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In an effort to ensure chemical safety in light of regulatory advances away from reliance on animal testing, USEPA
and L’Oréal have collaborated to develop a quantitative systemic toxicity prediction model. Prediction of human
systemic toxicity has proved difficult and remains a gap in chemical safety assessment using alternative
approaches. By leveraging multiple data sources including high-throughput screening (ToxCast Bioactivity) and
chemical descriptor and property (ToxPrint chemotypes and Leadscope Chemical Properties), and high-throughput
toxicokinetic (httk) data, a predictive model of systemic point-of-departures (POD) was developed. The model
specifically predicts the chemical-level POD using data from roughly 3000 studies across nearly 600 chemicals.
Systemic POD were curated in ToxRefDB from numerous study types, across multiple species and dose
administration methods. Rather than attempt to adjust all POD to a single species or strain or dose duration or
study type or administration method, these in vivo study parameters were included as covariates in the modeling
process. Using Random Forest modeling, in vivo covariates alone accounted for roughly 17.5% of the variance in
the dataset. A model developed using a combination of in vivo covariates, biological, chemical, and kinetic
parameters explained at total of 35% of the variance. The combination of covariates and features explain more
variance in the data than either do individually, demonstrating the advantage of incorporating in vivo covariates into
the modeling process instead of adjusting POD a priori. The final resulting model was also enriched for features
measuring xenobiotic metabolism gene expression as well oxidative stress markers demonstrating the importance
for accounting for kinetics and non-specific bioactivity in predicting systemic toxicity. Herein, we have generated an
externally predictive model of systemic toxicity capable of being used as a safety assessment tool.

Objective: Develop a predictive model of systemic toxicity point-of-departures incorporating inherent
differences in in vivo study parameters, chemical structure and properties, bioactivity and kinetics for use
as a safety assessment tool providing appropriate performance baselines, benchmarks, and uncertainty
estimates.
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Data Preparation 1. Derive chemical-level points-of-departure (POD)
2. Characterize POD to serve as Covariates:

• LOEL vs LOAEL & NOEL vs NOAEL
• No. of Studies
• Study type, species, admin method, etc.
• Dose spacing

3. Merge input datasets (ToxCast, Toxprint, RTK, etc)
• Impute missing data (median)

4. Generate random forest models
• Sample across NO(A)EL and LO(A)EL
• Combine trees and forests for final model

5. Evaluate models
• Performance compared to baseline & benchmarks
• Biological plausibility

SD ≈ 1 (log mg/kg/day) ≈ RMSE
0 % Variance Explained

Baseline: Predict the population mean Benchmark:

RMSE ≈ 0.3 (log mg/kg/day)
92% Variance Explained

NOEL LOEL
Sampled POD based on each
chemical’s NOEL and LOEL value
(Simulated using 2 random draws
per chemical to compare against
assuming that the true POD falls
between the observed NOEL and
LOEL

• 7% variance explained by dose spacing alone (RMSE = 0.98)
• 17.5% variance explained by all in vivo covariates (RMSE = 0.93)
• Dose spacing, study count, number of doses, pod type (LEL vs LOAEL), body 

weight were most important contributors to variance 

• Boxplots illustrate 
the relationship 
between in vivo
variables 
(corvariates) and 
chemical-level 
PODs across the 
596 chemicals 

• EXAMPLE:  A 
chemical where its 
POD is defined by 
critical effects in a 
CHR (chronic) 
study will have, on 
average, a lower 
POD than a 
chemical where its 
POD was defined 
by a DEV 
(developmental) 
study

RMSE ≈ 0.8 (log mg/kg/day)
• 35% variance explained by all input variables, including 

in vivo covariates
• 17.5% of the 35% variance was explained by 

biological, chemical, and kinetic parameters

CONCLUSIONS

• Dose spacing is the single 
largest contributor of 
explained variance

• In vivo covariates provide 
context around individual 
chemical POD

• Final model explains 
additional variance with 
biologically and chemically 
plausible parameters being of 
highest importance

• Unexplained variance not a 
product of model development 
failure, but that of specific 
factors and uncertainty 
inherent to in vivo POD 
derivations themselves
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Biologically and chemically plausible 
variables selected:
Zebrafish development, xenobiotic metabolism, 
oxidative stress, cytotoxicity, gene induction, 
PXR, ER, LogP, OPs, Peak concentration  

FUTURE DIRECTIONS

• Include completed high-throughput toxicokinetics (httk) 
datasets as well as exploration of further curated chemical 
structure and property datasets

• Benchmark dose modeling of in vivo endpoints for improved 
POD estimates

• Improve understanding of in vivo study variability and 
uncertainty for improved benchmarking
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