United States Environmental Protection Agency

Carcinogenicity and Mutagenicity Data: *New Initiatives to Improve Access & Utility for Modeling*

April 2-4, 2008 SCARLET Workshop, Milan, Italy

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

http://www.epa.gov/ncct/toxcast

COMPUT

Office of Research and Development National Center for Computational Toxicology

Part I Data & Data Linkages

About DSSTox Work in Progress

Table

Site Map

Help

Frequent Questions

Structure Data Files

Apps, Tools & More DSSTox Community

Glossary of Terms

U.S. Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network http://www.epa.gov/ncct/dsstox/ Search: O All EPA 💿 This Area Recent Additions | Contact Us You are here: EPA Home » Computational Toxicology Research — Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network DSSTox

Distributed Structure-Searchable Toxicity (DSSTox) Database Network is a project of EPA's National Center for Computational Toxicology, helping to build a public data foundation for improved structure-activity and predictive toxicology capabilities. The DSSTox website **Central Field Definition** provides a public forum for publishing downloadable, structure-searchable, standardized chemical structure files associated with toxicity data. More>

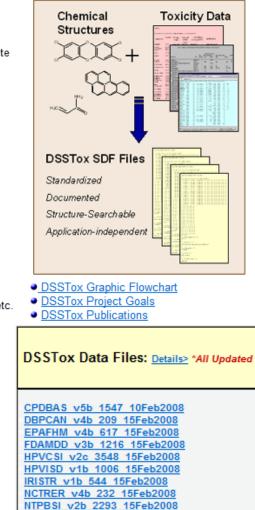
Structure-Browser

DSSTox Structure-Browser information Page

25 February 2008

***File Updates and Enhancements:

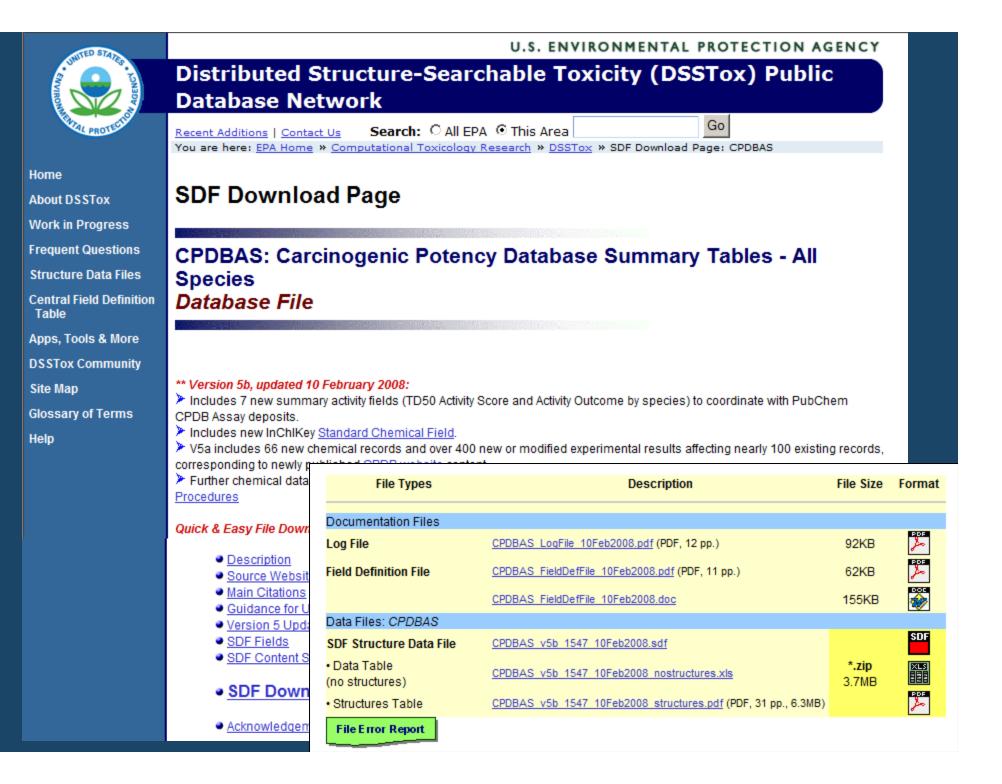
Addition of new DSSTox Standard Chemical Field to all files: STRUCTURE InChIKey


Additional QA review, structure/CAS modifications, elimination of abbreviations in field entries, etc.

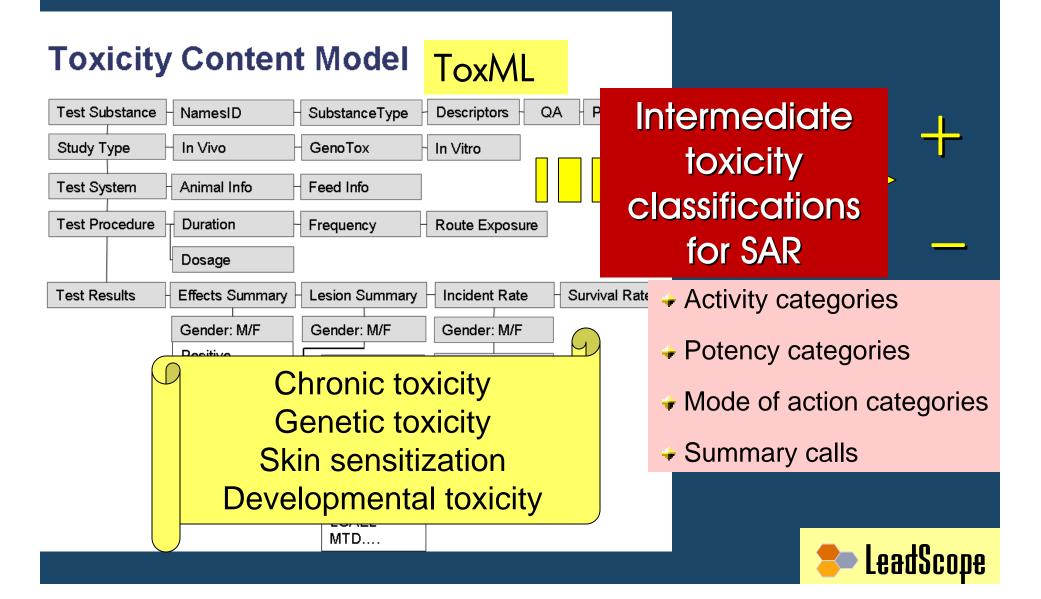
 Addition of categorical and ranked activity summary fields in 5 DSSTox Data Files (CPDBAS, DBPCAN. EPAFHM, FDAMDD, NCTRER), corresponding to standard PubChem bioassay activity fields:

