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• Apply state-of-the-art technologies to examine the interplay 
between environmental and genetic factors affecting asthma

• 100 asthmatic and 100 non-asthmatic children, ages 9-12 
years (subset of Detroit Children’s Health Study cohort)

• Collected multiple types of clinical, demographic, exposure, 
and gene expression data

• Consider markers of susceptibility, exposure, and effects to 
analyze and characterize combined risk factors that relate to 
asthma severity 

• http://www.epa.gov/dears/studies.htm

Mechanistic Indicators of Childhood Asthma (MICA)
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Air Air 
PollutionPollution

Traits from Traits from 
your parentsyour parents

Asthma Asthma 
MedicationsMedications

Indoor Indoor 
TriggersTriggers

Slide taken from the  MICA educational presentation 
used in our study in Detroit
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MICA Study Design

Biomarkers of Integrated Dose:
Metals (Lead, Mercury), 

Metabolites of Polycyclic 
Aromatic Hydrocarbons, 
Cotinine, and Creatinine

Biomarkers of Early Effect:
Autoantibodies, Mutagenicity

Gene Expression  
Inflammatory Markers

Clinically-relevant 
Outcomes:

Allergies, Asthma, 
Respiratory Symptoms, 

Lung Function
NOex VOC

Asthmatic and nonasthmatic
Children n=200 

Rodents: Blood and Lung Tissue

Gene Expression
Profiles

Inflammatory
Markers

Susceptibility Factors: Genetic Variation-RNA, DNA  

Ambient
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Early 
Biological 

Effect

Clinical
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Pre-Clinical
Effects
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(concentrated to 
200-600µg/m3)
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Detroit-area
Urban Air
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Biomarker Framework

Target
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Ryan et al. 2007 EHP
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PAHs, 
VOCs, 
NO2

Indoor/
Outdoor Air

PM, Air Toxics

Ambient Air

Markers of Exposure

Markers of Susceptibility

Health status, 
other risk 
factors: BMI, 
HDL, blood 
chemistry

Genotypes at Candidate SNPs
(HLA-DRB1, HLA-DQB1, FCER1B, ADAM33, 
CD14, IL4, IL13, GSTM1, GSTP1, GSTT1, TNF-a)

Other Immune Markers: 
Total IgE, allergen specific 

Markers of Effect

Nicotine, PAHs, etc.

ETS

Secreted 
Autoantibodies:
Neutrophils, 
Eosinophils, 
Monocytes

Asthma

Respiratory 
Symptoms 

Gene Expression

Lung 
Function,
eNO,
eVOC

Inflammatory 
Markers:
Cytokines, 
Chemokines

Child

MICA 
Framework

Allergy

Metals, 
Molds, 
Endotoxin,
Pesticides

House Dust

Cotinine
PAH Metabolites
1-OH Pyrene
Napthols, etc.

Metals:
Lead, 
Mercury,
Arsenic, etc.

Age, Gender, 
Race/ethnicity

Cardiovascular

Obesity
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Characteristics of our MICA Study Sample

Average age at menarche (nation-wide)

Study sample includes both 
boys and girls

Study sample is predominantly 
African-American (>80%)

Study sample includes children 
diagnosed as asthmatic and 
non-asthmatic

Distribution of age across all 
categories is fairly uniform

David Reif
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High Blood Pressure 

Obesity 

Asthma 

MICA Childhood Study Multiple Risk Factors

Jane Gallagher
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Collaborative NCCT-MICA Goals
• The objectives of the NCCT include advancement of a systems approach 

to evaluate complex relationships between 
– environmental factors
– physiological biomarkers
– health outcomes.  

• NCCT collaborating to apply advanced statistical and machine learning 
methods to evaluate biomarker data collected in MICA  

• Contribution of the NCCT component:  
– analyze genetic and gene expression data 
– use a systems biology approach to put data into framework for 

evaluating ecogenetics
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Data Analysis Methods
• Traditional statistics: linear regression, logistic regression, ANOVA, linear 

discriminant analysis.

