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Introduction

• Toxicokinetic (TK) models can determine whether chemical exposures 

produce potentially hazardous tissue concentrations

• Tissue microdosimetry TK models relate whole-body chemical exposures to 

cell-scale concentrations. 

• Successful methods have been developed for pharmaceutical compounds to 

determine high throughput TK (HTTK) from limited in vitro measurements and 

chemical structure-derived property predictions

• vLiverPBPK is an R package that contains data tables and tools for making 

predictions of tissue concentrations in various species; allows simulation of  

dose metrics from in vivo toxicity studies and determination of bioactive doses 

from in vitro hazard profiling assays data

• End goal is quantitative in vitro – in vivo extrapolation for chronic dose-

response
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Pharmacokinetics Matters

Differences in species and dosing regimen can create apparent 
differences in doses needed to produce adverse effects.

Wambaugh et al. Tox. Sci. (2013)
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Pharmacokinetics Matters

PK Modeling of tissue concentrations can reconcile these 
differences.

Wambaugh et al. Tox. Sci. (2013)
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High Throughput Physiologically-

based Toxicokinetic Models (HTPBPK)

• Out of 239 ToxCast chemicals examined by Wetmore et al. (2012), 

only 11 had some sort of human-relevant TK data or model

• HTTK predictions of steady-state behaviors were generated in 

Wetmore et al. (2012) using in vitro TK methods

• Can build generic, high throughput PBPK (HTPBPK) models 

parameterized with 

– the same in vitro HTTK data used for steady-state work, plus

–QSARs for tissue-specific properties

–Assumptions about unknown dynamic processes, such as 

absorption

• These HTPBPK models can provide a simulated in vivo context for 

tissue simulations
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RED Method: 

Waters et al. (2008)

 Data on ToxCast chemicals initially collected at Hamner 
Institutes 

 Published:
 Rotroff et al. (2010) - Pilot study using 38 Phase I ToxCast Chemicals

 Wetmore et al. (2012) - Remainder of easily analyzed Phase I chemicals

 Wetmore et al. (2013) Rat PK for 50 ToxCast/ToxRefDB compounds

Plasma Protein Binding

(Fraction Unbound in Plasma)
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Cryopreserved
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(1 and 10 µM)

Remove Aliquots 
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Chemistry

The rate of disappearance of 
parent compound (slope of 

line) is the hepatic clearance
(µL/min/106 hepatocytes)

We perform the assay at 1 
and 10 µM to check for 

saturation of metabolizing 
enzymes.
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Cryopreserved hepatocyte

Method: Shibata et al. (2002)

Intrinsic Hepatic Clearance

 Data on ToxCast chemicals 
initially collected at Hamner 
Institutes
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Physiologically-based 

Toxicokinetic (PBPK) Model

• Some tissues (e.g., arterial blood) are simple 
compartments, while others (e.g., kidney) are 
compound compartments consisting of separate 
blood and tissue sections.

• Some specific tissues (lung, kidney, gut, and liver) 
are modeled explicitly, others (e.g., fat, brain, bones) 
are lumped into the “Rest of Body” compartment.

• Chemical enters the body primarily through oral 
absorption, but we don’t know absorption rate and 
bioavailability (assume “fast”, i.e. 1/h and 100%)

• The only ways chemicals “leaves” the body are 
through metabolism (change into a metabolite) in the 
liver or excretion by glomerular filtration into the 
proximal tubules of the kidney (which filter into the 
lumen of the kidney). 

8
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Physiological Data

Units Mouse Rat Dog Human Rabbit

Total Body Water ml/kg 725.00 668.00 603.60 600.00 716

Plasma Volume ml/kg 50.00 31.20 51.50 42.86 44

Cardiac Output ml/min/kg 400.00 296.00 120.00 80.00 212

Average BW kg 0.02 0.25 10.00 70.00 2.5

Total Plasma Protein g/ml 0.06 0.07 0.09 0.07 0.057

Plasma albumin g/ml 0.03 0.03 0.03 0.04 0.0387

Plasma a-1-AGP g/ml 0.01 0.02 0.00 0.00 0.0013

Hematocrit fraction 0.45 0.46 0.42 0.44 0.36

Urine ml/min/kg 0.035 0.139 0.021 0.014 0.0417

Bile ml/min/kg 0.069 0.063 0.008 0.003 0.0833

GFR ml/min/kg 14.0 5.2 6.1 1.8 3.12

Volume (L/kg) Blood Flow (ml/min/kg)