PUBCHEM ACTIVITY OUTCOME (active/inactive/inconclusive): allo

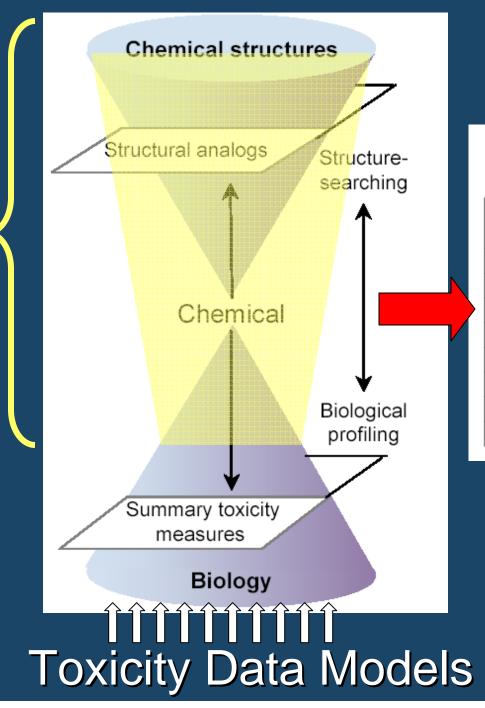
incl	
Inci	ActivityOutcome CPDBAS Rat
	ActivityOutcome CPDBAS Mouse
	ActivityOutcome CPDBAS Hamster
	ActivityOutcome CPDBAS Dog Primates
	ActivityOutcome CPDBAS Mutagenicity
	ActivityOutcome CPDBAS SingleCellCall
and a second	ActivityOutcome CPDBAS MultiCellCall
	ActivityOutcome DBPCAN
	ActivityOutcome EPAFHM
	ActivityOutcome NCTRER
unic	
reco	


PUBCHEM ACTIVITY SCORE [log(1/ activity) mapped onto INTEGER[0-100] ran

NTPHTS v1b 1408 15Jul2008


TOXCST v2b 320 08Feb2008

NAMEID	version #records date	Expanded DSSTox Data File Title & Description
CPDBAS	v5b 1547 10Feb2008	Carcinogenic Potency Database Summary Tables - All Species: Tumor target site incidence, TD50 potencies, summary activity calls for rat, mouse, hamster, dog, and/or non-human primate; data reviewed and compiled from literature and NTP studies.
DBPCAN	v4b 209 15Feb2008	EPA Water Disinfection By-Products with Carcinogenicity Estimates Database: Carcinogenicity estimates (high, moderate, low concern) by EPA experts using a mechanism-based analog SAR approach on a set of 209 water disinfection by-products, mostly small halogenated organics.
<u>EPAFHM</u>	v4b 617 15Feb2008	EPA Fathead Minnow Acute Toxicity Database: Acute toxicities of 617 chemicals tested in common assay, with mode-of-action assessments and confirmatory measures.
FDAMDD	v3b 1216 15Feb2008	FDA Center for Drug Evaluation & Research - Maximum (Recommended) Daily Dose Database: Maximum (recommended) daily dose (MRDD) values for 1216 pharmaceuticals in mg/kg-body weight (bw)/day, converted to mmol and normalized to dataset; MRDD values extracted from public literature sources.
HPVC SI	v2c 3548 15Feb2008	EPA High Production Volume Challenge Program <u>Structure-Index File</u> : Compiled structures for three chemical lists provided on EPA HPV Challenge Program website; each record includes reference index to dated list.
<u>HPVISD</u>	v1b 1006 15Feb2008	EPA High Production Volume Information System (HPV-IS) Data <u>Structure-Index Locator File</u> : Compiled structures for the chemical inventory of the on-line EPA HPV-IS with chemical-specific URLs linking to HPV-IS data pages containing chemical properties, fate properties and toxicity data.
<u>IRISTR</u>	v1b 544 15Feb2008	EPA Integrated Risk Information System (IRIS) Toxicity Review Data File: Compiled structures for EPA IRIS website with chemical-specific URLs linking to risk assessment summary data pages for 544 chemical substances.
NCTRER	v4b 232 15Feb2008	FDA National Center for Toxicological Research (NCTR) - Estrogen Receptor Binding Database: Estrogen receptor relative binding affinities tested in a common in vitro assay for 232 chemicals, listed with chemical class-based structure-activity features.
NTPBSI	v2b 2293 15Feb2008	National Toxicology Program (NTP) On-line Chemical Bioassay Database <u>Structure-Index Locator File</u> : Compiled structures for the NTP On-line Database with chemical-specific URLs linking to NTP study summary pages; file includes fields for each of 4 main bioassay study areas with indicator values specifying presence or absence of study data for the chemical substance record.
<u>NTPHTS</u>	v2b 1408 15Feb2008	National Toxicology Program (NTP) High-Throughput Screening Project <u>Structure-Index File</u> : Compiled structures for set of 1408 NTP chemical substances provided to the NIH Chemical Genomics Center for HTS bioassay testing and to PubChem (PubChem_CIDs and PubChem_SIDs included in NTPHTS_v2a file); NCGC HTS bioassay data are being deposited into PubChem and can be retrieved with these PubChem chemical CID and SID record listings.
TOXCST	v2b 320 08Feb2008	Research Chemical Inventory for EPA's ToxCastm Program Structure-Index File: Compiled structures for 320 chemical substances that are candidates for Phase I High-Throughput screening (HTS) within the EPA ToxCastm program. File will be updated with links to PubChem CIDs and SIDs for retrieving assay data, and with updates to chemical inventory as Program moves to Phase II and beyond.



Toxicity Experimental Data \rightarrow Summary Data:

ToxML / LIST Collaborations: FDA CDER/CFSAN

DSSTox Summary Toxicity Data Files

DSSTox Summary Toxicity Data Files

Compound	Tox1	Tox2	ТохЗ	Tox4	
Chem1	rat	male	+	lung	
Chem2					
Chem3					
Chem4					
Chem5					
Chem6					
Chem7					
Chem8					

CPDBAS v5a 1547

CPDBAS_v5a_1	547	bone;
	Mutagenicity_SAL_CPDB	clitoral gland; esophagus;
	TD50_Rat_mg	ear/Zymbal's gland;
STRUCTURE	TD50_Rat_mmol	gall bladder;
DSSTox RID	TD50 Rat Note	harderian gland;
DSSTox_CID	TargetSites_Rat_Male, Female, Both Sexes	hematopoietic system;
DSSTox_Generic_SID	TD50 Mouse mg	kidney; large intestine;
DSSTox_FileID	TD50 Mouse mmol	liver;
STRUCTURE_Formula	TD50_Mouse_Note	lung;
STRUCTURE_MolecularWeight	TargetSites_Mouse_Male, Female, Both Sexes	mesovarium;
STRUCTURE_ChemicalType	TD50_Hamster_mg	mammary gland;
STRUCTURE_TestedForm	TD50 Hamster mmol	mixture;
DefinedOrganic	TD50 Hamster Note	myocardium; nasal cavity
STRUCTURE_Shown	TargetSites_Hamster_Male, Female, Both Sexes	nervous system;
TestSubstance_ChemicalName	TD50_Dog_mg	oral cavity
TestSubstance_CASRN	TargetSites_Dog	ovary;
TestSubstance_Description	TD50_Rhesus_mg	pancreas;
ChemicalNote	TargetSites_Rhesus	peritoneal cavity; pituitary gland;
STRUCTURE_ChemicalName	TD50_Cynomolgus_mg	preputial gland;
_IUPAC	TargetSites_Cynomolgus	prostate;
STRUCTURE_SMILES	TD50_Dog_Rhesus_Cynomolgus_Note 0	skin;
STRUCTURE_Parent_SMILES	ActivityCategory_SingleCellCall 1	small intestine;
STRUCTURE_InChI	ActivityCategory_MultiCellCall	spleen;
StudyType	ActivityCategory_MultiCellCall_Details	stomach; subcutaneous tissue;
Endpoint	ToxicityNote	bearing animals;
Species	NTP_TechnicalReport / multisite active;	
	Website_URL multisex active;	ind;
	multispecies active	adder;
	multisex inactive;	
	multispecies inactive	system.

