

Data Aggregation, Curation and Modeling Approaches to Deliver Prediction Models to Support Computational Toxicology at the US EPA

Antony Williams Kamel Mansouri Todd Martin Chris Grulke John Wambaugh Richard Judson Grace Patlewicz Imran Shah Ann Richard

NCCT, U.S. EPA

COMPUTATIONAL TOXICOLOGY

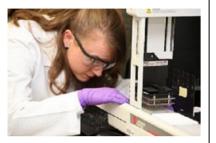
American Chemical Society Meeting, Fall 2016

21-25 August 2016, Philadelphia, PA

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Who is NCCT?

- National Center for Computational Toxicology part of EPA's Office of Research and Development
- Research driven by EPA's Chemical Safety for Sustainability Research Program
 - -Develop new approaches to evaluate the safety of chemicals
 - -Integrate advances in biology, biotechnology, chemistry, exposure science and computer science
- Goal To identify **chemical exposures** that may disrupt biological processes and cause adverse outcomes.


Data, models, algorithms, ...

- Our outputs include a lot of data, models, algorithms and software applications
- We produce Open Data we want people to interrogate it, learn from it, develop understanding

Toxicity Forecasting

Advancing the Next Generation of Chemical Evaluation

EPA needs rapid and efficient methods to prioritize, screen and evaluate thousands of chemicals. EPA's Toxicity Forecaster (ToxCast) generates data and predictive models on thousands of chemicals of interest to the EPA. ToxCast uses high-throughput screening methods and computational toxicology approaches to rank and prioritize chemicals. In fact, EPA's Endocrine Disruption

Screening Program (EDSP) is working to use ToxCast to rank and prioritize chemicals.

- ToxCast has data on over 1,800 chemicals from a broad range of sources including industrial and consumer products, food additives, and potentially "green" chemicals that could be safer alternatives to existing chemicals.
- ToxCast screens chemicals in over 700 high-throughput assays that cover a range of high-

Downloadable Computational Toxicology Data

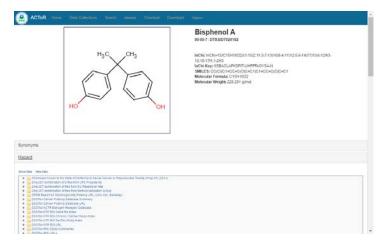
EPA's computational toxicology research efforts evaluate the potential health effects of thousands of chemicals. The process of evaluating potential health effects involves generating data that investigates the potential harm, or hazard of a chemical, the degree of exposure to chemicals as well as the unique chemical characteristics.

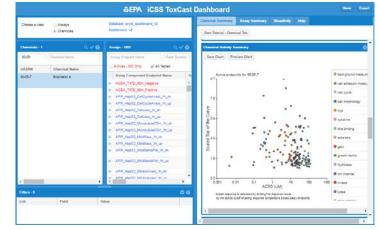
As part of EPA's commitment to share data, all of the computational toxicology data is publicly available for anyone to access and use.

High-throughput Screening Data

EPA researchers use rapid chemical screening (called high-throughput screening assays) to limit the number of laboratory animal tests while quickly and efficiently testing thousands of chemicals for potential health effects.

• <u>ToxCast Data</u>: High-throughput screening data on thousands of chemicals.


Rapid Exposure and Dose Data

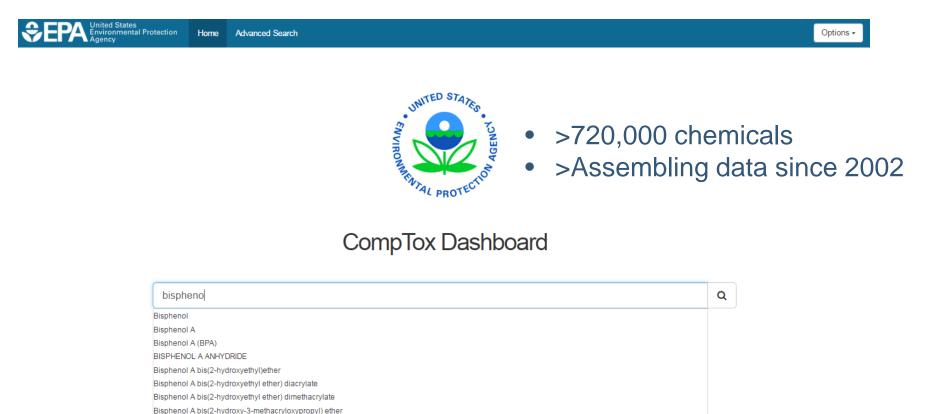

EPA researchers develop and use rapid exposure estimates to predict potential exposure for thousands of chemicals.

 <u>High-throughput toxicokinetics data</u>: It is important to link the external dose of a chemical to an internal blood or tissue concentration, this process is called toxicokinetics. EPA researchers measure the critical factors that determine the distribution

Sharing via Dashboard Apps

Cat: Chemical and I are here: 075 Horns - Co		gories cology Research - Chemica	l use		E3Contact Us
Plinne Planch	* Results	Dictionary a Downie	and ritery		
hemical: BISPHENOL A					
Hyc	CA	SRN: 80-05-7			
Front line faits	OH Front Broke	of Data			
Export User Data	Expert Prode	and a state of the			
₩ <u>2</u> èè	and the second second	and a state of the			
¥ <u>Z</u> èè	¥∑≓	and a state of the	ACTNH Data SetUre c	Source ::	Class of Chemical Category
H A a a a a a a a a a a a a a a a a a a	14 📐 😅	•	AC160 Data Settint c	Source : ACTOR UNCS	Class of Chemical Category : Use Categores
Ise Information: CPCat Descript consumer_use_ACToPU	₩ <u>}</u> =	Source Description :	ACTUR Date SecUrit 2		
Y 🛃 🎰 📫	N 2 a	Source Description : Consumer Use	ACTOR Data Settint a	ACTOR UseDB	