Tissue Mouse Rat Dog Human Rabbit Mouse Rat Dog Human Rabbit

Adipose 0.07 0.07 0.05 0.21 0.05 10.80 1.60 3.50 3.71 12.80

Bone 0.05 0.04 0.04 0.07 0.04 23.31 36.11 1.30 3.36 36.11

Brain 0.02 0.01 0.01 0.02 0.01 13.20 5.20 4.50 10.00 5.20

Gut 0.04 0.03 0.04 0.02 0.05 72.50 39.20 23.00 16.43 44.40

Heart 0.00 0.00 0.01 0.00 0.00 14.00 15.60 5.40 3.43 6.40

Kidneys 0.02 0.01 0.01 0.00 0.01 65.00 36.80 21.60 17.71 32.00

Liver 0.05 0.03 0.03 0.02 0.04 90.00 47.20 30.90 20.71 70.80

Lung 0.01 0.00 0.01 0.01 0.01 2.00 6.22 10.56 2.00 6.22

Muscle 0.37 0.39 0.44 0.38 0.54 45.50 30.00 25.00 10.71 62.00

Skin 0.15 0.17 0.17 0.03 0.04 20.50 23.20 10.00 4.29 23.20

Spleen 0.00 0.00 0.00 0.00 0.00 5.50 4.07 1.65 1.10 3.60

Rest 0.03 0.05 0.00 0.05 0.03 110.19 90.00 5.59 2.97 90.00

Volumes and flows 

from Schmitt (2008) 

+ Rabbit (Sipes)

Other parameters 

from Davies and 

Morris (1993) + 

Rabbit (Sipes)
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Predicted Partition Coefficients

Partitioning figure is from Peyret (2010), which described a new method that is being 
implemented for vLiverPBPK by Cory Strope

Tissue-specific 
partitioning estimated 
(Schmitt 2008) using:

• Physicochemical 
properties (logP, 
pKa) predicted from 
structure (EpiSuite, 
QikProp)

• Measured free 
fraction in plasma



Office of Research and Development11 of 23 

Schmitt (2008) Tissue Composition 

Data
Fraction of total volumea Fraction of cell volumeb Fraction of total lipid

Tissue Cells Interstitium Water Lipid Protein
Neutral 

Lipidc

Neutral 

Phospholipidc

Acidic 

Phospholipidc pHd

Adipose 0.86 0.14 0.03 0.92 0.06 1 0.0022 0.0006 7.10

Bone 0.9 0.1 0.26 0.02 0.21 0.85 0.11 0.04 7.00

Brain 1 0.004 0.79 0.11 0.08 0.39 0.48 0.13 7.10

Gut 0.9 0.096 0.78 0.07 0.15 0.69 0.26 0.05 7.00

Heart 0.86 0.14 0.7 0.11 0.19 0.48 0.43 0.09 7.10

Kidneys 0.78 0.22 0.73 0.06 0.21 0.26 0.61 0.13 7.22

Liver 0.82 0.18 0.68 0.08 0.21 0.29 0.59 0.11 7.23

Lung 0.5 0.5 0.74 0.04 0.11 0.51 0.38 0.11 6.60

Muscle 0.88 0.12 0.76 0.01 0.19 0.49 0.42 0.09 6.81

Skin 0.69 0.31 0.47 0.14 0.41 0.9 0.08 0.02 7.00

Spleen 0.79 0.21 0.75 0.02 0.23 0.3 0.54 0.15 7.00

Red blood 

cells 1– 0.63 0.01 0.33 0.3 0.59 0.1 7.20

a Values taken from (Kawai et al., 1994). Original values given as fraction of total organ volume were rescaled to tissue 
volume by subtracting vascular volume

b Values taken from (ICRP, 1975). Original values given as fraction of total tissue mass were rescaled to cellular volume 
as follows: Water fraction of total tissue reduced by interstitial volume and subsequently all values normalized by 
cellular fraction.