adrenal gland;

CPDBAS_v5b_1547_10Feb2008 ActivityCategory_ ActivityCategory_MultiCellCall_Details** Total Incidences* SingleCellCall MultiCellCall** Call multisite*** multispecies multisex (CPDBAS_v5) 223 active 81 active active V 113 active active active 8 active If chemical is Active ID:299 D:316 ID:98 ID:130 active active 0 (1) CH₃ HN active active H₃C Cl ر \cap HO active active active active N=N+ AZT Aramite [4-Chloro-6-(2,3-xylidino)-2-p Chloromethyl methyl ether active active 140-57-8 30516-87-1 50892-23-4 107-30-2 inactive ID:912 ID:1000 ID:1076 ID:715 ClCl,, .Cl inactive inactive H₃C N⁺O Inactive inactive inactive H_2C C1'`` ''"Cl CH3 HO-N CH2 (0) inactive inactive Clalpha-1,2,3,4,5,6-Hexachloro Methylethylketoxime 3-Nitro-3-hexene p-Nitrosodiphenylamine inactive inactive 319-84-6 96-29-7 4812-22-0 156-10-5

CPDBAS SDF Fields (61 total)*

DSSTox Standard Chemical Fields (19) * STRUCTURE InChlKey field added in v5b

DSSTox Standard Toxicity Fields (3)

ActivityOutcome CPDBAS Mutagenicity *modified in v5b (formerly Mutagenicity_SAL_CPDB)

TD50 Rat mg TD50 Rat mmol ActivityScore CPDBAS Rat *new to v5b TD50 Rat Note TargetSites Rat Male TargetSites Rat Female TargetSites Rat BothSexes ActivityOutcome CPDBAS Rat *new to v5b TD50 Mouse mg TD50 Mouse mmol ActivityScore CPDBAS Mouse *new to v5b TD50 Mouse TD50 Dog mg TargetSites M TargetSites Dog TargetSites M TD50 Rhesus mg TargetSites Rhesus TargetSites M TD50 Cynomolgus mg ActivityOutcon TargetSites Cynomolgus TD50 Hamste TD50 Dog Primates Note *modified in v5b TD50 Hamste ActivityOutcome CPDBAS Dog Primates *new to v5b Activity Score ActivityOutcome CPDBAS SingleCellCall *modified in v5b TD50 Hamste ActivityOutcome CPDBAS MultiCellCall *modified in v5b TargetSites H ActivityOutcome CPDBAS MultiCellCall Details *modified in v5b TargetSites H Note CPDBAS contains controlled text entries for version content updates TargetSites H NTP TechnicalReport ActivityOutcon ChemicalPage URL(formerly Website URL in v4a), contains link to the record-specific CPDB Chemical Index TD50 Dog mg data page, e.g. see ACETALDEHYDE [EXIT Disclaimer].

S	NCBI	Pub chem Substance
Search	PubChem Su	ibstance 🔽 for dsstox Go Clear Save Search
Limit	s Preview/Ir	ndex History Clipboard Details
Displa	y Summary	Show 20 Sort by Send to
Tools:	8 6 6	Links: Related Structures, BioAssays, Literature, Other Links 🗵
All: 1	2940 BioAs	say: 3821 Protein3D: 0 Rule of 5: 7987 🛪 12940 DSSTox Substances
Items	1 - 20 of 129	940
□ 1: 3	SID: 48423627	Related Structures
		MALEIC HYDRAZIDE DIETHANOLAMINE; 2-hydroxy-N-(2-hydroxyethyl)ethanaminium 6-oxo- 1,2,3,6-tetrahydropyridazin-3-olate; 5716-15-4 Compound ID: 24180705 Source: EPA DSSTox (31555) DSSTox NTPHTS Download Page IUPAC: bis(2-hydroxyethyl)azanium; 6-oxo-1H-pyridazin-3-olate MW: 217.222400 g/mol MF: C8H15N3O4
□ 2 : 3	SID: 48423362	Related Structures, Literature
		Dodecylbenzenesulfonic acid, sodium salt; 25155-30-0 Compound ID: 23707968 Source: EPA DSSTox (31261) IUPAC: sodium 4-dodecan-3-ylbenzenesulfonate MW: 348.475830 g/mol MF: C18H29NaO3S

S NCBI	Pub hem BioAssay	
Search PubChem Bi	ioAssay 🔽 for dsstox Go Clear Save Search	
Limits Preview/I	ndex History Clipboard Details	
Display Summary -	Show 20 💽 Sort by 💽 Send to 🔍 11 DSSTox "Bioassay	<mark>/S"</mark>
Tool: 🚫 🗵 Lii	nks: Related BioAssays, Compounds, Literature, Other Links 😰	
All: 74 Confirmat	tory: 63 MLSCN: 63 Protein Target: 0 Screening: 1 Summary: 0 🔀	
Items 1 - 20 of 74		
Method] Source: EPA	Summary Data (Active) Related BioAssays, Compounds, Literature, Other Literature, Other Literature, National Center for Toxicological Research Estrogen Receptor Binding Database [Screening DSSTox Tested: 232; Active: 131	inks
Source: EPA		inks
Substances 1 3: AID: 1205 DSSTox (CPDI Source: EPA 1 Substances 1	 AID 1194: CPDBAS Salmonella Mutagenicity AID 1189: CPDBAS SingleCellCall AID 1205: CPDBAS MultiCellCall AID 1208 CPDBAS Rat Bioassay (M/F/Both) 	 403 /860 Active 806 /1547Active 582 /1152Active 587 /1240 Active 445 /1007Active
□ 4: AID: 1189 DSSTox (CPDI Source: EPA I Substances T □ 5: AID: 1208	 AID 1190: CPDBAS Dog & Primates Bioassay AID 1195: FDAMDD – FDA Maximum Daily Dose 	15/32Active1216/1216Active131/232Active580/617Active
	no) ouremegenie rotency outubuoo oummury nat biouoody neodato [other method]	
Substances 1	fested: 1240; Active: 587	