	United Statues Environmental Protection Agency	EDSP21 Dashboard Endocrine Dampfice Screening Program for the 21st Century
CDSP Deditored		energy Banding Righthroughoffserer Roughbarding Streenerg
EDSP Dashboa	and Overview	
Congress requires I Screening Program	EPWs Enterne Discator Screenes Proce for the 21st Century Disnotant (EDSP21 D	In transitions for patiential endotries daughter, and there are thousands of memories of interest to the program. EPA researchers developed the Endotrine Daughter abshound to provide access to new cremosil data on over 1,000 chemicals of interest.
The purpose of the	EDSP21 Destacent is to new the Endoorne	Denutor Screening Program evaluate chemicals for entoorne-related activity
The data for this ve	ension of the Deshboard comes from various s	15/15#1 -
 Chemical av High quality 	mated (or in vitro high-throughput) chemical is posure data and prediction models (E-solCae chemical structures and annotations (DSSTs Properties Database (PhysChemDB)	
ToxCast Data U	lee Considerations	
Careful revie	ew is required to determine the use of the dat	cessarily mean that it will cause banchy or an scheme health butcome. There are many factors that determine whether a chemical will cause a specific adverse health outcome is in a particular detector setterative. There as bot the security security and methods reprove.
EPA wil continuous	siy add functionality and improve overall usab	ity and performance
To get the best pos	able experience using the EDSP Deshboard	application we recommend using Mozila Firefox or Google Onome.
90		



Recent Cheminformatics Developments

- We are building a new cheminformatics architecture
- PUBLIC dashboard gives access to "curated chemistry"
- Focus on integrating EPA *and* external resources
- Aggregating and curating data, visualization elements and "services" to underpin other efforts
 - QSAR
 - Read-across
 - Non-targeted screening

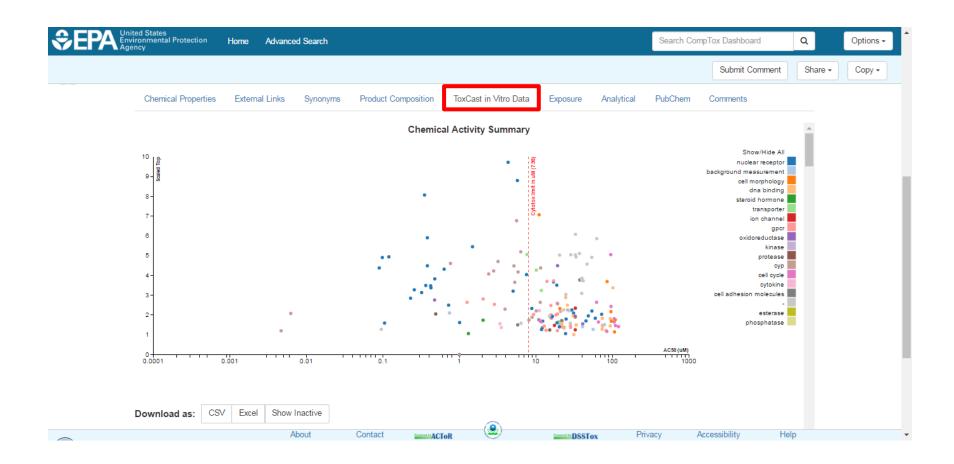
Introducing Our Latest Dashboard https://comptox.epa.gov

Bisphenol A bis(2-hydroxy-3-methacryloyloxypropyl ether) Bisphenol A bis(2-hydroxy-3-methacryloyloxypropyl ether)

Help

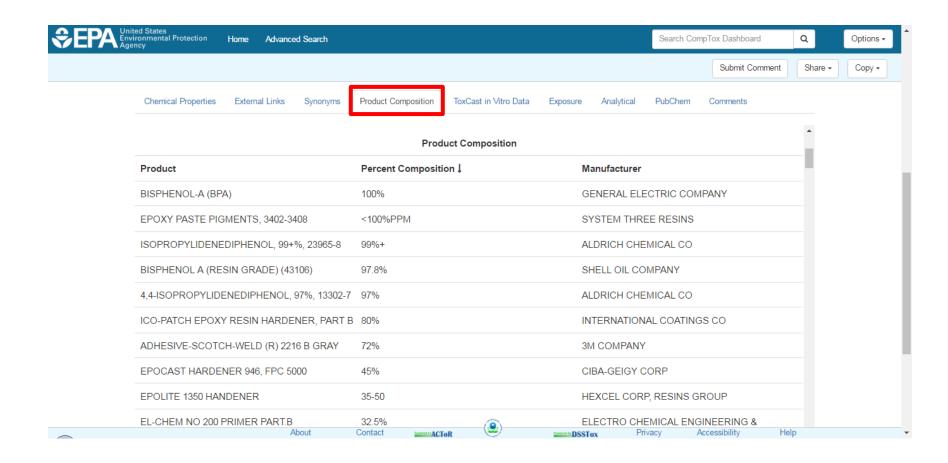
EPA United States Environmental Protection Home Advanced Search Agency		Search CompT	ox Dashboard	Q	Options -
			Submit Comment	Share -	Copy -
Bisphenol A 80-05-7 DTXSID7020182 Searched by Approved Name: Found 1 result for 'bis	phenol A'.				
Q IIII ₱3 基- Q-	Intrinsic Properties Molecular Formula: C15H16O2 Average Mass: 228.291 g/mol Monoisotopic Mass: 228.115030 g/mol		Q, Find All Chemicals) (1)	•	
но	Structural Identifiers Record Information				
Chemical Properties External Links Synonyms F	roduct Composition ToxCast in Vitro Data Exposure Analytical	PubChem 0	Comments		
About Ca	ontact DSSTox Priv.	acy Acce	essibility Hel	lp	

