

Predictive Signatures of Developmental Toxicity Modeled with HTS data from ToxCast[™] Bioactivity Profiles

ED STATES ENVIRONMENTAI

Knudsen T, Judson R, Rountree M, Kleinstreuer N, Sipes N, DeWoskin R, Chandler K, Singh A, Spencer R, Setzer R, Kavlock R and Dix D

COMPL

Disclaimer: views are those of the presenter and do not necessarily reflect Agency policy nor imply endorsement of software used here

Office of Research and Development National Center for Computational Toxicology SOT, abstract 1382, 03/09/2010

http://www.epa.gov/ncct/toxcast/

- project to profile the bioactivity of hundreds to thousands of environmental chemicals using *in vitro* HTS assays,
- mine for *in vivo* correlations by training *in vitro* bioactivity profiles against compounds with evident toxicity,
- build and test computational (*in silico*) models for 'toxicity signatures' that predict subtending biological pathways,
- and prioritize chemicals that inform mechanistic models during chemical disruption (e.g., embryonic development)

ToxCast™ bioactivity profiling

Biochemical HTS assays

- Protein families
 - GPCR
 - NR
 - Kinase
 - Phosphatase
 - Protease
 - Other enzyme
 - Ion channel
 - Transporter
- · Assay formats
 - Radioligand binding
 - Enzyme activity
 - Co-activator recruitment

309 chemicals 471 endpoints

Cell-based assays

- Cell lines
 - HepG2 human hepatoblastoma
 - A549 human lung carcinoma
 - HEK 293 human embryonic kidney
 - J1 mouse ES cells (ACDC)
- · Primary cells
 - Human endothelial cells
 - Human monocytes
 - Human keratinocytes
 - Human fibroblasts
 - Human proximal tubule kidney cells
 - Human small airway epithelial cells
- · Biotransformation competent cells
 - Primary rat hepatocytes
 - Primary human hepatocytes
- Assay formats
 - Cytotoxicity
 - Reporter gene
 - Gene expression
 - Biomarker production
 - High-content imaging for cellular phenotype

Profiling developmental toxicity ToxRefDB: >30 yrs of toxicity data worth >\$2B

ToxRefDB 387 chemicals, 751 prenatal studies, 988 effects annotated

283 chemicals x 293 effects \rightarrow 19 target systems from rat (\blacksquare) and rabbit (\Box) studies

Office of Research and Development National Center for Computational Toxicology

Environmental Protection

SOURCE: Knudsen et al. (2009) Repro Tox 28: 209-19 4

Developmental effects (ToxRefDB):

cLEL based on mg/kg/day administered dose

CRITICAL ENDPOINT	NUMBER of CHEMICALS		
	rabbit	rat	overlap
Developmental (global)	111	153	70
Skeletal_Axial	55	118	18
FetalWeightReduction	49	92	6
Skeletal_Appendicular	24	50	7
Skeletal_Cranial	21	41	1
Embryo-Fetal losses	33	35	5
Urogenital (renal, ureteric)	3	19	0
JawHyoid	8	14	0
CleftLipPalate	2	11	0
Neurosensory (brain and eye)	6	8	0
BodyWall (somatic)	1	6	0
Viscera (splanchnic)	9	4	0
Cardiovascular (heart, major vessels)	6	3	0

SOURCE: http://www.epa.gov/NCCT/toxrefdb/

Workflow slide - placeholder

Assay-DevTox associations:

distribution by HTS assay platform

Aggregated by species

Stratified by system

894 total univariate DevTox associations from ToxMiner v16

DevTox targets in ToxCast[™]

nonredundant *assays* (154 annotated by target gene function tested) selected by significant AC50 - cLEL correlation and mapped across the prenatal 'penetrance spectrum':

Environmental Protection

Agency

FWR fetal weight reduction MAL abnormalities and variations RES resorptions-fetal death

TARGETS	FWR	MAL	RES
assays	21	98	104
pathways	75	70	11

pathways inferred from 'perturbation score' (PS)

	TARGET	ENDPOINT			FUNCTIONAL GROUP
	(UV)	FWR	MAL	RES	
	IL8				
	CCL2				
	CXCL10		1		
	CXCL9				chemokine-signal
	IL1A				
	TGFB1		1		
	TNFRSF10B				
	Gabra6				
	HTR7				
	Hrh2				
	HTR5A				
	NPY1R				
	ADRA1A				
	ADRA2A				
	Bdkrb2				
	CHRM2				
	CHRM4				
	CHRNA4				
	Chrna7				GPCR
	Grm1				
	Hrh3				
\	Oprl1				
\	OPRL1				
	OPRM1				
	P2RY1				
	Tacr3				
	DRD2				
_	ADORA1				
\	Htr4				
\	PTGER2				

Signature detection

Office of Research and Development National Center for Computational Toxicology SOURCE: NCCT – N Kleinstreuer, built with 'linmod from R Judson [presented 03/08/2010, abstract 96] ⁹

- predictive modeling of an effect is complicated by the inherent nonlinearity of biological systems
- even homogeneous cell populations *in vitro* can display complex responses to environmental chemicals
- toxicity in an intact organism results from numerous complex and inter-related events at a multi-cellular scale
- Holy Grail: *in silico* reconstruction of tissues to evaluate biological plausibility of predictive signatures

Office of Research and Development National Center for Computational Toxicology Modeled in www.**CompuCell3d**.org environment N Poplawski (chick limb) → M Rountree (mouse limb)

- toxicity in the embryo is an expression of complex and interwoven events that follow from cellular perturbation
- ◆ ToxCast[™] is a resource to compile *in vitro* signatures into computational models that are diagnostic of *in vivo* toxicity
- systems-level models that recapitulate *in vivo* biology can be used to assess the plausibility of diagnostic signatures
- multicellular 'virtual tissues' can help bridge the gap between *in vitro* profiling and *in vivo* response

Research Network

Virtual Embryo (NCCT)

Tom Knudsen Amar Singh (LHM) Michael Rountree (SSC) Richard Spencer (EMVL) Rob DeWoskin (NCEA) Nikal Keinstreuer Nisha Sipes

Indiana University (CC3D)

Jim Glazier Niko Poplawski Maciej Swat Abbas Shirinifard

Crowley-Davis (Endogenics)

Richard Newman Tim Otter Jeff Habig

Virtual Embryo (NHEERL) Sid Hunter

Chris Lau John Rogers Stephanie Padilla Kelly Chandler

Virtual Liver (NCCT)

Imran Shah John Wambaugh Rory Conolly Woody Setzer John Jack

Texas-Indiana Virtual STAR Center (NCER)

Maria Bondesson (U Houston) Jan-Ake Gustafsson (U Houston) Richard Finnell (Texas A&M) Jim Glazier (Indiana U)

<u>EU interactions</u> Virtual Physiome ChemScreen (2010)

http://www.epa.gov/ncct/v-Embryo/

ToxCast™ (NCCT)

Bob Kavlock David Dix Richard Judson Keith Houck Matt Martin David Reif Ann Richard Jim Rabinowitz Holly Mortensen