👆 Related BioAssays by Activity Overlap 🗵 AID: 1205 🖸 Name: DSSTox (CPDBAS) Carcinogenic Potency Database Summary MultiCellCall Results Data Source: EPA DSSTox Activity Overlap for CPDBAS BioActivity Analysis: Structure-Activity MultiCellCall Results (ୱ) 334 Related BioAssays by Activity Overlap of AID 1205 Display: 20 Go To Page 1 Total Pages: 17 Activity Active in **BioAssay Name** Similarity Both AID: 1189, DSSTox (CPDBAS) Carcinogenic Potency Database Summary 72.6% 572 1 SingleCellCall Results AID: 1208, DSSTox (CPDBAS) Carcinogenic Potency Database Summary Rat 2 62.3% 441 **Bioassay Results** AID: 1199, DSSTox (CPDBAS) Carcinogenic Potency Database Summary 3 56% 362 Mouse Bioassay Results AID: 1194, DSSTox (CPDBAS) Carcinogenic Potency Database Salmonella 32.8% 239 4 Mutagenicity 5 6.9% 40 AID: 1191, DSSTox (CPDBAS) Carcinogenic Potency Database Summary Hamster Bioassay Results AID: 426, Cell Viability - Jurkat 4.3% 29 6 AID: 544, Cell Viability - SH-SY5Y 7 4.2% 29 AID: 1188, DSSTox (EPAFHM) EPA Fathead Minnow Acute Toxicity 3.8% 42 8 AID: 540, Cell Viability - N2a 9 3.6% 24 AID: 543, Cell Viability - H-4-II-E 10 3.3% 22 AID: 981, Cell Viability - LYMP2-010 113.3% 22 AID: 427, Cell Viability - Hek293 12 3.2% 20 55 AID: 1195, DSSTox (FDAMDD) FDA Maximum (Recommended) Daily Dose 13 🗖 3.2% Database

About DSSTox Work in Progress

Table

Site Map

Help

Structure Data Files

Apps, Tools & More DSSTox Community

Glossary of Terms

Central Field Definition

U.S. Environmental Protection Agency Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network Recent Additions | Contact Us Search: O All EPA O Inis Area | ______ You are here: EPA Home * Computational Toxicology Research Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network

Work in Progress DSSTox Frequent Questions

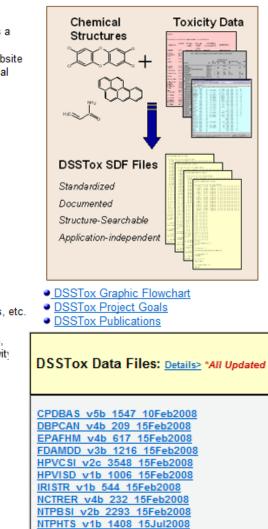
Distributed Structure-Searchable Toxicity (DSSTox) Database Network is a project of <u>EPA's National Center for Computational Toxicology</u>, helping to build a public data foundation for improved structure-activity and predictive toxicology capabilities. The DSSTox website provides a public forum for publishing downloadable, structure-searchable, standardized chemical structure files associated with toxicity data. <u>More></u>

25 February 2008

***File Updates and Enhancements:

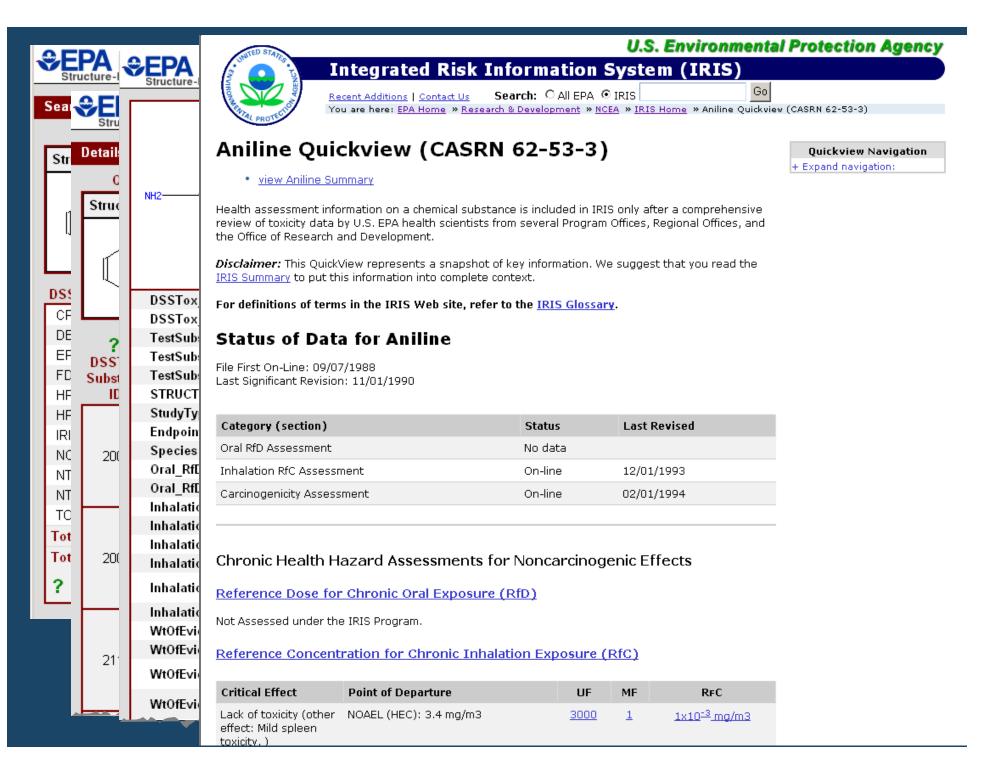
Addition of new DSSTox Standard Chemical Field to all files: <u>STRUCTURE_InChIKey</u>

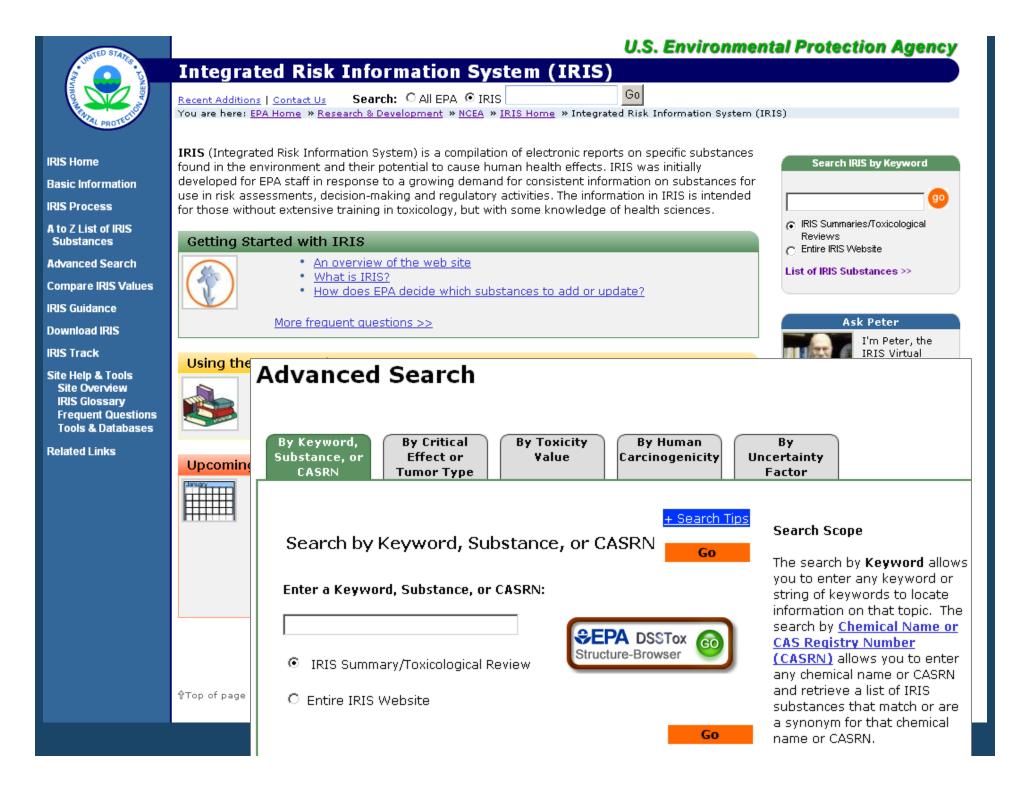
· Additional QA review, structure/CAS modifications, elimination of abbreviations in field entries, etc.