Office of Research and Development National Center for Computational Toxicology



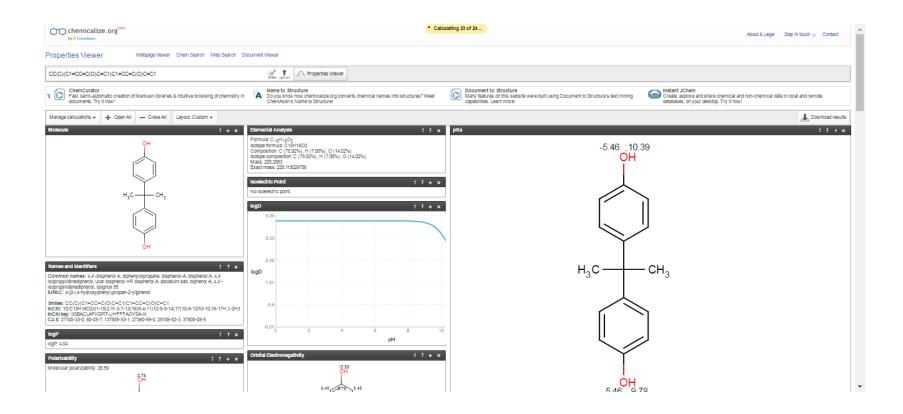
Physicochemical Properties

							Submit Com	nment
							Submit Com	
Chemical Properties	External Links Synonyms Product Cor	nposition To	oxCast in Vitro I	Data Expo	sure Analytic	al PubCher	m Comments	
Summary	Download as: CSV Excel SE)F						
Octanol-Water Partition Coefficient (LogP)	Property	Average (Exp.)	Median (Exp.)	Range (Exp.)	Average (Pred.)	Median (Pred.)	Range (Pred.)	Result Unit
Water Solubility Melting Point	Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-
Boiling Point	Water Solubility	5.26e-04 (1)	5.26e-04	5.26e-04	2.22e-03 (2)	2.22e-03	7.56e-04 to 3.68e-03	mol/L
Vapor Pressure	Melting Point	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C
Soil Adsorption	Boiling Point	200 (1)	200	200	349 (2)	349	334 to 364	°C
Coefficient	Vapor Pressure	-	-	-	7.06e-08 (1)	7.06e-08	-	mmHg
Octanol-Air Partition Coefficent	Soil Adsorption Coefficient	-	-	-	2.92 (2)	2.92	2.74 to 3.10	-
	Octanol-Air Partition Coefficent	-	-	-	8.39 (1)	8.39	-	-
Atmospheric Hydroxylation Rate	Atmospheric Hydroxylation Rate	-	-	-	-10.4 (1)	-10.4	-	-
Biodegradation Half	Biodegradation Half Life	-	-	-	15.1 (1)	15.1	-	days
Life	Bioaccumulation Factor	-	-	-	173 (1)	173	-	-
Bioaccumulation	Bioconcentration Factor	1.64 (1)	1.64	1.64	82.0 (3)	82.0	1.38 to 173	


Bioassay Screening Data

Office of Research and Development National Center for Computational Toxicology

Functional Use and Composition

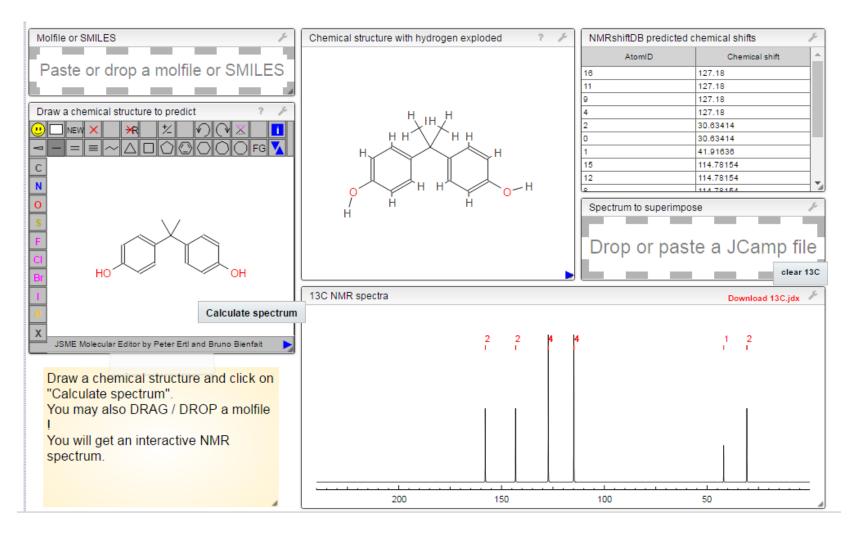


Dashboard: External Links

General	Toxicology	Publications	Analytical	Prediction
EPA Substance Registry	ACTOR	Toxline	Q National Environmental	oo Chemicalize
IST NIST Chemistry Webbook	an DrugPortal	Environmental Health P	RSC Analytical Abstracts	Proton NMR Prediction
# Household Products Dat	CCRIS	NIEHS		Carbon-13 NMR Prediction
DubChem	ChemView	National Toxicology Prog		2 2D NMR HSQC/HMBC
🕅 Chemspider	CTD	G Google Books		ChemRTP Predictor
CPCat	eChemPortal	G Google Scholar		
DrugBank	EDSP Dashboard	G Google Patents		External Prediction
HMDB	Gene-Tox	PubMed		Integration
W Wikipedia	HSDB			grouter
Q MSDS Lookup	ToxCast Dashboard 2			T I A I (
Q , ToxPlanet	LactMed			Take Advantage
Q ChemHat: Hazards and	International Toxicity Esti			Online Resource and Stop Rewor

External Integrations: Chemicalize

External Integrations: Mollnstincts



TEMRTP | Chemical Real-Time Predictor for Extensive Chemical Properties

Property	Value	Unit	Accuracy
Absolute Entropy of Ideal Gas at 298.15K and 1bar	129.0611	cal/mol/K	¢
Acentric Factor	0.922278	dimensionless	O
Critical Compressibility Factor	0.271771	dimensionless	-
Critical Pressure	29.3031	bar	- O-
Critical Temperature	890.3134	К	- O-
Critical Volume	6.8654e-4	m3/mol	- O-
Enthalpy of Formation for Ideal Gas at 298.15K	-48.6730	kcal/mol	O
Liquid Molar Volume at 298.15K	2.0095e-4	m3/mol	¢.
Molecular Weight	228.2863	g/mol	-
Net Standard State Enthalpy of Combustion at 298.15K	-1786.142	kcal/mol	-
Normal Boiling Point	653.6313	К	¢.
Melting Point	446.0177	К	O
Refractive Index	1.6036	dimensionless	-@-
Standard State Absolute Entropy at 298.15K and 1bar	75.2883	cal/mol/K	·@·
Standard State Enthalpy of Formation at 298.15K and 1bar	-88.3085	kcal/mol	- \$ -
Magnetic Susceptibility	149.2036	ppm	- ()-

External Integrations: NMRDB.org

Developing "NCCT Models"

- Interest in physicochemical properties to include in exposure modeling, augmented with ToxCast HTS *in vitro* data etc.
- Our approach to modeling:
 - Obtain high quality training sets
 - Apply appropriate modeling approaches
 - Validate performance of models
 - Define the applicability domain and limitations of the models
 - Use models to predict properties across our full datasets
- Work has been initiated using available physicochemical data

PHYSPROP Data: Available from:

http://esc.syrres.com/interkow/EpiSuiteData.htm

EPI Suite Data

The downloaded files are provided in "zip" format ... the downloaded file must be "un-zipped" with common utility programs such as <u>WinZip</u>.