c Data taken from (Rodgers et al., 2005a).
d Values taken from ([Waddell and Bates, 1969], [Malan et al., 1985], [Wood and Schaefer, 1978], [Schanker and Less, 

1977], [Harrison and Walker, 1979] and [Civelek et al., 1996]). Mean values were calculated when more than one 
value was found for the same tissue.

e Data taken from (Gomez et al., 2002).
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Predicted PK Metrics

• Human hepatic 

concentration of 

various chemicals as 

a function of 28 daily 

doses (10 mg/kg/day) 

• Can predict mean 

and peak 

concentration and 

time integrated area 

under the curve 

(AUC) for various 

tissues
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In vivo Predictive Ability and 

Domain of  Applicability

• In drug development, HTTK methods estimate therapeutic doses for 

clinical studies – predicted concentrations are typically on the order of 

values measured in clinical trials (Wang, 2010)

• For environmental compounds, there will be no clinical trials their 

uncertainty must be well characterized ideally with rigorous statistical 

methodology

 We will use direct comparison to in vivo data in order to get an 

empirical estimate of our uncertainty

 Any approximations, omissions, or mistakes should work to 

increase the estimated uncertainty when evaluated 

systematically across chemicals
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Evaluating HTPBPK Predictions 

from In Vitro Data

 HTPBPK predictions for the 
AUC (time integrated plasma 
concentration or Area Under 
the Curve)

 in vivo measurements from 
the literature for various 
treatments (dose and route) 
of rat. 

 Predictions are generally 
conservative – i.e., predicted 
AUC higher than measured

 Oral dose AUC ~3.6x higher 
than intravenous dose AUC  
(p-Value 0.021)

14



Office of Research and Development15 of 23 

Evaluating HTPBPK Predictions 

from In Vitro Data

• Cmax predictions relatively 
decent (R2 ~ 0.69)

15
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Predicting When RTK Will Work

• We can use computer algorithms to analyze chemical descriptors to 

try to predict when the residual will be small

• Factors included are:

–Physico-chemical properties

• Log(Kow), molecular weight, acid/base association constants (pKa), general 

pharmaceutical or perfluorinated compound classification

– In vitro HTTK data

• Plasma protein binding (Fub) and hepatic clearance

–Active chemical transport

• Use quantitative structure activity relationships (QSARs) to 

predict likelihood each compound is a substrate for 17 different  

transporters (From Alexander Sedykh and Alex Tropsha (UNC) 

and Sieto Bosgra (TNO))
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Recursive Partitioning Tree for

(Log) Residuals

 If the predicted Css underestimates the literature value, 
the necessary exposure predicted with RTK will be higher

Predicted from in vitro
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A Virtual Tissues Proof of Concept

We have approximated the micro-anatomic architecture of 

the hepatic lobule with a discrete topology by a graphical 

model that can be connected to a chemical-specific 

physiologically-based TK (PBPK) model 

Tissue microdosimetry model (Wambaugh and Shah, 

2010) bridges PBPK models and cell-level doses

Allows simulation of cell-based pathway (e.g., Jack et al., 

2011) in a local, chemical environment
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In vitro Dose-Response Curves
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Figure adapted from Luke et al., (2010) 

Dose Response 8, 347-367.
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The dose-response curve 

is central because many 

of these chemicals are 

useful and we know that, 

generally, a sufficient 

concentration will cause 

some toxic effect

We assume individual cells 

respond discretely and 

stochastically as 

independent agents
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Chemical Specific Predictions from 

in vitro Activity 
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In vitro Data Gives the Order of 

Perturbations
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Other applications: Virtual Tissues

2 Hours After Oral Exposure to 100 mg/kg Abamectin
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High-throughput PBPK and 

Microdosimetry

• Using in vitro TK methods developed for pharmaceuticals, we can 

parameterize HTPBPK models

• We can model the difference between in vivo measurements and HTTK 

predictions (i.e., the residuals or errors)

• We can connect HTPBPK models to tissue simulations to provide simulated 

in vivo context for assessing the impact of chemical perturbations identified by 

high throughput screening assays
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