 Addition of categorical and ranked activity summary fields in 5 DSSTox Data Files (CPDBAS, DBPCAN, EPAFHM, FDAMDD, NCTRER), corresponding to standard <u>PubChem</u> bioassay activity fields:

allows users to search by $\underline{\text{DSSTox}}$ $\underline{\text{Standard}}$ $\underline{\text{Chemical Fields}}$ and includes options for:

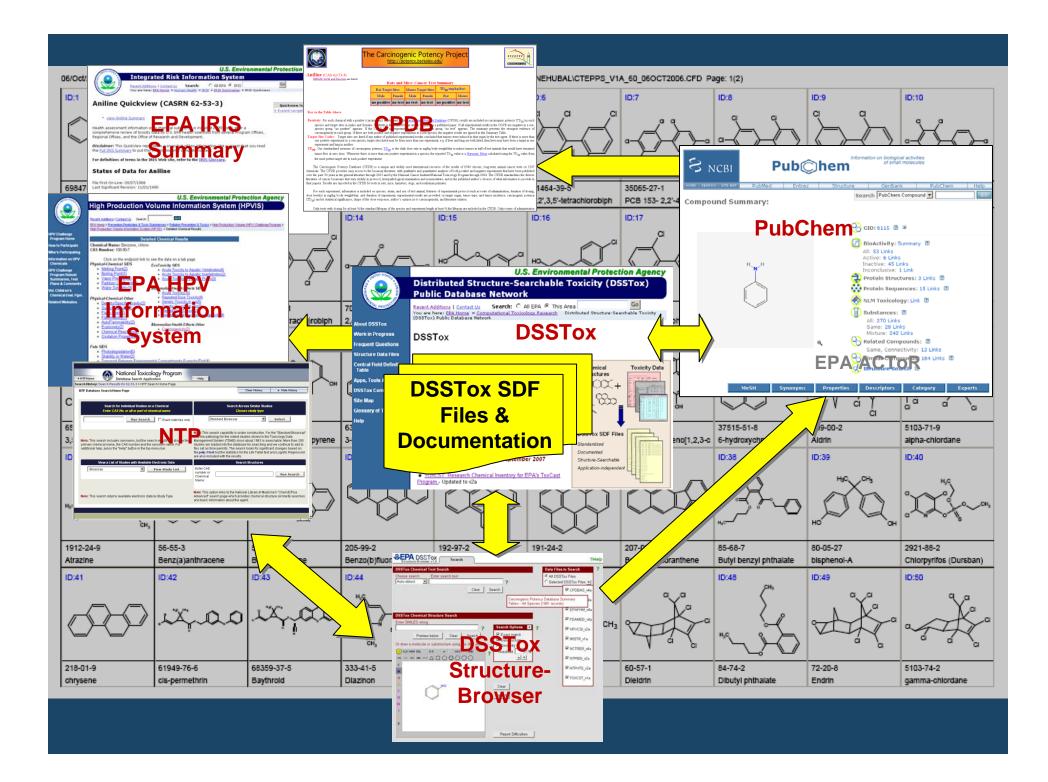
Text Search: Chemical Name, CAS RN, InChl, Formula
Structure Search (Exact, Substructure, Similarity):
SMILES or Structure Drawing Tool entry


***Revised Standard ID Fields for all DSSTox files:


 Modified <u>Record</u>, File, <u>Chemical</u>, and <u>Substance ID fields</u> to index all unique DSSTox structures and substances, also with respect to file record and version

TOXCST v2b 320 08Feb2008

Structure-Browser v1.0 Search File Incidences	?Help
DSSTox Chemical Text Search Data Files Choose search: Enter search text: © All DSST	to Search Fox Files DSSTox Files ▼ CPDBAS_v5b DBPCAN_v4b
DSSTox Chemical Structure Search Enter SMILES string: ? Search Options ? Preview below Clear Search Or draw a molecule or substructure using the JME editor: ? Image: CLR NEW DEL D-R ++ UD0 JME ?	EPAFHM_v4b FDAMDD_v3b HPVCSI_v2c HPVISD_v1b IRISTR_v1b NCTRER_v4b
C N C EPA Integrated Risk Information System Structure-Index Locator File (544 records Clear F Clear Search http://www.epa.gov/dsstox_struct	TS_v2b I™ TOXCST_v2b
Report Difficulties	



Structure-Browser v1.0	earch File Incidences Search Details Substance Results ?Help
NH2	RISTR: EPA Integrated Risk Information System (IRIS) Structure- Index Locator File (544 records) IRISTR_v1a_544_28Jul2007 IRISTR Source Website Pub©hem
DSSTox_RID	Links directly to chemical data page for
DSSTox_Generic_SID	20090 Aniline in PubChem
StudyType	Human Health Exposure Toxicity Review for Risk Assessment
Endpoint	cancer; acute; short-term; sub-chronic; chronic; developmental
Species	rodent; human; dog; rabbit
STRUCTURE_Shown	tested chemical
TestSubstance_ChemicalName	Aniline Aniline
TestSubstance_CASRN	62-53-3
TestSubstance_Description	single chemical compound
Oral_RfD_Assessed	0
Oral_RfD_CriticalEffects	Not assessed under the IRIS program.
Inhalation_RfC_Assessed	1
Inhalation_RfC_CriticalEffects	mild spleen toxicity
Inhalation_RfC_mg_per_m3	0.001 mg/m3
Inhalation_RfC_mmol_per_m3	1.07380820711613E-05 mmol/m3
Inhalation_RfC_Notes	NOAEL (No observed adverse effect level) HEC (Human Equivalent Concentration): 3.4 mg/m3
Inhalation_RfC_Confidence	Low
WtOfEvidence_Cancer_Assess	ed 1
WtOfEvidence_Cancer_Concer	
WtOfEvidence_1986GuidelineC	- Carcinogenicity in animais
WtOfEvidence_Cancer_Narrati	/e Induction of tumors of the spleen and the body cavity in two strains of rat; and some supporting genetic toxicological evidence.