Basic Instructions:

(1) Download the zip file (2) Un-Zip the file

WSKOWWIN Program Methodology & Validation Documents (includes Training & Validation datasets) - Download file is: WSKOWWIN_Datasets.zip (180 KB)

Click here to download WSKOWWIN_Datasets.zip

WATERNT (Water Solubility Fragment) Program Methodology & Validation Documents (includes Training & Validation datasets) - Download file is: WaterFragmentDataFiles.zip (511 KB)

Click here to download WaterFragmentDataFiles.zip

MPBPWIN (Melting Pt, Boiling Pt, Vapor Pressure) Program Test Sets -Download file is: MP-BP-VP-TestSets.zip (1983 KB)

Click here to download MP-BP-VP-TestSets.zip

BCFBAF Excel spreadsheets of BCF and kM data used in training & validation ... (includes the Jon Arnot Source BCF DB with multiple BCF values) - Download file is: Data_for_BCFBAF.zip (1.4 MB)

Click here to download Data_for_BCFBAF.zip

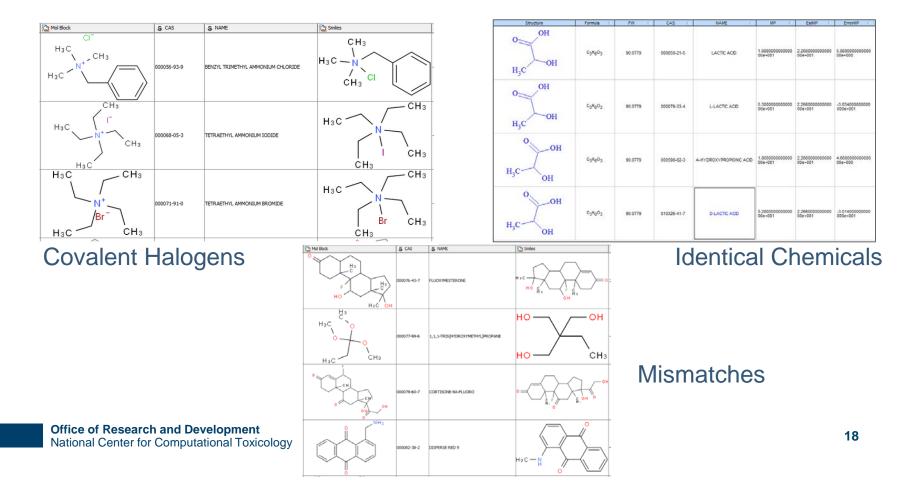
HENRYWIN Data files used in training & validation ... (includes Meylan and Howard (1991) Data document) - Download file is: HENRYWIN_Data_EPI.zip (531 K)

Click here to download HENRYWIN_Data_EPI.zip

Office of Research and Development National Center for Computational Toxicology

- Water solubility
- Melting Point
- Boiling Point
- LogP (Octanol-water partition coefficient)
- Atmospheric Hydroxylation Rate
- LogBCF (Bioconcentration Factor)
- Biodegradation Half-life
- Ready biodegradability
- Henry's Law Constant
- Fish Biotransformation Half-life
- LogKOA (Octanol/Air Partition Coefficient)
- LogKOC (Soil Adsorption Coefficient)
- Vapor Pressure

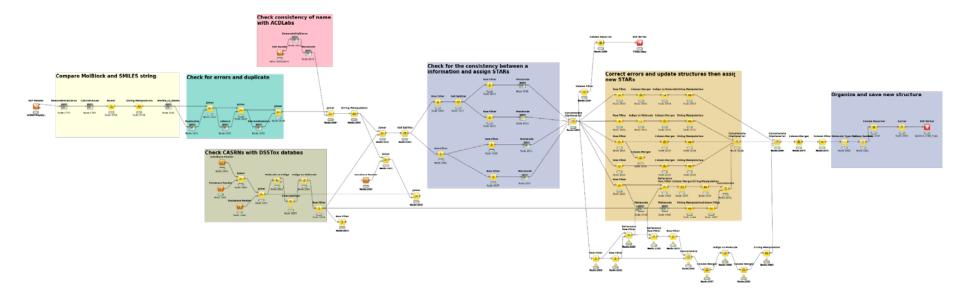
Check and Curate Public Data


- Public data should always be checked and curated prior to modeling. This dataset was no different.
- The data files have **FOUR** representations of a chemical, plus the property value.

SDF Molecule	Mol Mol Block	S Smiles	S CAS	S NAME	D Kow
-ISIS- 09141018452D 4 3 0 0 0 0 0 0 0 0 0999 V2000 2.4667 -0.0833 0.0000 0 0 0 2.4667 -0.9125 0.0000 C 0 0 1.7500 -1.3292 0.0000 H 0 0 3.1833 -1.3292 0.0000 H 0 0 2 1 2 0 0 0 0 3 2 1 0 0 0 0 4 2 1 0 0 0 0 M END > <cas> (000050-00-0) 000050-00-0 > <name> (000050-00-0) FORMALDEHYDE > <kow> (000050-00-0) 3.500000000000000e-001</kow></name></cas>	H H	O=C	000050-00-0	FORMALDEHYDE	0.35

Check and Curate Public Data

• Public data should always be checked and curated prior to modeling. This dataset was no different.



