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Introduction: ToxCast + ExpoCast

High Throughput Pharmacokinetics (HTPK) PK Triage for Environmental Chemicals

Conclusion
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Pharmacokinetic (PK) models are critical to determine whether chemical exposures produce potentially hazardous tissue concentrations. For

bioactivity identified in vitro (e.g. ToxCast) – hazardous or not – PK models can forecast exposure thresholds, below which no significant

bioactivity is expected. Successful methods have been developed for pharmaceutical compounds to determine PK from limited in vitro

measurements and chemical structure-derived property predictions. These high throughput (HT) PK methods provide a more rapid and less

resource–intensive alternative to traditional PK model development. Unfortunately, predictions from HTPK approaches have demonstrated

mixed success for environmental chemicals when compared to predictions made by PK models developed with extensive in vivo data. Here we

tested assumptions of previous HTPK approaches using a simple physiologically-based PK (PBPK) model and in vitro data for 232 chemicals

in human and 39 chemicals in rat. We then analyzed the discrepancy between the predictions of HTPK and in vivo literature PK data for 44,

mostly pharmaceutical, chemicals, using the method of best subsets to identify those properties that correlate with poor predictive ability (e.g.,

in vitro HTPK data, physico-chemical descriptors, chemical structure, and predicted transporter affinities). We propose a framework for PK

triage in stages: First, in vitro measurements and in silico predictions determine whether the simplest HTPK approaches are likely to be

sufficient. Then, identify and collect any additional, targeted in vitro data that is needed. Finally, identify those chemicals most likely to require

traditional, in vivo PK methods. This methodology allows prioritization of PK resources and characterizes the confidence in HTPK model

predictions for potentially thousands of environmental chemicals that currently have no PK data. This abstract does not necessarily reflect EPA

policy.
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• To date we have been using a steady-state

calculation assuming an infusion dose. In part, this is

because we do not have an estimate of chemical

partitioning to allow us estimate a volume of

distribution.

• We have developed a general PBPK model (at right)

that can be parameterized using in vitro hepatocyte

clearance and plasma binding data, physico-chemical

properties (hydrophobicity, dis/association constants

from experiment or QSAR) and Schmitt’s method for

tissue partitioning7

• Perfusion-limited (free concentration in tissue equals

free concentration in plasma)

• In the figure at the left we find that the previously 

used infusion model tends to over-predict Css, 

especially for rapidly metabolized compounds 

• Eventually we would also like to know absorption rate

and bioavailability to further improve these PBPK

models.

• We have a small amount of in vivo PK data on Css from various sources, including a

few environmental chemicals10 and a large number of pharmaceuticals6.

• This data serves as our “ground truth” for evaluation. Drawing from the literature we

can compare how well the infusion model does for predicting actual human Css.

• In the figure at the right we can see that predictive ability is limited (R2 ~0.23)

• Using the Random Forests method1 we can build a statistical model for the residuals

(the difference between the observation and the prediction):

•

• The current residual model (inset) has an R2 of ~0.56

• We can use this predicted error for chemical-specific estimate the accuracy

of HTPK.

• Note that although we are calculating “steady-state values,” we do not include any

metabolic induction and so these results (literature and predicted) are chronic

extrapolations from acute conditions.

• In the Wetmore et al. papers10,11 the rapid equilibrium dialysis (RED) assay 

for measuring protein binding fails in some cases because the amount of 

free chemical is below the limit of detection. For those chemicals a default 

value of 0.5% free was used. 

• In the figure at the right we have replaced the default value with random 

draws from a uniform distribution from 0 to 1%. • There are thousands of chemicals in our

environment to which we are regularly

exposed

• Relatively inexpensive in vitro assays

(e.g. ToxCast4) provide tools for

comparing chemicals with minimal

information to known toxicants

• Additional in vitro measurements of PK

determinants have allowed ToxCast

(Bio)Activities to be translated into

human10 and rat11 oral equivalent doses

(each black circle in the figure at the

right corresponds to the dose needed to

cause 50% activity in an in vitro assay – if

the assay was not well-described by a Hill

function, i.e., systematic concentration-

response, no circle is plotted).
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• The ratio of oral equivalent dose for activity to predicted exposures (activity:exposure ratio, AER) allows prioritization of targeted testing

resources

• High throughput exposure predictions from ExpoCast9 project are made with a 95% confidence interval (red or blue vertical bar in figure

above), the upper extent of which is often below any bioactivity (AER >> 1). Red indicates chemicals with some near-field (e.g. indoor,

consumer use) sources of exposure while blue indicates chemicals with far field sources only.

