheroids: engineering a HTS 
human MES breakdown assay from pluripotent human cell lines

D Belair, C Wolf, B Abbott - NHEERL, preliminary
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Genital Tubercle

Vasculature

Palate

Limb-bud

Heart

NVU/BBB

Liver / GI

Neural Tube

Renal

Testis / BTB

Underway Planned Future



Virtual Tissues Laboratory System

VTKB
CC3D simulations

ToxCastDB
Bionetworks

Literature mining
Provenance

Virtuoso
Web Services and Queries

HPC

Video or 3D Results

Data Analysis

Massively-parallel simulation

30



o Richard Judson – NCCT
o Imran Shah – NCCT
o Barbara Abbott – NHEERL / TAD
o Sid Hunter – NHEERL / ISTD
o Dustin Kapraun – NCCT (ORISE)
o Eric Watt – NCCT (ORISE)
o Max Leung – NCCT (ORISE)
o Jill Franzosa – NCCT (ORISE)
o Nicole Kleinstreuer – NCCT (now NIEHS/NTP)
o Nisha Sipes – NCCT (now NIEHS/NTP)
o Richard Spencer – Lockheed Martin / EMVL
o Nancy Baker – Lockheed Martin / NCCT
o Rob DeWoskin – EPA / NCEA
o Tamara Tal – NHEERL / ISTD
o Monica Linnenbrink – NCCT / CSS
o Christina Baghdikian – NCCT / CSS
o Ed Carney† – Dow Chemical Company
o T Heinonen – U Tampere / FICAM
o E Berg – DiscoverX – BioSeek
o A Seifert – U Kentucky
o L Egnash – Stemina Biomarker Discovery
o M Bondesson – U Houston / STAR
o J Glazier – Indiana U / STAR
o Shane Hutson – Vanderbilt U / STAR
o William Murphy – U Wisconsin / STAR
o William Daly – U Wisconsin / STAR
o John Wikswo – Vanderbilt U / STAR

National Center for  Computational Toxicology

Special Thanks
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http://www2.epa.gov/sites/production/files/2015-
08/documents/virtual_tissue_models_fact_sheet_final.pdf