Our curation process

- Decide on the "chemical" by checking levels of consistency
- We did NOT validate each measured property value
- Perform initial analysis manually to understand how to clean the data (chemical structure and ID)
- Automate the process (and test iteratively)
- Process all datasets using final method

KNIME Workflow to Evaluate the Dataset

LogP dataset: 15,809 structures

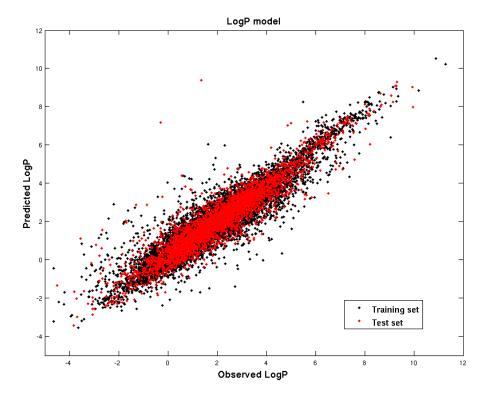
- CAS Checksum: 12163 valid, 3646 invalid (>23%)
- Invalid names: 555
- Invalid SMILES 133
- Valence errors: 322 Molfile, 3782 SMILES (>24%)
- Duplicates check:
 - -31 DUPLICATE MOLFILES
 - -626 DUPLICATE SMILES
 - -531 DUPLICATE NAMES
- SMILES vs. Molfiles (structure check)
 - -1279 differ in stereochemistry (~8%)
 - -362 "Covalent Halogens"
 - -191 differ as tautomers
 - -436 are different compounds (~3%)

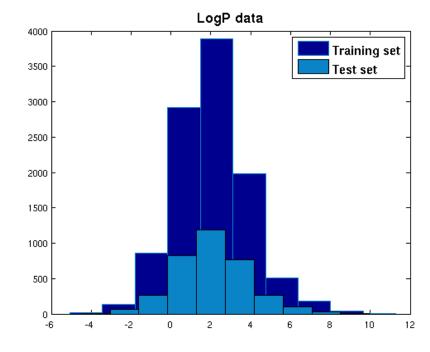
Environmental Protection

Agency

Curation to QSAR Ready Files

Property	Initial file	Curated Data	Curated QSAR ready
AOP	818	818	745
BCF	685	618	608
BioHC	175	151	150
Biowin	1265	1196	1171
BP	5890	5591	5436
HL	1829	1758	1711
KM	631	548	541
KOA	308	277	270
LogP	15809	14544	14041
MP	10051	9120	8656
PC	788	750	735
VP	3037	2840	2716
WF	5764	5076	4836
WS	2348	2046	2010




Following the 5 OECD Principles*

Principle	Description					
1) A defined endpoint	Any physicochemical, biological or environmental effect that can be measured and therefore modelled.					
2) An unambiguous algorithm	Ensure transparency in the description of the model algorithm.					
3) A defined domain of applicability	Define limitations in terms of the types of chemical structures , physicochemical properties and mechanisms of action for which the models can generate reliable predictions .					
4) Appropriate measures of goodness-of-fit, robustness and predictivity	 a) The internal fitting performance of a model b) the predictivity of a model, determined by using an appropriate external test set. 					
5) Mechanistic interpretation, if possible	Mechanistic associations between the descriptors used in a model and the endpoint being predicted .					

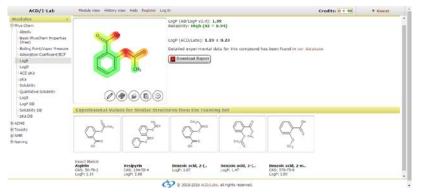
LogP Model: Weighted kNN Model, 9 descriptors

Weighted 5-nearest neighbors **9 Descriptors** Training set: 10531 chemicals Test set: 3510 chemicals

5 fold CV:Q2=0.85,RMSE=0.69Fitting:R2=0.86,RMSE=0.67Test:R2=0.86,RMSE=0.78

NCCT Models

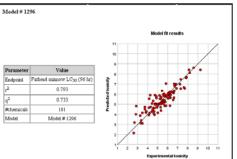
Agency What you would report in a paper


Prop	Vars	5-fold CV (75%)		Training (75%)			Test (25%)			
		Q2	RMSE	Ν	R2	RMSE	Ν	R2	RMSE	
BCF	10	0.84	0.55	465	0.85	0.53	161	0.83	0.64	
BP	13	0.93	22.46	4077	0.93	22.06	1358	0.93	22.08	
LogP	9	0.85	0.69	10531	0.86	0.67	3510	0.86	0.78	
MP	15	0.72	51.8	6486	0.74	50.27	2167	0.73	52.72	
VP	12	0.91	1.08	2034	0.91	1.08	679	0.92	1	
WS	11	0.87	0.81	3158	0.87	0.82	1066	0.86	0.86	
HL	9	0.84	1.96	441	0.84	1.91	150	0.85	1.82	

Office of Research and Development National Center for Computational Toxicology

Communicating Transparency in Models to Users of an App

- Too often predicted values just give "numbers"
- Users have no real understanding of model performance
- There are good examples though! ACD/IIab, T.E.S.T, OCHEM



ACD/ILab

OCHEM

Export results in a f	le (Excel, CSV or SDF)
Sorting none	Ascending
1 - 1 of 1	
molecule profile	logPow (ALogPS 3.0) = 1.1 Log unit ± 0.77 (ASNN-STDEV = 0.15, estimated RMSE = 0.39) (Achie) Aqueous Solubility (ALogPS 3.0) = 1.6 -log(mol/L) ± 1.41 (ASNN-STDEV = 0.16, estimated RMSE = 0.72) (Achie)

EPA T.E.S.T

Office of Research and Development National Center for Computational Toxicology

More on this later

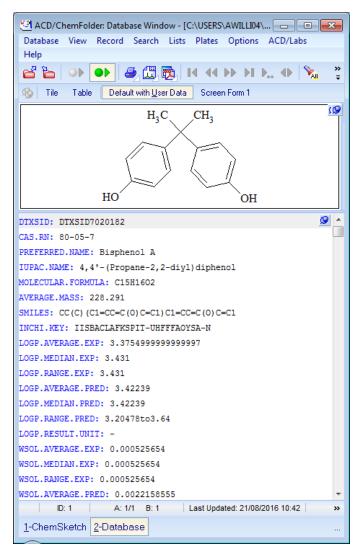
What about our Property Data?

