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Methods/Approach

Results/Conclusions

There is a paucity of relevant experimental information 
available for the evaluation of the potential health and 
environmental effects of many man made chemicals.  
Therefore, there is a compelling need to develop information 
that would enable the screening of the potential health and 
environmental effects of large numbers of man-made 
chemicals.  Knowledge of the potential pathways for activity 
provides a rational basis for the extrapolations inherent in the
preliminary evaluation of risk and the establishment of 
priorities for obtaining missing data for environmental 
chemicals.  The differential step in many mechanisms of 
toxicity may be generalized as the interaction between a small 
molecule (a potential toxicant) and one or more 
macromolecular targets.  The small molecule may be the 
chemical itself or one of its descendents.  An approach based 
on computation of the interaction between a potential 
molecular toxicant and a library of macromolecular targets for 
toxicity (The Toxicant-Target approach) has been proposed as 
an element for chemical screening and testing prioritization.  
In order to use a library of this type, a rapid method to 
evaluate interactions between the small molecule and a 
(macromolecular) target is needed.  Molecular “docking” has 
been developed to screen large chemical libraries for 
molecules that interact strongly with specific sites on proteins
and therefore are potential pharmaceutical agents.  This 
approach has infrequently been applied to investigate the 
potential activity of weaker agents.  

Can “docking” and other molecular modeling approaches be 
applied to screen for chemicals that interact with a 
macromolecular target?  Can the results of this approach be 
used in conjunction with experimental assays in a screen for 
potential toxicity?  Using experimental results for the rat 
estrogen receptor, will “docking” separate agents that bind 
weakly from inactive chemicals?  For any chemical screening 
approach that depends on a data base and molecular 
parameters, how is its range of applicability determined?

Science Question

Research Goals

1. To develop an approach for applying “docking” and 
other molecular modeling methods to problems of 
screening and prioritizing chemicals for potential 
toxicity.

2. To test two “docking” methods for their capacity to 
identify chemicals that compete weakly with E2 for 
the active site of the estrogen receptor.

3. To develop methods for determining the domain of 
applicability of any relationship that predicts 
chemical toxicity from other molecular parameters 
(experimental or computational).

Impact and Outcomes
It has been demonstrated that an approach 
developed for enriching chemical libraries for 
likely candidate pharmaceuticals (strongly active 
molecules) is also capable of separating weakly 
active chemicals from inactive ones.  The relative 
energies for chemicals interacting at specific 
targets for toxicity may be used by themselves or 
in conjunction with other parameters to predict 
chemical toxicity or prioritize chemicals for 
further testing.  This approach may be used for 
targets where crystal structures are available and 
also for targets similar to macromolecules where 
the structures are known.
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Structurally Based Computational Screening
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1E3G Human Androgen Receptor 
Ligand Binding Domain with 
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Potential macromolecular targets for toxicity are DNA and protein.  Docking approaches 
have been used to screen large chemical libraries for potential pharmaceutical agents.  The 
targets used have been almost exclusively protein but there is no reason why a similar 
approach could not be used for molecules that interact with DNA.

First  targets are constructed 
from receptor-ligand crystal 
structures by 
computationally removing 
the ligand.  If the data exists 
multiple targets may be 
created for the same protein 
in order to consider protein 
flexibility or multiple 
binding modes.

The potential ligands are then introduced into the computational target and the most 
stable toxicant-target poses identified using two different approaches.

1. Considering the entire molecule as flexible (FRED)

2. Decomposing the molecule into substructures (eHiTS)

a. Docking each substructure separately 

b. Recombining the substructures in the target

The energy of each potential ligand-target pose is computed from heuristic functions 
fitted to reproduce a large number of known protein-ligand structures.  These 
functions are not adjusted for each specific protein or class of potential toxicants.

A Data Set

A library of 281 environmentally relevant chemicals was tested in the same laboratory 
with the same protocol for their capacity to compete with radiolabeled 17-β-estradiol for 
their binding to the rat ER. The advantages of comparing computational molecular 
“docking” results to the experimental results for this library are: 

First, there are a number of excellent crystal structures of both α and β
estrogen receptors available in the Protein Data Bank that can be used to synthesize 
macromolecular targets for computer “docking”.  

Second, the data set is mostly inactive chemicals.  Only 15 chemicals were 
found to be active and most only weakly so. 

Third, the experiments yield a relatively direct measurement of what is 
modeled in computational “docking”, the energy of interaction between the test 
chemicals and the receptor compared to the energy of interaction of the receptor with 17-
β-estradiol.

This approach has been successfully applied to aid in the discovery of novel 
pharmaceutical agents (strong binders).  However, it has not often been used to separate 
potential weak binders from nonbinders, more like the problem of screening 
environmental chemicals. 

Targets

Four targets have been created.  Targets for both ERα and ERβ with both agonists and antagonists bound were made from crystal structures. The 
experimental tissue preparation contains primarily ERα and methods that combine results for docking into ERα and ERβ did not inprove results 
compared to just ERα. Docking results for discriminating between active and inactive molecules are shown below.
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The results from computational “docking” are scores (a 
surrogate for the interaction energy) for each potential 
ligand-protein pair. Using eHiTS all active chemicals are 
found by the agonist target in the first 16% of the 
chemicals.  Using FRED 14 of the 15 active chemicals are 
found by the agonist target in the first 27% of the 
chemicals.  The 15th chemical is found best by the 
antagonist target.

For the preceding results the best score for each 
chemical was chosen without consideration of the 
geometry of binding between the toxicant and the target. A 
pharmacophore for binding to the estrogen receptor has 
been developed.  A simplification of this pharmacophore is 
used as a constraint on the allowed toxicant-target poses 
for the next set of results.  For eHiTS, all active chemicals 
are found by the agonist target in the first 8% of the 
chemicals.  (There are only 8 false positives.)  For FRED, 
the first 14 chemicals are found in 8% of the chemicals but 
it has more difficulty finding the 15th chemical.
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Future Directions

The Toxcast chemicals have been docked in 150 
targets.  Pharmacophores for as many of the 
targets as possible are being developed and the 
docking poses will be filtered by the 
pharmacophores.

The evaluation of the capability of 
computational methods to predict toxicity or any 
multi-parameter method for chemical screening, 
requires an understanding of the position of an 
untested chemical in chemical and biological 
space.  A method is being developed for 
evaluating the domain of applicability for any 
multiparameter method of this type.  

151 Protein Targets
5%

33%
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transport / lipid binding proteins (albumin, FABP, CRABP)
nuclear receptors (ER, AR, PGR, GR, MR, FXR, PXR…)
oxidoreductases (CYP450s, 11beta-HSD, MFOs)
phosphatases
kinases
hydrolases (esterases, caspases, lactamases)
misc (GPCR, Ion Channel, lectin binding, metalloproteinase)
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FRED no constraints
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A Summary of the results for each 
approach without constraints applied.

74 (26)685118eHiTS composite

97 (35)955018eHiTS antag

46 (16)36188eHiTS agonist

119 (42)1045923Fred- composite

109 (39)1055720Fred-antag

153 (54)76 (27)5116Fred agonist
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A Summary of the results for each 
approach with 2 constraints applied.

32 (11)292010eHiTS composite

42 (15)411910eHiTS antag

23 (8)20147eHiTS agonist

48 (17)29157Fred- composite

37 (13)30186Fred-antag

39 (14)22 (8)146Fred agonist
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