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* We used urine and serum biomarker data from NHANES . ' I
In the ExpoCast project, high throughput (HT) » A database was developed and curated for: T Figure 3: The oral dose equivalent (ODE) of 13 chemicals calculated from the Serum chemicals present a Cha”enge for current hlgh throughput
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numbers of chemicals for exposure potential. ii. PK parameters fo_r the N_HANES enwronmen’FaI chemical from literature sources. T (Figure 1) and the daily clegrance (Cliggg in L/dgy; Tables 1,2) predictions, the state assumpt|0n used for urinary chemlcals, are not valid.
Evaluation of these models requires empirical  For 13 NHANES chemicals with serum concentrations 1 1 NHANES reported geometric mean concentration (i; mg/kg),
exposure data and due to the paucity of human i.  Uncertainties were computed for oral equivalent doses in ug/kg/day F - T 1
metabolism/exposure data such evaluations include ii. Steady state concentrations were calculated from oral equivalent doses and available PK data 2. log(ODE) — log( l&) + log( CLtotal)° k
large uncertainty. Wambaugh et al. (2013; ES&T) g ] F u t u re WO r
used CDC National Health and Nutrition = T T The uncertainties associated with the ODE are determined by the standard
Examination Survey (NHANES) as a data source Table 1: PK parameters and g error of the NHANES data along with the coefficient of variation of the error of
for urinary biomarkers of human chemical exposure _ parameters for a selection of 2 the predictions of whole-animal clearance from in vitro estimates. Due to * Expand model by identification and use of available PK parameters for serum
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exposures. The PK model was parameterized with tho-Phenylphenol 31 0041 0019 829 for the NHANES serum Dieldri 39 0009  0.008 381.90 "
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Comp!led from literature sources. This expanded the Dimethoate 0.8 0.965 0.510 1.464 Perfluorooctane sulfonamide 4.8 0.002 0.003 155.03 Chemical
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00 iomarker  concentrations  to include N . 19 P I (Figure 1) and assuming a dosing regimen of 1 mg/kg
environmentally persistent chemicals such as zinphos methy — : ' 00 BWi/day 3 times daily, we inspected the steady state 3 Chemical
perfluorinated and  polychlorinated  biphenyl Biomonitoring C, concentration profile for each of the 13 serum 2 Partitioning into
chemicals. Exposures were inferred probabilistically, data (NHANES) P chemicals and a number of urinary chemicals from £ MB“{"'F’Q‘C%' "HWHP
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the parent chemical exposure inferences. The Figure 1. One compartment PK model, parameterized by above tables. The NHANES biomonitoring data, assumed to be the concentration of o Incorporate serum chemicals to_expand the chemical space available to evaluate high
incorporation of a more diverse set of metabolites chemical at steady state (C,) and the elimination rate (k. = Cl,,,/Vd,,) are used to infer the Oral Dose Equivalent (Figure 3). Adding the tissue I Figure 5: Plot of the average concentration (Figure 6 | | throughput exposure models using the ExpoCast framework (Wambaugh et al., 2013).
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