Chemical Properties	External Links Synonym	s Product Composition	ToxCast in ∀itro Da	ta Exposure	Analytical	PubChem Con	nments		
Summary	Download a	S: CSV Excel SDF							
Octanol-Water Partitio Coefficient (LogP)			Average	Median	Range	Average	Median		
Water Solubility	Property		(Exp.)	(Exp.)	(Exp.)	(Pred.)	(Pred.)	Range (Pred.)	Result Unit
Melting Point	Octanol-Wate (LogP)	er Partition Coefficient	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-
Boiling Point	Water Solubi	lity	5.26e-04 (1)	5.26e-04	5.26e-04	2.22e-03 (2)	2.22e-03	7.56e-04 to 3.68e- 03	mol/L
Vapor Pressure	Melting Point	t	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C
Soil Adsorption Coeff	icient Boiling Point		200 (1)	200	200	349 (2)	349	334 to 364	°C
Octanol-Air Partition	Vapor Pressu	Vapor Pressure Soil Adsorption Coefficient		-	-	7.06e-08 (1)	7.06e-08	-	mmHg
Coefficent	Soil Adsorpti			-	-	2.92 (2)	2.92	2.74 to 3.10	-
Atmospheric Hydroxy	Vation Octanol-Air F	Octanol-Air Partition Coefficent Atmospheric Hydroxylation Rate		-	-	8.39 (1)	8.39	-	-
Rate	Atmospheric			-	-	-10.4 (1)	-10.4	-	-
Biodegradation Half I	Life Biodegradati	on Half Life	-	-	-	15.1 (1)	15.1	-	days
Bioaccumulation Fac	tor Bioaccumula	tion Factor	-	-	-	173 (1)	173	-	-
Bioconcentration Fac	Bioconcentra	tion Factor	1.64 (1)	1.64	1.64	82.0 (3)	82.0	1.38 to 173	-

Data Downloads

Summary	Download as: CSV	Excel SDF				
Octanol-Water Partition Coefficient (LogP)		Select/Deselect All Cotanol-Water Partition	Median			
Water Solubility	Property	Coefficient (LogP)	(Exp.)			
Melting Point	Octanol-Water Partition (LogP)	 Water Solubility Melting Point Boiling Point 	3.43			
Boiling Point	Water Solubility	 ✓ Vapor Pressure ✓ Soil Adsorption Coefficient 	5.26e-0			
Vapor Pressure	Melting Point	 Octanol-Air Partition Coefficent Atmospheric Hydroxylation Rate 	156			
Soil Adsorption Coefficient	Boiling Point	Biodegradation Half Life	200			
Octanol-Air Partition	Vapor Pressure	 Bioaccumulation Factor Bioconcentration Factor 	-			
Coefficent	Soil Adsorption Coeffic	Download	-			
Atmospheric Hydroxylation	Octanol-Air Partition Coefficent					
Rate	Atmospheric Hydroxylation Rate					

0.1


Data Download: Excel

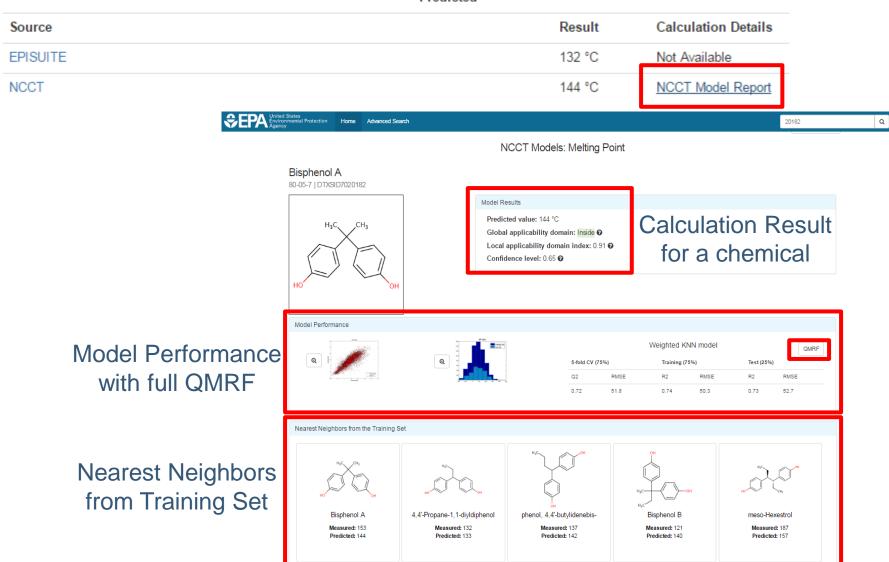
A1 \checkmark Jx Property								
	Α	В	С	D	Е	F	G	Н
1	Property	Average (Exp.)	Median (Exp.)	Range (Exp.)	Average (Pred.)	Median (Pred.)	Range (Pred.)	Result Unit
2	Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43	3.42 (2)	3.42	3.20 to 3.64	-
3	Water Solubility	5.26e-04 (1)	5.26E-04	5.26E-04	2.22e-03 (2)	2.22E-03	7.56e-04 to 3.68e-03	mol/L
4	Melting Point	155 (7)	156	153 to 158	138 (2)	138	132 to 144	°C
5	Boiling Point	200 (1)	200	200	349 (2)	349	334 to 364	°C
6	Vapor Pressure	-	-	-	7.06e-08 (1)	7.06E-08	-	mmHg
7	Soil Adsorption Coefficient	-	-	-	2.92 (2)	2.92	2.74 to 3.10	-
8	Octanol-Air Partition Coefficent	-	-	-	8.39 (1)	8.39	-	-
9	Atmospheric Hydroxylation Rate	-	-	-	-10.4 (1)	-10.4	-	-
10	Biodegradation Half Life	-	-	-	15.1 (1)	15.1	-	days
11	Bioaccumulation Factor	-	-	-	173 (1)	173	-	-
12	Bioconcentration Factor	1.64 (1)	1.64	1.64	82.0 (3)	82	1.38 to 173	-
13								
14								

