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ABSTRACT INTRODUCTION

ESTIMATING EXPOSURE FROM URINE SAMPLES RELAXING THE STEADY STATE ASSUMPTION

The National Health and Nutrition Examination
Survey (NHANES) is a repeating survey of
health-related characteristics of the US

 NHANES urinary concentration data are
measured per urine volume and per mg
creatinine. Before 2009, the relevant

Biomonitoring studies such as the National Health and Nutrition Examination
Survey (NHANES) are valuable to exposure assessment both as sources of
data to evaluate exposure models and as training sets to develop heuristics

Estimating Population Geometric Mean Metabolite Urine Metabolite Excretion Rates
A subsample of just under 2000 NHANES participants contributed urine samples for rate: 0.2 rate: 3

chemical evaluation. Urine samples were analyzed for a range of metabolites of exposures The population exposure inferences were made
assuming a constant steady-infusion dose. What if we 10.04

A Model for Estimating Population (Geometric) Mean Parent Chemical
Exposure from Urinary Measurements of Metabolites
Assume exposures to parent chemicals are homogeneous over time for any given

for rapid-exposure-assessment tools. However, linking individual population. The sampling is based on a design volume of urine was not reported. We use individual: as in a steady-state infusion dosing scheme. Then, urinary output is at of Co_tf;cergsi as well as Ifor Crea_]f_'”'lf_‘e_fo?ce”trﬁ'_oni_ ReSU“'”t% meat'?»urefments atre tﬁeporfr_ed relax that to a simpler, more plausible exposure model, E
measurements of urine concentrations of a metabolite back to an individual's targeted at getting estimates that validly the 2009-2010 data to develop a model for  steady state as well. %Se?a'b;&eet’oo‘é"oi s:::r‘;ﬁéipc‘ffcér'ga'{;}'inz (Iqu:?r?el 'azaaiggig::so rtee dr?"';eo azoencgenn;ae:ro” ° still with constant long-term exposure rate, but with some o8
. o . . . . . . . . . y y y . . . . = 7]
exposure rate is geperally difficult, becaus_e. urine concentrations need to be represent the whole population. daily creatinine excretion rates that Urinary metabolites may originate from the metabolism of multiple parent weight, and ethnicity-specific creatinine excretion rates (see panel to the lower left) were variability in exposure from time to time, and no 1.0- - 8
cor};{elrted to e)t(F:retlon raTeS; parent ::hberIT?tlcal exposurzs_ are,mf_erreg Igom Our goal is to use the biomonitoring data from dtehpe_n_? ?n age, weight, gender, and Zompofind?-ogg/r e’gamplt?a S that all ool ot used to convert measurements to a daily excretion rate of the measured metabolites. zicr’:lj:llaa’:ilgr? ;ggra:sllslgslvaohzzzs’ggrl:getlcs’? This %3‘
muitiple, sometimes overiapping metabolites measured in urine; and the NHANES to develop estimates of exposures to ethnicity/race. \SsUming o LSOIPLION, and 8% SXPASLIE mo'ecu’es are accounted tor Data were taken directly from the publicly available CDC datafiles i iz £ 0 -
same observation may be due to a less-recent, large exposure or a more- - : - - (important assumptions), concentration of urinary metabolite j, Uj is e o * Does the geomelric mean estimated under the < 3
TG TES ’ _ environmental chemicals, for use in evaluating * Models to extrapolate back to exposure (http://www.cdc.gov/nchs/nhanes.htm ). Utilities in the survey package (Lumley, 2004, stochastic exposure scenario match the real e o
recent, smaller exposure. While !nd|V|duaI measures are problematic, we models that predict exposure. rates need to make some simplifying U 2012) were used to get maximum pseudo-likelihood estimates of population geometric geometric mean dose? g &
demonstrate approaches to solutions for the above problems for population _ assumptions. particularly that exposure is i = Z%‘ j means and population coefficients of variation (CV), using censored likelihoods to account . What does the variance among single urine samples 10,0 g : ) )
trib it : = Both serum and urine are evaluated for ptions, p y P = imi i : - :
distributions of exposure. We calibrate models for gender-, ethnicity-, age-, : _ atsd analogous to a constant infusion. The for below-limit-of-detection observations. look like, and how does that compare to that B ,
and bodyweight-dependent predictors of creatinine production rate for the US exogenous chemicals in select individuals. reality is more complex - even in the Here, ¢ is the proportion of absorbed molecules of chemical that are excreted and _ _ f observed in the NHANES data? . o E | S e
population, based on the 2009-2010 NHANES sample. We use Bayesian Here, we dIS(}USS issues surrounding absence of pharmacokinetic and exposure detected as metabolite j. When all of a parent compound i is metabolized to a single Bavesian methods were Ejgdeza;stlizrital’:g?;st?stﬁt))(&?osnué?eF)iatc?sSure ates that are S e
methods to infer parental exposure given measurements on metabolites, evaluating urine samples. variability, the mechanics of how metabolite /, or is excreted unmetabolized, then ¢, = 1 for that particular parent- cor):sistent with the observed estimates of population eometrigmean metabolite ‘ | 2 ‘ 2‘
llowing for the fact that multiol t Itin th tabolit Thi : h Vi Y, metabolite pair, and ¢, =0 for all other metabolites k. More generally, if all exposure ) . . bop 9 o . ) Approach to the Simulation 0.1- CV among Dally Exposures
allowing tor the T1act that multiple parents may result in the same metabolite. is poster discusses our approach to solving exposures occur generate variability in molecules are accounted for. then concentrations and their uncertainty and the unknown quantitative relationships between . Simulat t ing at rand | ‘ ’ ‘ e e (R
We show results of simulations with stochastic exposure scenarios that three problems: urinary measures. How well can we B parent exposure and metabolite excretion. The Hamiltonian Monte Carlo sampler, stan mutate ;-?xlposm_{[re e;{en S asloccut:rlng @ Ire}[p om ; 0 2 ) " L Ve %5
demonstrate that Simp|e models assuming Steady_state exposure give e . ) . . Z¢ =M. (Stan development team, 2013), was used to draw samples for probability distributions (exponential waiting times), given by simulation , Days
) ) ; . . * Mostly it is metabolites of chemicals of estimate population mean exposures =i characterizing the uncertainty of the exposure rates parameter rate. Examples of 30 days of simulated exposures. All four
approximately the correct population medl.an, but that the population variance interest that are measured in urine, but we under the steady-state exposure _ _ _ _ _ ' + The exposure amount is assumed to be lognormally examples have the same daily dose rate, but vary in As the frequency of exposure events
of exposure depends on the exposure variance, the frequency of exposure want to track those measurements back to assumption? where M; is the number of metabolite molecules parent / generates. For instance, if Summary. Caveats. and Future Work distributed with specified CV (given by simulation the daily rate of exposure events (rate) and CV for increases, urine measurements look
events, and aspects of pharmacokinetics, and is thus is more problematic. exposure to the parent chemicals, where the a parent molecule is split into two new molecules, both of which appear in urine, While estimates of exposure to i dividuals from samples collected at a single time point parameter CV). For a given exposure event rate, the exposure amount). less variable, because the time-to-time
: : : ’ then Mis 2. . : . . . i istribution i ; variability is smoothed out.
However, the population variance can be bounded, and even uncertain relationship between metabolite and parent are problematic, it is possible to estimate population mean exposures from such sampling rrlledlar;_ofctjt]e exr:osure dlstrlbuc’;lon IS c;omputedbto ‘ y
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