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Hierarchical Bayesian Analysis for 
PBPK Models

Calibration of many PBPK models involves data from multiple 
experimental designs, endpoints, and laboratories; hence uncertainty 
and variability must both be addressed correctly in a statistical 
framework.  Hierarchical statistical models lend themselves easily to 
the usage of multiple data sets and evaluate both uncertainty and 
variability for a large number of parameters.

Three components must be formulated for Bayesian analysis of PBPK 
models:

The likelihood of a set of data is given in terms of the prior 
distributions on the hyper-parameters and the likelihood of the subject-
specific parameters

Advantages in using hierarchical Bayesian analysis in calibration and 
uncertainty analysis of PBPK models:

• Allows prior knowledge about parameters to be incorporated 
easily through priors assigned to parameters.
• Characterizes identifiability of parameters via comparison of 
priors with posteriors.
• Quantifies uncertainty and variability in model parameters 
through the estimation of distributions versus point estimates.
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With the increased use of complex 
computational toxicological models by 
the EPA for regulatory purposes, 
quantifying the uncertainty in model 
predictions is an important challenge that 
is being addressed with the following 
science questions:
• How can informative priors be 
developed to account for uncertainty in 
chemical-specific parameters in the 
absence of data?
• How can the issue of model 
identifiability be addressed in the analysis 
of physiologically-based pharmacokinetic 
(PBPK) model parameters in a Bayesian 
framework?
• How can computational issues (i.e., long 
runtimes) be addressed for hierarchical 
Bayesian analysis of PBPK models?
• What measures can be used to evaluate 
how well models describe data and model 
uncertainty?
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• Develop standard approaches for the 
specification of informative priors for 
chemical-specific parameters.
• Determine identifiability of model 
parameters and establish ways to handle 
unidentifiable parameters in Bayesian 
estimation.
• Develop efficient computational 
methods for model calibration and 
uncertainty analysis in a Bayesian setting.
• Adapt standard techniques for model 
evaluation of dynamic computational 
toxicology models and evaluate their 
efficacy in improperly and properly 
specified examples.

• Quantifying parameter uncertainty can be 
improved through the use of computational 
predictors and readily available data in the 
literature.

• Since it is not generally possible to assess the 
identifiability of parameters in PBPK models with 
a given data set, only Bayesian analyses with 
proper priors can be used for valid statistical 
inferences of PBPK models.

• Computational runtimes with MCMC methods 
for the generic model for hierarchical Bayesian 
analysis can be decreased by parallelization at the 
individual (or subject specific) level.

• Uncertainty quantification in coupled exposure-
dose model for permethrin (see Poster #15). 
(Milestone:  Science Advisory Panel (SAP) review 
in July 2010)

•Improved uncertainty analysis in cumulative risk 
assessment for pyrethroid pesticides in 
collaboration with other ORD laboratories (NERL 
and NHEERL)  (Milestone:  SAP review in 2012)

• Continued development of tools to address the 
computational issues associated with Bayesian 
analyses of PBPK models.

• Formulation of guidelines that can be used in 
model evaluation and selection for more complex 
computational toxicological applications.

• Identification and assessment of computational 
issues associated with model evaluation and 
selection for agent-based virtual tissues models.
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Computational Issues with PBPK 
Models

• One major drawback to the use of Bayesian analysis for PBPK 
models is the long computational runtimes often required when these 
models are implemented via Markov Chain Monte Carlo (MCMC) 
methods.
• The high dimensionality of the parameter space can cause 
computations to take weeks or even months.  Convergence of MCMC 
runs to the posterior is also an issue that makes hierarchical Bayesian 
analyses very costly.
• Computations can be simplified via parallelization of the likelihood 
computations when using the standard model for hierarchical Bayesian 
analysis as demonstrated by Wambaugh et al. (in preparation)… hence 
decreased runtimes.

Milestone: Manuscript on improvement of computational efficiency 
in Bayesian analyses of PBPK models using MCMC and assessment 
of convergence (2009)

Model Evaluation
• Model uncertainty can be addressed with Bayesian analysis by 
evaluating how well a model fits data as well as quantitatively 
comparing alternative model structures.
• Standard statistical approaches (e.g., residual plots) that exist for 
simpler linear regression models must be adapted for analysis of more 
complex toxicological models.

• We will develop examples using well-specified and ill-specified  
PBPK models and data to illustrate some of the problems that can arise 
and be addressed when evaluating computational toxicology models.

Milestone: Manuscript on assessing the fit of PBPK models (and, 
through example, other complex mechanistic models) to data (2010)

Example:  Partition Coefficients
Partition coefficients (PCs) are important PBPK model parameters
because of their role in determining the distribution of a compound 
throughout the body.

Coefficients of variation (CVs) were calculated mostly in the range of 
50-70% for tissue:plasma PCs using Schmitt’s (2008) computational 
predictor and experimental PCs data from the literature for various 
tissues.

Milestone: Manuscript on constructing priors for PBPK model 
parameters (2009)

Model Identifiability
Identifiable

Non-identifiable

Garcia et al. (in preparation) observe that identifiability of PBPK 
model parameters can not be determined.  However, specifying 
truncated prior distributions for parameters result in proper posteriors 
that are necessary for valid statistical analysis of PBPK models.
Therefore, inferences based on Bayesian analyses that result in 
proper posteriors are valid even though the PBPK model may not be 
identifiable.

What is Uncertainty?
When developing computational models for various applications (e.g., 
physical, chemical, biological), the different types of uncertainty 
involved with the use of these models must also be considered.  Two 
major types of uncertainty that should be addressed and quantified are 
parameter uncertainty and model uncertainty.

Of the two forms, parameter uncertainty is the easiest to quantify via 
confidence intervals (standard errors) or probability distributions.  

However, there is often a great deal of uncertainty associated with the 
model structure or formulation.  Along with quantifying uncertainty in 
parameter estimates, model evaluation and selection are important 
with regards to addressing model uncertainty. 

Our goal is to develop a standard set of practices that will allow one to 
quantify both parameter and model uncertainty in a probabilistic
framework efficiently.

Quantifying Prior Knowledge for 
Chemical-Specific Parameters

• Uncertainties in model parameters and predictions for computational 
toxicology applications (e.g., ToxCastTM/high throughput situations, 
virtual tissues projects) can be quantified via prior information 
obtained from in vitro assays in the absence of in vivo data.

• More informative prior distributions (means and standard deviations) 
for Bayesian analysis of deterministic (e.g., PBPK) models can be 
developed with the use of computational predictors (e.g., QSAR and 
QSPR models), in vitro methods, and experimentally measured values 
for chemical-specific parameters found in the literature.
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