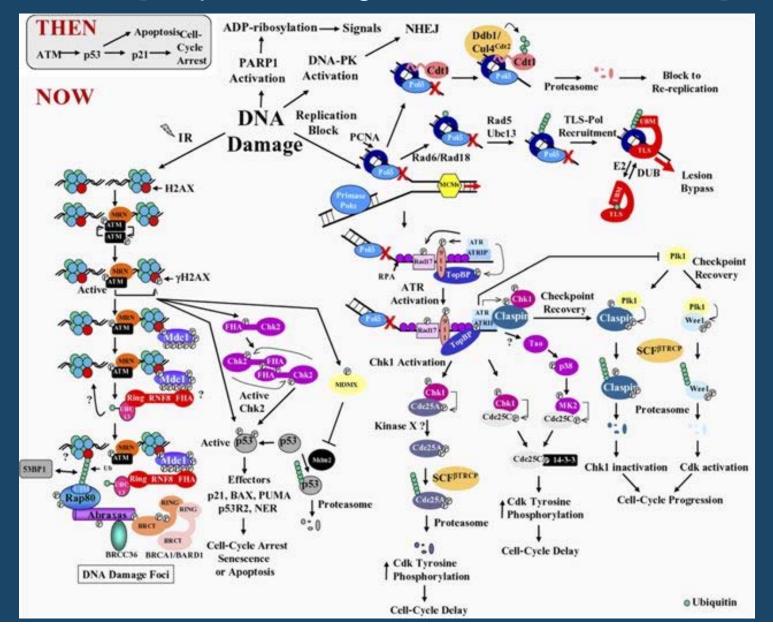
S NCBI	P	ub©l	hem
HOME SEARCH SITE MAP	PubMed	Entrez	Structure GenBank PubChem Help
Compound Su	mmary:		Search PubChem Compound 🔽 🛛 😡
			🕗 CID: 6115 🗵 🗉
	H	æ	 BioActivity: Summary All: 53 Links Active: 6 Links Inactive: 45 Links Inconclusive: 1 Link Protein Structures: 3 Links Protein Sequences: 15 Links NLM Toxicology: Link Substances: All: 270 Links Same: 28 Links Mixture: 242 Links Related Compounds: Same, Connectivity: 13 Links
			Similar Compounds: 164 Links 2 C Structure Search 2
	MeSH S	ynonyms	Properties Descriptors Category Exports

Part II Toxicity Profiling

National Academy of Sciences Report (2007) *Toxicity Testing in the Twenty-first Century: A Vision and a Strategy*

NAS PANEL SEEKS MAJOR SHIFT IN HOW EPA ASSESSES CHEMICALS' TOXICITY

Date: June 22, 2007 -



A National Academy of Sciences (NAS) panel is calling for a major shift in how EPA assesses chemicals' toxicity, recommending that the agency base its toxicological research and regulatory processes on how substances affect biological pathways -- which send information within and between cells -- rather than so-called health endpoints, such as cancer.

The new studies envisioned by the panel would evaluate chemicals' effects on biological processes using cells or cell lines, preferably human, to examine how they react to exposure to different substances. Rather than focusing research and basing regulations on endpoints, such as a substance's apparent ability to create tumor cells or harm brain development in fetuses, EPA should center toxicity testing around "the perturbations in toxicity pathways that are expected to lead to adverse effects," the report says.

"In this framework, the goals of toxicity testing are to identify critical pathways that when perturbed can lead to adverse health outcomes and to . . . understand the effects of perturbations on human populations," says the report, *Toxicity Testing in the Twenty-first Century: A Vision and a Strategy*.

The DNA Damage Response: 10 Years After [Harper & Elledge, Mol Cell 14:739, 2007]

U.S. ENVIRONMENTAL PROTECTION AGENCY

National Center for Computational Toxicology

○ All EPA ⊙ This Area Search: Contact Us You are here: EPA Home » National Center for Computational Toxicology » ToxCast™ Program

ToxCast[™] Program

http://www.epa.gov/ncct/toxcast/

Go

Predicting Hazard, Characterizing Toxicity Pathways, and Prioritizing the **Toxicity Testing of Environmental Chemicals**

Introduction

In 2007, EPA launched ToxCast[™] in order to develop a cost-effective approach for prioritizing the toxicity testing of large numbers of chemicals in a short period of time. Using data from state-of-the-art high throughput screening (HTS) bioassays developed in the pharmaceutical industry, ToxCast™ is building computational models to forecast the potential human toxicity of chemicals. These hazard predictions will provide EPA regulatory programs with science-based information helpful in prioritizing chemicals for more detailed toxicological evaluations, and lead to more efficient use of animal testing.

ToxCast[™] Navigation

Introduction ToxCast[™] Chemicals ToxCast[™] Assavs ToxCast[™] Information Management ToxCast[™] Partnerships ToxCast[™] Contractors ToxCast[™] Presentations ToxCast[™] Publications

POLICYFORUM

Science: Feb 15, 2008

TOXICOLOGY

Transforming Environmental Health Protection

Francis S. Collins,1*† George M. Gray,2* John R. Bucher3*

We propose a shift from primarily in vivo animal studies to in vitro assays, in vivo assays with lower organisms, and computational modeling for toxicity assessments.

n 2005, the U.S. Environmental Protection throughput screening (HTS) and other autotion, usually between 2 and 10 µM, and toler-Agency (EPA), with support from the U.S. mated screening assays into its testing ate high false-negative rates. In contrast, in

Home

Basic Information

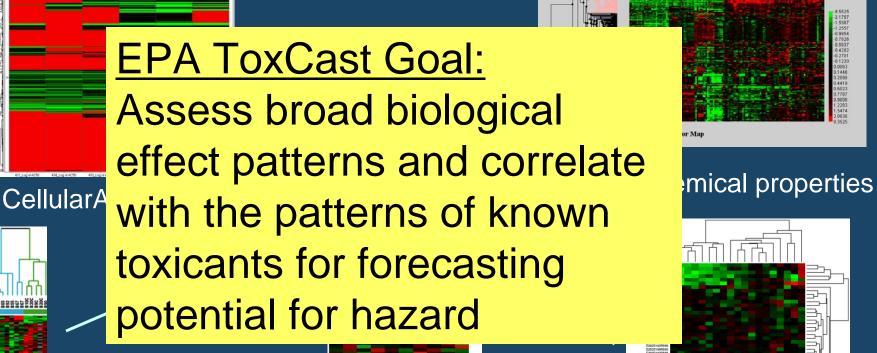
Organization Post Doc Profiles

Framework

Databases and Models

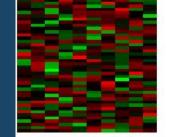
Research Activities ACTOR ToxCast™ Virtual Liver