• Machine learning: recursive partitioning trees, bootstrap aggregation 
(bagging) techniques, evolutionary computation-optimized classifiers, 
multifactor dimensionality reduction, random forests.

• Bioinformatics: protein interaction databases, knowledge (literature) 
mining tools, biological pathway database and inference software.

• Graphical approaches: cluster diagrams, expression “heat” maps, 
dendrograms, overlaid scatter plots (both exploratory and summary), 
distributional “violin” plots, regression plots.  
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MICA: 
Physiological 
Markers/ 
Health Status

David Reif

Red – Asthmic

White – Non Asthmatic
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GeneticsGenetics

Gene expression measured using 
oligonucleotide microarrays

{gene expression}{gene expression}

© David Reif
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IMPORTANT: Total RNA was taken from whole blood samples in the absence of 
any deliberate experimental perturbation.

David Reif
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Can Gene Expression Distinguish Subtypes of Asthmatics?

• To identify subtypes, first applying an unbiased (i.e. without knowledge of 
asthma status) analysis to assess association between gene expression 
data and information on clinical, demographic, and exposure indicators.

• Next, select only gene expression probe sets that are significantly 
correlated with at least one of the demographic, clinical, or exposure 
indicators. 

– This filtering method prevents selecting only genes whose expression is 
associated with broadly-defined, imperfect asthma diagnoses. 

• Examination of the genes differentiating asthma subtypes in this context 
highlights mechanistic genomic etiologies underlying the disease.  These 
include subtypes of asthma characterized by 

– Patterns of gene expression associated with immune over-stimulation and 
household allergy exposures

– Combinations of genomic biomarkers with demographic factors such as gender
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Why not just do the usual “here are some main-effect 
genes that discriminate asthmatics versus non-asthmatics”?
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Does not address gene expression profiles associated with 
subtypes of asthma

Does not link gene expression with other biomarkers or 
covariates (Where is the context?)David Reif
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Why not just do the usual “here are some main-effect 
genes that discriminate asthmatics versus non-asthmatics”?

Mean expression of asthmatic subjects

Mean expression of non-asthmatic subjects

Reliance on group means ignores the 
complexity of asthma etiology

CAT (catalase)   
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The ultimate goal is to glean mechanistic information 
regarding asthma subtypes

Gene expression 
(genomics)

(1)

Covariates
(environmental, 

health status, etc.)
(2)

Expert 
Knowledge

(existing data)
(3)

Information

David Reif
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Analysis pipeline for the gene expression data

Gender 
adjustment

IQR 
filtering

Log2
transformation

David Reif
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54675 genes

ρ
MICA covariates

Results in a list of genes having 
significant correlation with at least 
one MICA covariate
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How do we leverage MICA covariate information for the gene 

expression analysis?

David Reif
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Are MICA covariates reflective of underlying gene 
expression patterns?
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David Reif
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0.0 1.0
Absolute value of gene-covariate correlation

Finding context for gene expression patterns

David Reif
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David Reif

Can we discriminate between subtypes of asthma?



23Office of Research and Development
National Center for Computational Toxicology

CSDA

DEFA1

RPL24

TncRNA

PPIB

GLIPR1

LOC283666

CLC

CAT

{fatty acid metabolism}

{cell migration & motility}

{nutrient metabolism}

{T-cell mediated cytotoxicity}

{immune cell adhesion/signalling

in response to nutrition}

{T-cell mediated cytotoxicity}

{T-cell mediated cytotoxicity}

{eosinophil action}

David Reif
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Can we leverage covariate information to put gene expression asthma 
classifier results in context?

{fatty acid metabolism}

{cell migration & motility}

{nutrient metabolism}

{T-cell mediated cytotoxicity}

{T-cell mediated cytotoxicity}

{T-cell mediated cytotoxicity}

{eosinophil action}

{eosinophil action}

{immune cell adhesion/signalling
in response to nutrition}

Classification 
Accuracy = 89%

David Reif
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Summary

• Integration of diverse set of exposure, effects and susceptibility 
measures

• High-data content technologies, elucidating the genetic and 
environmental basis for toxicity and disease

Clinical
Disease

Exposure

?

? ?

Jane Gallagher
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