• Although we have characterized the uncertainty in exposure predictions, there is a great need for characterizing the uncertainty of in vitro

predictions of pharmacokinetics (HTPK)
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• Relatively high throughput in vitro PK data allows prediction of the

constant infusion dose (mg/kg BW/day) needed to produce steady-

state serum concentrations (Css, in units of mg/L) equivalent to the

activation concentrations observed in vitro10,11

• From literature2,5,8,10,11 we have sufficient data to predict human Css for

308 chemicals, Including:

• 36 pharmaceuticals,

• 257 ToxCast chemicals

• 278 Tox21 chemicals

• 30 NHANES chemicals

• In Wetmore et al. (2012) SimCYP3 was used to predict Css using HTPK

data. We reproduce these results using the vLiverPBPK package

developed by EPA/NCCT for R.
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Impact of Highly Plasma Bound Chemicals

•Non-detects in the in vitro protein binding assay (i.e. highly bound chemicals) may result in an artifactual underestimation of

Css values, which in turn may overestimate the Activity:Exposure Ratio.

• As shown here, Monte Carlo approaches for PK uncertainty and variability must be able to handle censored (limit of

detection) measurements

• Poor correlation between infusion dosing and PBPK models – generally infusion Css overestimates exposure, so this is a

conservative assumption

• Poor correlation between Css from in vitro data and in vivo studies, BUT we can model the residuals using physico-chemical

properties, and in vitro data

• Chemicals with low predicted residuals are within the domain of applicability of HTPK approaches

• Can add the predictions of transporter QSARS

• Need more environmental chemicals for statistical evaluation

The Infusion Dose Assumption

Random Forest Model for Errors

This poster dose not necessarily reflect EPA policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

PK Data PK Prediction Confidence Domain of Applicability Targeted Chemicals

In vitro clearance of parent 
compound by hepatocytes 
and binding to plasma 
protein

Steady-State serum 
concentrations from 
Constant Infusion Exposure 
(empirical PK model)

If comparison with predicted 
exposure indicates large 
activity:exposure ratio  (AER)
then infusion Css should be 
sufficient (i.e conservative 
due to rapid metabolism)

Soluble non- or semi-volatile 
compounds, highly plasma 
protein bound chemicals are 
challenging

All chemicals amenable to in vitro assay, use QSAR for rest

Physico-chemical properties 
in conjunction with in vitro
binding data allows 
prediction of partition 
coefficients

Steady-State from repeated 
dosing (generic PBPK model) 
& volume of distribution 
from sum of tissues

If comparison with predicted 
exposure indicates large AER 
then HTPBPK should be 
sufficient (i.e. conservative 
due to 100% absorption)

All chemicals with successful binding in vitro assay, use QSAR for 
rest

In vivo oral and iv dose PK 
study, serum only

Oral bioavailability, 
absorption rate, volume of 
distribution, and clearance 
(refined PBPK model)

If volume of distribution from 
HTPBPK model and in vitro 
estimate of clearance hold, 
then  refined PBPK model 
should be excellent

Diverse members of descriptor space to sufficient to evaluate  
predictions from in vitro methodology, use QSAR for rest

QSARs for likely transporter 
substrates

Assumptions of perfusion-limited tissue partitioning and 
passive renal excretion by glomerular filtration may be 
questionable for chemicals that are actively transported–
steady-state serum predictions only.

QSAR-defined (e.g. training 
set,  extrapolation 
methodology)

All chemicals with known structures

Identification of atypical 
chemical structure

All assumptions must be questioned All chemicals with known structures

CYP-specific in vitro data Population variability, life-
stage variability

Variation in CYP expression 
are well characterized, so 
predictions should be better, 
but low metabolizers will 
have higher tissue 
concentrations 

Soluble non- or semi-volatile 
compounds

Chemicals with AER near one for general population

Transporter-specific in vitro 
data

Tissue-specific accumulation, 
active secretion/resorption in 
kidney

Soluble non- or semi-volatile 
compounds

Chemicals indicated by QSAR