Conferences and Seminars


Publications

BO EP Ρ

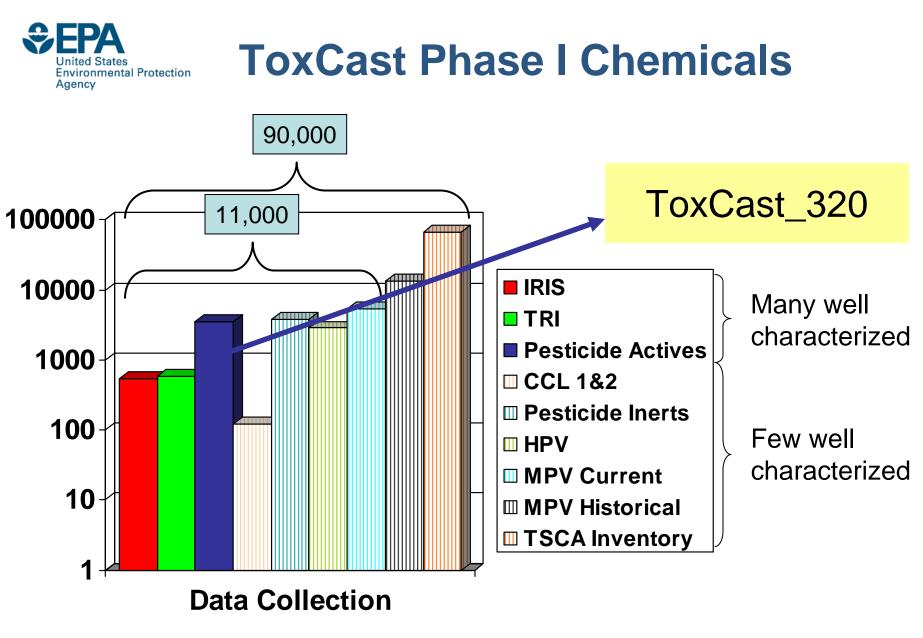
Jo


Re

Correlating Domain Outputs

Toxicology Endpoints

Biochemical Assays


Genomic Signatures

ToxCast Phase I Objective: *Derive Predictive Signatures for Chemical Prioritization*

Requirements for Chemical Selection:

- Sufficient number and diversity of chemicals
- Availability of high quality reference in vivo toxicity data covering broad range of endpoints
- Expectation of broad spectrum biological activity
- Properties suitable for HTS
- Cost and availability

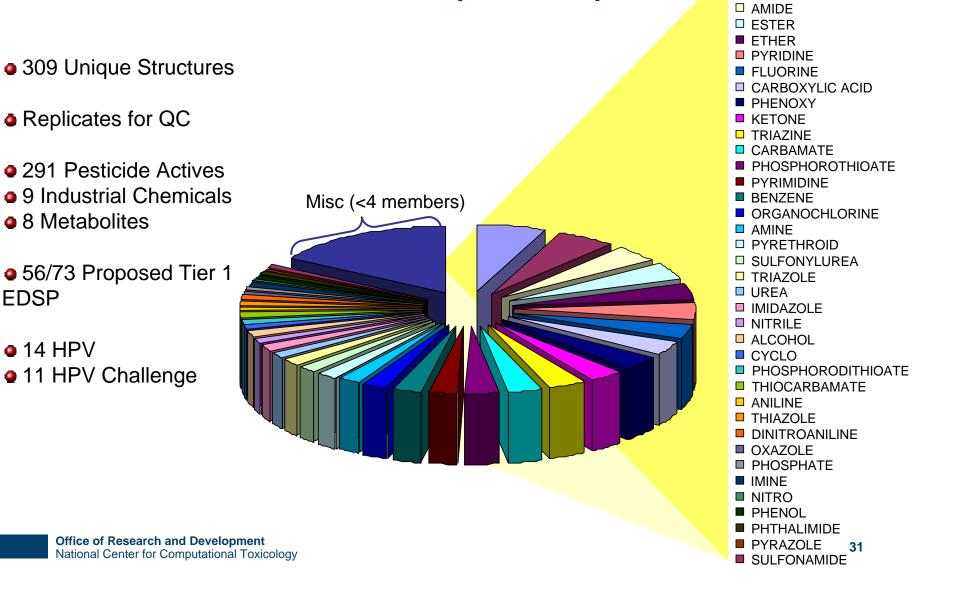
Prioritize List of ~840 Pesticide Actives