- · V · f Danasta

Data Download: SDF

Access to Experimental Data

Property	Average (Exp.)	Median (Exp.)	Range (Exp.)					
Octanol-Water Partition Coefficient (LogP)	3.38 (2)	3.43	3.43					
Water Solubility	5.26e-04 (1)	5.26e-04	5.26e-04					
Melting Point	155 (7)	156	153 to 158					
Boiling Point					Melting Point			
Vapor Pressure	A-			Average	Medi	an	Range	
		Experimental		155 (7)	156		153 to 158	
		Predicted		138 (2)	138		132 to 144	
	Download as	CSV Excel	SDF					
		Experi				imental		
	Source	Source				Result		
	PhysPropNC	PhysPropNCCT Jean-Claude Bradley Open Melting Point Dataset Jean-Claude Bradley Open Melting Point Dataset				153 °C 153 °C 156 °C		
	Jean-Claude							
	Jean-Claude							
	TCI					156 °C		
	Merck Millipor	re				156 °C		
	Alfa Aesar					156 °C		


Predictions for >720,000 Chemicals

- NCCT_Model predictions were built on curated training sets
- All chemicals in DSSTox, accessed via the CompTox Dashboard, were pushed through all predictive models
- Predicted data made available, with detailed MODEL REPORTS

Predicted Data

Predicted

QMRF Reports

ipper The Poly and Consumer Production	(Q)SAR Model Reporting Format Inv	rentory	
			Log in Register
Home Search docum	Search structures		
All published QMRF d fields.	ocuments (109) are available for download and can be searched	l either through free text queries or	by several predefined
	able in the QMRF Database, can be searched by exact or similar s	structure.	
What is QMRF Databa	ise?		
Do you need to regist	ter to use the QMRF Database?		
Please register only i on QMRFs.	f you wish to submit a QMRF. Registration is not necessary if you	u only wish to search the database a	and access information
<u>Help</u>			
How to create an QM	RF Document?		
log in into QM	RF Database and use the New document tab;		
• by <u>OMRF edit</u>	tor : once started, it will create shortcut on your desktop and ca	n be started later even offline.	
Most recent QMRF do	cuments		
# <u>OMRF#</u> @ <u>Title</u>	<u>e</u> Θ	Last updated 🔍	View Download 🥹
1 <u>Q50-54-55-501</u> BIO	VIA toxicity prediction model – Ames Mutagenicity	2016-6-17 14:58	🔎 🖉 🚾 🦉
2 051-54-55-502 BIO	VIA toxicity prediction model - rat oral LD50	2016-6-17 14:58	🔎 🗴 📷 📆 🛋 📾 🔹 🔻

Prediction Details and QMRF Report

Model Results				
Predicted value: 144 °C Global applicability domain Local applicability domain i	details in Givirkr.			
Confidence level: 0.65 🕜	D QMRF_NCCT_MP_08212016 - Adobe Acrobat Pro		×	
	File Edit View Window Help	Customize 👻 📝		
		Fill & Sign Comme		
	QMRF identifier (JRC Inventory): To be entered by JRC QMRF identifier (MP: Melting point prediction from the NCCT Models Suite. Printing Date:May 4, 2016 1.QSAR identifier 1.QSAR identifier (title): MP: Melting point prediction from the NCCT_Models Suite. 1.Other related models No related models 1.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic chemicals			

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical characteristics of the structure of chemicals (known as molecular descriptors). Simple QSAR models calculate the toxicity of chemicals using a simple linear function of molecular descriptors:

Ask a Technical Expert

Got a question about our research model? Want to give us feedback? Contact a technical expert about <u>TEST</u>.

Physical properties in TEST

Endpoint	Definition		
Normal boiling pointTemperature (°C) at which a chemical boils at atmospheric pressure			
Density Density (g/cm ³) for chemicals which have boiling point greater than 25°C			
Flash point	The lowest temperature (°C) at which it can vaporize to form an ignitable mixture in air		
Thermal conductivity	The property of a material (mW/mK) reflecting its ability to conduct heat		

Physical properties in TEST, cont.

Endpoint	Definition			
Viscosity	A measure of the resistance of a fluid to flow (cP) defined as the proportionality constant between shear rate and shear stress			
Surface tension	A property of the surface of a liquid (dyn/cm) that allows it to resist an external force			
Water solubility	The amount of a chemical (mg/L) that will dissolve in liquid water to form a homogeneous solution			

Test set of predictions available...

- •A test set of predictions already performed
- This initial set of data already available
- •1,000 chemicals done, 720,000 to go...

	Octanol-Water Partition Coefficient (LogP)	Vapor Pressure	
	Water Solubility	Viscosity	
New Properties	Density	Soil Adsorption Coefficient	
from T.E.S.T	Flash Point	Octanol-Air Partition Coefficent	
	Melting Point	Atmospheric Hydroxylation Rate	
	Boiling Point	Biodegradation Half Life	
	Surface Tension	Bioaccumulation Factor	
Office of Research and Develo National Center for Computation	Liberation of Characteristics	Bioconcentration Factor	

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

Toxicity Estimation Software Tool (TEST)

On this page:

- <u>QSAR Methodologies</u>
- What's New in Version 4.2?
- Prior Version History
- System Requirements
- Installation Instructions
- <u>Publications</u>
- Get Email Alerts

From physicochemical property endpoints to toxicity endpoints

The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical characteristics of the structure of chemicals (known as molecular descriptors). Simple QSAR models calculate the toxicity of chemicals using a simple linear function of molecular descriptors:

Ask a Technical Expert

Got a question about our research model? Want to give us feedback? Contact a technical expert about <u>TEST</u>.

Toxicity Endpoints in TEST

Endpoint	Definition
96 hour fathead minnow LC ₅₀	Concentration in mg/L that causes 50% of fathead minnow to die after 96 hours
48 hour <i>Daphnia</i> <i>magna</i> LC ₅₀	Concentration in mg/L that causes 50% of <i>Daphnia magna</i> to die after 48 hours
48 hour <i>T. pyriformis</i> IGC ₅₀	Concentration in mg/L that causes 50% growth inhibition to <i>T. pyriformis</i> after 48 hours
Oral rat LD ₅₀	Amount of chemical in mg/kg body weight that causes 50% of rats to die after oral ingestion

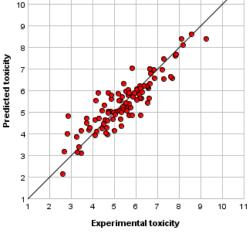
Endpoints in TEST, cont.

