
U.S. Environmental Protection Agency

Office of Research and Development

High Throughput Exposure Estimation Using NHANES Data
Cory Strope1, Barbara Wetmore3, Robert Pearce1, R. Woodrow Setzer1, James Rabinowitz1, Kathie Dionisio2, John Wambaugh1

1National Center for Computational Toxicology, 2National Exposure Research Laboratory, 3The Hamner Institutes for Health Sciences

Abstract Results

Future Work

Cory L Strope l strope.cory@epa.gov l 919-541-5493 

In the ExpoCast project, high throughput (HT)
exposure models enable rapid screening of large
numbers of chemicals for exposure potential.
Evaluation of these models requires empirical
exposure data and due to the paucity of human
metabolism/exposure data such evaluations include
large uncertainty. Wambaugh et al. (2013; ES&T)
used CDC National Health and Nutrition
Examination Survey (NHANES) as a data source
for urinary biomarkers of human chemical exposure
and developed an exposure prediction model that
had large uncertainties. To reduce the
uncertainties, we developed a one-compartment
pharmacokinetic (PK) model for relating both serum
and urine biomarkers to probable chemical
exposures. The PK model was parameterized with
metabolic clearance and volume of distribution data
compiled from literature sources. This expanded the
chemical space explored beyond the urine
evaluation chemicals by incorporating serum and
blood biomarker concentrations to include
environmentally persistent chemicals such as
perfluorinated and polychlorinated biphenyl
chemicals. Exposures were inferred probabilistically,
using Markov Chain Monte Carlo (MCMC) to
estimate the distribution of parent chemical
exposures consistent with the biomarker data. By
incorporating up to 50 additional metabolites from
the NHANES data, we reduced the uncertainty in
the parent chemical exposure inferences. The
incorporation of a more diverse set of metabolites
and corresponding reduction in uncertainty in
ExpoCast predictions will play a key role in the
confident application of exposure models in
prioritization and risk assessment contexts. This

abstract does not necessarily reflect EPA policy.

Figure 3: The oral dose equivalent (ODE) of 13 chemicals calculated from the 
geometric mean of the serum concentration reported for the total population in 
the NHANES survey. We calculated this analytically using the PK model 
(Figure 1) and the daily clearance (Cltotal in L/day; Tables 1,2) predictions, the 
NHANES reported geometric mean concentration (   ; mg/kg), 

Figure 2: A visualization of the 
NHANES parent (red) to 
metabolite (blue) mappings for 
urinary chemicals. Green lines 
represent the metabolism 
pathway from parent to product 
chemicals. Compounds colored 
in purple are assumed to be 
both the parent and metabolite 
compound. The diameter of the 
circle is scaled to represent the 
molecular weight of the 
chemical compound it 
represents.

Urinary compounds for which 
we have PK data in Table 1 are 
circled.
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• Incorporate serum chemicals to expand the chemical space available to evaluate high-
throughput exposure models using the ExpoCast framework (Wambaugh et al., 2013).

Urinary Compound logP fup Cltotal

(L/h)

Vdss

Bisphenol A 3.3 0.257 0.197 23.22

Carbaryl 2.4 0.692 0.970 26.11

Acetochlor 3.0 0.135 0.824 27.92

Acephate -3.3 0.868 0.094 0.498

Foramsulfuron -0.8 0.065 0.007 0.116

ortho-Phenylphenol 3.1 0.041 0.019 8.29

Oxasulfuron 1.1 0.061 0.038 0.237

Dimethoate 0.8 0.965 0.510 1.464

N,N-Diethyl-3-methylbenzamide 2.2 0.356 0.232 8.98

Methidathion 2.2 0.268 0.185 7.11

Azinphos methyl 2.8 0.214 0.629 19.66

Methods

Serum Compound logP fu
p

Cltotal

(L/h)

Vdss

Mirex 7.6 0.015 0.002 18982

Aldrin 4.7 0.013 0.001 6868.6

Perfluorodecanoic acid 6.5 0.005 <0.001 1145.1

Perfluoroheptanoic acid 4.4 0.002 <0.001 3.84

Perfluorononanoic acid 5.8 0.001 <0.001 48.64

Dieldrin 3.9 0.009 0.008 381.90

Endrin 3.9 0.006 <0.001 165.12

Perfluorooctane sulfonamide 4.8 0.002 0.003 155.03

Perfluorooctane sulfonic acid 6.2 0.005 <0.001 85.17

Perfluorooctanoic acid 6.3 0.005 0.002 5.86
Expansion of Chemical Space: Using a PK model
(Figure 1) and assuming a dosing regimen of 1 mg/kg
BW/day 3 times daily, we inspected the steady state
concentration profile for each of the 13 serum
chemicals and a number of urinary chemicals from
the ToxCast project for which we had PK data.

• Expand model by identification and use of available PK  parameters for serum 
chemicals e.g., PCBs, PBDEs. 

• Improve computational estimation of parameter values for the calculation of partition 
coefficients for environmental chemicals with very high Po:w using the unified algorithm 
for calculating partition coefficients (Peyret et al., 2010; below).
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Figure 1.  One compartment PK model, parameterized by above tables. The NHANES biomonitoring data, assumed to be the concentration of 
chemical at steady state (Css) and the elimination rate (kel = Cltotal/Vdss) are used to infer the Oral Dose Equivalent (Figure 3). Adding the tissue 
volumes (VT) partition coefficients for each tissue (KpT; calculated using Schmitt (2008)), volume of plasma (VP), we calculate the volume of 
distribution at steady state (Vdss) to model the dose-response curves and steady state assumption for our chemicals, presented in Figure 6.

Table 1: PK parameters and 
parameters for a selection of 
NHANES urinary chemicals 
(Tonnelier et al., 2012; 
Wetmore et al., 2012).
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The uncertainties associated with the ODE are determined by the standard 
error of the NHANES data along with the coefficient of variation of the error of 
the predictions of whole-animal clearance from in vitro estimates. Due to 
insufficient data for environmental chemical clearance rates, we used an 
approximation for the standard deviation:
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yielding the confidence intervals:

22 )(ˆ)( totalse CLsduODECI 

Objective

Develop a PK model for relating 
serum and urinary biomarkers to 
probable chemical exposures.

Table 2: PK parameters 
for the NHANES serum 
chemicals (Wetmore, 
unpublished). 

• We used urine and serum biomarker data from NHANES 
• A database was developed and curated for:

i. Parent to product metabolism pathways and 
ii. PK parameters for the NHANES environmental chemical from literature sources.

• For 13 NHANES chemicals with serum concentrations
i. Uncertainties were computed for oral equivalent doses in ug/kg/day
ii. Steady state concentrations were calculated from oral equivalent doses and available PK data 

Figure 5: Plot of the average concentration (Figure 6 
horizontal line) versus the maximum concentration 
(Figure 6 peaks) reached by chemicals in the PK 
model. 

Figure 4: Time required for serum and urinary chemicals to 
reach steady state (SS) concentrations, where SS is 
reached when the response to additional doses change the 
curve by less than 1%.

Figure 6: Test of the steady state assumption: Below are the PK predictions of the concentration obtained from the dosing regimen, using a PK 
model with partition coefficients estimated from Schmitt (2008), compared to the inferred Css. 

Conclusions

Serum chemicals present a challenge for current high throughput 
exposure estimation, and simplifying assumptions, such as the steady 
state assumption used for urinary chemicals, are not valid.
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