Using ToxCast™ in vitro Assays in the Hierarchical Quantitative Structure-Activity
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INTROBUECTIGN

«Phase | of the ToxCast™ program profiled 309 well-
characterized chemicals (primarily pesticides) in
over 600 HTS endpoints. Most of these compounds
have also been tested in ca. 80 developmental
toxicity, multi-generation reproductive studies, and
sub-chronic and chronic bioassays.

«It is often challenging to rationalize differences
between in vivo toxicological response to
chemically similar molecules (Table 1). The analysis
of ToxCast™ data requires new computational
approaches to link chemical structures, in vitro
responses and in vivo toxicity effects.

Table 1 Example of a hard-to-predict compound and its three
structurally nearest neighbors. The in vitro and in vivo toxicity
profiles are compared.
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«After data curation, 291 chemicals were kept for
analysis. By removing highly correlated (R2 >0.95)
and low-signal (<10 non-zero entries) assays, 284 in
vitro assays were selected. In this study, we will
focus on three reproductive toxicity endpoints (i.e.,
MGR_Rat_Kidney, MGR_Rat_Liver, and MGR_Rat_
ViabilityPND4).
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Figure 1 The relationship between
in vitro bioassay and in vivo
toxicity data. Class |

i compounds: toxic in vivo but
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| TOXCAST™ BIOASSAYS ANALYSIS

Table 2. The top 20 ToxCast™ bioassays based on external predictivity
for three reproductive toxicity endpoints. Colors represent data

ources.

MGR_Rat_Kidney

MGR_Rat_Liver

MGR_Rat_Viability

ATG_Ahr_CIS
ATG_EGR_CIS
ATG_HSE_CIS
ATG_LXRb_TRANS
ATG_Pax6_CIS
ATG_RARa_TRANS
ATG_VDRE_CIS
ATG_Xbp1_CIS
BSK_3C_MCP1_up
BSK_3C_Thrombomodulin
BSK_3C_Vis_down
BSK_4H_Eotaxin3_down
BSK_BE3C_TGFb1_up
BSK_hDFCGF_EGFR_up
BSK_KF3CT_IL1a_down
BSK_SAg_CD40_up
BSK_SAg_IL8_down
CLM_p53Act_72hr
CLZD_SULT2A1_24
NCGC_PXR_Agonist_rat

ACEA_LOC3

ATG_Pax6_CIS
ATG_THRa1_TRANS
BSK_3C_MCP1_up
BSK_3C_SRB_down
BSK_4H_Pselectin_down
BSK_4H_VCAM1_down
BSK_BE3C_uPAR_down
BSK_hDFCGF_Collagenlii_up
BSK_LPS_MPC1_down
CLM_MicrotubuleCSK_24hr
CLM_OxidativeStress_24hr
CLM_p53Act_1hr
CLZD_CYP1A1_6
CLZD_CYP2B6_48
CLZD_GSTA2_24
NCGC_ERalpha_Agonist
NVS_GPCR_g5HT4
NVS_GPCR_hDRD1
NVS_GPCR_hOpiate_mu

ATG_ERa_TRANS
BSK_3C_hLADR_down
BSK_3C_Proliferation_down
BSK_BE3C_hLADR_up
BSK_hDFCGF_IP10_down
BSK_hDFCGF_MIG_down
BSK_LPS_PGE2_down
BSK_LPS_VCAM1_down
BSK_SM3C_VCAM_1_down
CLM_Hepat_DNADmg_1hr
CLM_Hepat_DNADmg_24hr
CLM_Hepat_DNADmg_48hr
CLM_MitoticArrest_24hr
CLM_OxidativeStress_1hr
CLM_StressKinase_1hr
NCGC_AR_Antagonist
NVS_ADME_hCYP2C9
NVS_ADME_rCYP2A2
NVS_ADME_rCYP2C11
NVS_ADME_rCYP2C6
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Figure 2. Scheme of the hierarchical QSAR modeling workflow on
ToxCast™ in vivo toxicity data using chemical in vitro-in vivo
correlation profiles. Grey arrows indicate modeling procedure and
green arrows indicate prediction procedure.
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Figure 3. Results of 5-fold cross
validation using hierarchical
QSAR modeling workflow. Blue
columns: conventional QSAR
models; Red: hybrid models
without applicability domain
(AD); Green: Hybrid models
with AD. CCR: correct
classification rate.
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| CHEMICAL SCAFFOLD ANALYSIS

Table 3 Scaffold examples in ToxCast™ database.
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*QSAR models based on a subset of compounds
with these scaffolds had better prediction accuracy

than that on the entire ToxCast™ dataset.

For

example, models developed for MGR_Rat_Liver
using this subset and RF/SVM methods increased
CCR,, from 0.61~0.67 to 0.76~0.81.

BISCUSSION

*This study used the concept of “in vitro-in vivo
correlation”, which has been successfully employ-
ed to correlate rodent acute toxicity of chemicals
with cytotoxicity in our lab (Zhu, 2009), to develop
predictive hierarchical QSAR models for three
reproductive toxicity endpoints (i.e., MGR_Rat
Liver, MGR_Rat_Kidney, and MGR_Rat_Viability).

*Consensus prediction and applicability domain
approaches can effectively increase the prediction
power of QSAR models.

*Ranking of ToxCast™ bioassays for each toxicity
endpoint based on the external predictivity helps to
prioritize bioassays that are important for in vivo
toxicity evaluation of chemicals.

*Improved models were developed on chemicals
with six major scaffolds. This implies the possible
relationships between these chemical scaffolds
and specific toxicological mechanisms. Future
study will focus on finding the possible roles of
these structure features in in vivo toxicological
process of chemicals.

CONCIEUSIGNS

«We have developed predictive QSAR models for
three in vivo reproductive toxicity endpoints by
taking into account the entire chemical structure —
in vitro —in vivo data continuum.

«Our resulting models could be used to guide the
future toxicity studies on the EPA-10K compounds
by selecting in vitro assays and prioritizing
compounds for in vivo toxicity evaluation.
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