Endpoint	Definition
Bioaccumulation factor	Ratio of the chemical concentration in fish as a result of absorption via the respiratory surface to that in water at steady state
Developmental toxicity	Whether or not a chemical causes developmental toxicity effects to humans or animals
Ames mutagenicity	A compound is positive for mutagenicity if it induces revertant colony growth in any strain of Salmonella typhimurium

- Estate values and E-state counts
- Constitutional descriptors
- Topological descriptors
- Walk and path counts
- Connectivity
- Information content
- 2d autocorrelation
- Burden eigenvalue
- Molecular property (such as Kow)
- Kappa
- Hydrogen bond acceptor/donor counts
- Molecular distance edge
- Molecular fragment counts

Toxicity prediction results for 333-41-5 for Hierarchical clustering method

	Prediction results		
Endpoint	Experimental value CAS: 333-41-5 Source: <u>ECOTOX</u>		Prediction interval
Fathead minnow LC ₅₀ (96 hr) -Log(mol/L)	4.81	5.39	$4.54 \le Tox \le 6.24$
Fathead minnow LC ₅₀ (96 hr) mg/L	4.70	1.23	$0.17 \le Tox \le 8.71$


^aNote: the test chemical was present in the external test set.

Cluster model predictions and statistics								
Cluster	model	Test chemical descriptor values	Prediction interval -Log(mol/L)	r²	q²	#chemicals		Model # 1296
<u>1296</u>		Descriptors	6.010 ± 1.136	0.793	0.733	101		
<u>1300</u>		Descriptors	5.458 ± 1.312	0.729	0.645	111		
<u>1301</u>		Descriptors	5.136 ± 1.169	0.747	0.718	294		
<u>1302</u>		Descriptors	4.922 ± 1.182	0.774	0.751	641		

Cluster models with violated constraints						
Cluster Model	r ²	q ²	# chemicals	Message		
1121	0.810	0.576	10	Rmax constraint not met		
1209	0.799	0.574	11	Fragment constraint not met		
<u>1247</u>	0.919	0.647	20	Fragment constraint not met		
1264	0.869	0.781	22	Fragment constraint not met		
1268	0.675	0.553	24	Fragment constraint not met		

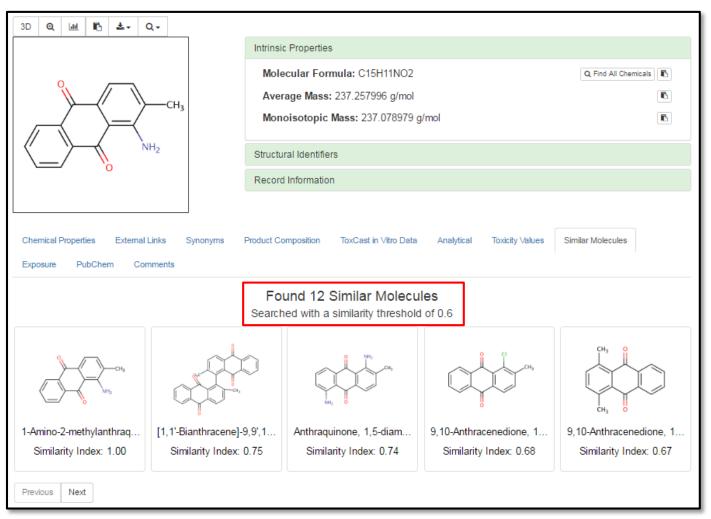
Descriptor values for test chemical

Parameter	Value				
Endpoint	Fathead minnow LC ₅₀ (96 hr)				
r ²	0.793				
q ²	0.733				
#chemicals	101				
Model	Model # 1296				

Model fit results

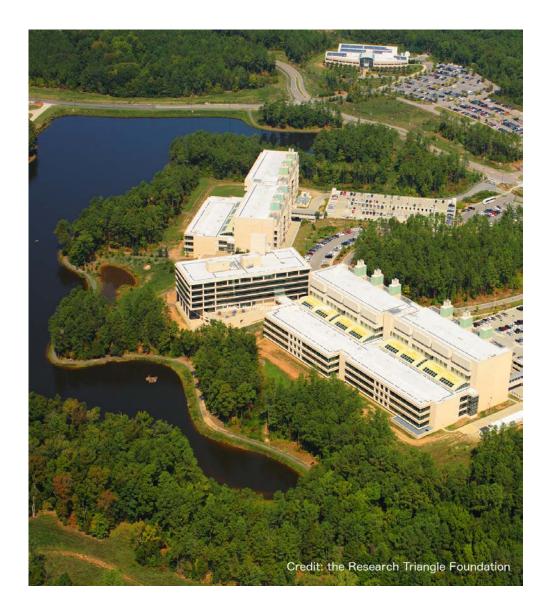
11

- Curation manuscript presently going through clearance – all data and models to be made available as Open Data
- "Real-time prediction" using NCCT_Models: single or list-based calculations (SDF/Excel)
- Access to data via API/web services
- Complete T.E.S.T. physchem predictions
- Integrate environmental fate and toxicity predictions



Work in Progress: Environmental Fate, Transport and Toxicity

Work in Progress: Analog Agency Identification and Similarity Search



- The CompTox dashboard is an entry point for curated physchem data and the resulting NCCT_Models (>720k chemicals)
- Inclusion of properties from other EPA prediction modules (i.e. T.E.S.T, is under way)
- Full performance statistics available for all models
- The dashboard will become a data dissemination hub for experimental and predicted data as well as direct access to various types of prediction models

Acknowledgements

EPA NCCT Imran Shah Chris Grulke Jeff Edwards Ann Richard Jordan Foster Jennifer Smith Richard Judson Grace Patlewicz John Wambaugh Michelle Krzyzanowski

EPA NRMRL Todd Martin