A

Toxico interest

Enviror relevan

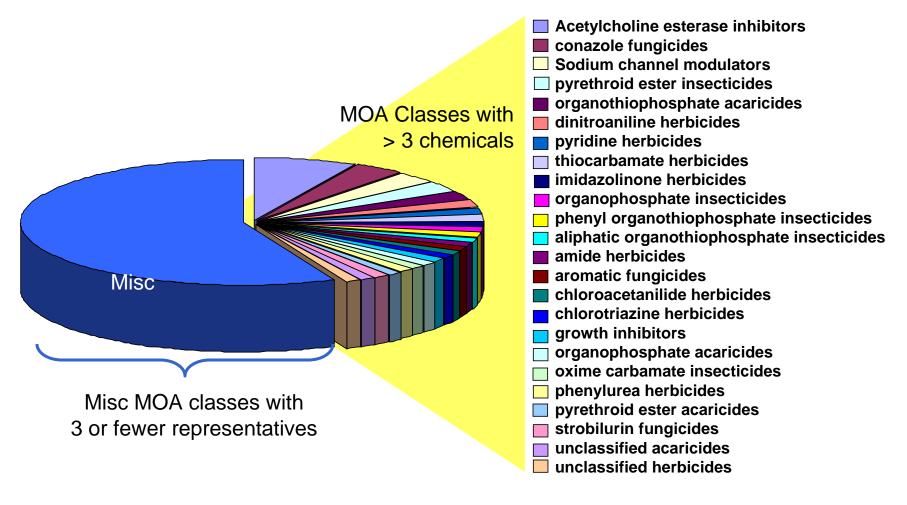
Data availability	CAS_NO	Parent Molecular Weight	ALogP		CHEMICALNAME		Exclude(X) Additional(+)	DER_TOTAL	Comment	Pesticides (3448)	Supported) (1082)	Pesticide (Food Use Actives) (336)		AntiMicrobial (Food Use) (26)	Inerts (2202)	List 2) (HPV (2843)	HPV Challenge (1973)	EDSP (79)	CCL (41)	Number of lists	Activity/Chemical Classes	Activity/Pesticidal M0/
	135158-54-2	_	2.19 061		nzothiadiazol			6		1	1	1	0) (_	_	0	0	0	3		unclass
	123312-89-0				zin-3(2H)-on			6		1	1	1	0) (_	0	0	0	0	3	Triazine	
• • •	68049-83-2	_			zolo{4,3-a}p			6		1	1	0	0	-) (0	0	0	0	2		unclass
Toxicological	139-40-2	_			zine-2,4-diar			5		1	1	0	0) (0	0	0	0	2		<u>chlorotri</u>
= Toxicological	122-34-9				zine-2,4-diar			6		1	1	1	1	· ·) (0	0	1	0	6		chlorotri
!	101-05-3	_			zine-2-amine				louse	1	1	0	0	-) (0	0	0	0	2	_	triazine
interest	29091-21-2				enediamine,			6		1	1	0	0) (_	0	0	0	0	2	Amine,	<u>phenyle</u>
	118134-30-8				ispiro?4,5Ud	ecane-2-		6		1	1	0	0	0) () ()	0	0	0		2		unclass
	116255-48-2	_		503 1H-1,2,4-											_	_					2		conazol
	119168-77-3			102 1H-Pyraz		esti	cio		\mathbf{D}	20	lie	tra	sti	on		$\mathcal{D}_{\mathcal{L}}$		or	de		2		pyrazol
Environmental	119515-38-7			705 1-Piperidi	nec	ບວເເ	UIU			29	JIS	ιc	21		IJ	16	70		U,	D i	2	Alcohol	
Environmental	101-10-0			201 2-(m-Chlo	propl							_			-	_	-	-			2		phenox_
	21564-17-0	238.3	3.56 035					6		1	1	0	1	0	1 0		0	0	0		4	Thiazol	benzoth
	2971-36-0				hydroxyphe		+		netabol	0	0	0	0	-) (_	0	0	0	0	0		organoc
relevance	94-75-7				orophenoxya				epro	1	1	1	0) (_	1	1	1	0	6		phenox
relevance	16079-88-2	_			zolidinedione			6		1	1	0	1) (1	0	0	0	4	Imidazo	
	136-45-8			201 2,5-Pyrid				6		1	1	1	0	-	_) 0	0	0	0	0	3	Ester,	
	120-32-1			201 2-Benzyl-		nol		5		1	1	0	1	-	1 [0	0	0	0	4	Cresol,	
	7786-34-7			801 2-Buteno	ic acid, 3-			6		1	1	0	0	0) (0	0	1	0	3	Organo	organop
ADMET Testsubstance_Chemic Molecular _Solubi alName Veight litgLeve ALog		PAPTC 26	3 561 069 NTPHT 1408	203 2.0 bloroJ 6 EPADNT 82	DNT GRADN		HP¥(CSI	ICCVA 87		1 NCTF 232		NTP 2415			GTZ	IR 54	1 ISSI 14	EC:		M EP		FDAMDD 1217
	.47 1	30		86																	5		
	.46 1	44		157										1373		50	19			_			
2-4,D 221 3	.46 1	52		167				250						000		50		19:	_		6		
Octhilinone 213.3 3				107								119		233		50	17		3				
	.35 1	584		280								119		382		141			3	1	143		
Acetaminophen 151.2 4	1.35 1	584 104		280 436								119		382 725			18		3	1	143	165	3
Acetaminophen 151.2 4 Acetochlor 269.8 3	1.35 1 3.12 1	584 104 114		280 436 440										382 725 731		141	18		5		17		3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3	1.35 1 3.12 1 1.99 1	584 104 114 118		280 436 440 459								119		382 725 731 782		141 102	18	1	5		17 18	575	3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4	1.35 1 3.12 1 1.99 1 1.47 1	584 104 114 118 119		280 136 140 159 160 6	3	2	2					103		382 725 731 782 783		141 102 4	18 19 13	1	5		17 18 19		3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3	1.35 1 3.12 1 1.99 1 1.47 1 1.78 1	584 104 114 118 119 149		280 136 140 159 160 6 501	3	2		1127		8				382 725 731 782 783 869		141 102 4 15	18 29 	11	5 6 8		17 18 19 25	575	3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3	1.35 1 3.12 1 .99 1 1.47 1 1.78 1 1.57 1	584 104 114 118 119 149 156		280 436 440 459 460 6 501 511	3	2	2 2 2	2998		8		103		382 725 731 782 783 869 895		141 102 4 15 17	18 29 3 3 8 75	1	5 6 8		17 18 19	575 264	3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4	1.35 1 3.12 1 .99 1 1.47 1 1.78 1 2.57 1 0.06 1	584 104 114 118 119 149 156 26		2200 1436 1440 1459 1460 6 5 5 5 5 5 5 5 5 5 5 5 5 5	3	2				8		103		382 725 731 782 783 869 895 1065		141 102 4 15	18 29 3 3 8 75	11	5 6 8		17 18 19 25	575	3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 IH-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaicin 305.4 3	1.35 1 3.12 1 .99 1 1.47 1 1.78 1 1.57 1	584 104 114 118 119 149 156		280 436 440 459 460 6 501 511	3	2		2998		8		103 49 168		382 725 731 782 783 869 895 1065 1074		141 102 4 15 17	18 29 3 3 8 75	1 1 1 4 5	5 6 8 8 7		17 18 19 25 27	575 264 24	3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 IH-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaicin 305.4 3 Carbaryl 201.2 3	1.35 1 3.12 1 1.39 1 1.47 1 1.78 1 1.57 1 1.06 1 1.79 1	584 104 114 118 119 149 156 26 222		280 436 440 459 460 650 501 511 584 887	3			2998 20		8		103		382 725 731 782 783 869 895 1065 1074 1620		141 102 4 15 17 32	18 29 13 13 18 75 29	11	5 6 8 8 7		17 18 19 25 27 27 38	575 264	3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaioin 305.4 3 Carbaryl 2012 3 Carbaryl 2012 3	1.35 1 3.12 1 1.39 1 1.47 1 1.78 1 1.57 1 1.06 1 1.79 1	584 104 114 118 119 149 156 26 222		280 436 440 459 460 650 501 511 584 887	°.			2998		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1079		141 102 4 15 17 32 34	18 29 33 38 75 29	1 1 1 4 5	5 6 8 8 7	2	17 18 19 25 27 27 38 293	575 264 24	3
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaicin 305.4 3 Carbaryl 201.2 3 Carbendazim 191.2 3 Chloropicrin 164.4 3	1.35 1 3.12 1 1.39 1 1.47 1 1.78 1 1.57 1 1.06 1 1.79 1	584 104 114 118 119 149 156 26 222		2200 1436 1440 1459 1460 6 5 5 5 5 5 5 5 5 5 5 5 5 5	cide			2998 20 2985		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620		141 102 4 15 17 32	18 29 33 38 75 29	1 1 1 4 5	5 6 8 8 7	2	17 18 19 25 27 27 38	575 264 24	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaicin 305.4 3 Carbaryl 201.2 3 Carbaryl 201.2 3 Choropiorin 194.4 3 Citric acid 192.1 5	1.35 1 3.12 1 1.39 1 1.47 1 1.78 1 1.57 1 1.06 1 1.79 1	584 104 114 118 119 149 156 26 222		280 436 440 459 460 650 501 511 584 887	cide			2998 20		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1079 1124		141 102 4 15 17 32 34	18 29 3 3 3 5 5 29 42 19 19	1 1 1 4 5	5 6 8 8 7	2	17 18 19 25 27 27 38 293 48	575 264 24	3 181 288
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 IH-Purine-2,6-dione, 3,7-dihyd 194.2 4 Carbaryl 201.2 3 Carbaryl 201.2 3 Choropiorin 164.4 3 Chiro acid 192.1 5 Dazomet 162.3 3	135 1 3.12 1 .99 1 147 1 1.57 1 .57 1 .06 1 .73 1 DSS	584 104 114 119 119 149 156 26 26 222 222	x F	280 436 440 459 460 650 501 511 584 887				2998 20 2985 129		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1079		141 102 4 15 17 32 34 41	18 19 13 13 15 19 12 19 19 15	1 1 1 4 5	5 6 8 8 7	22	17 18 19 25 27 27 38 293	575 264 24	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaioin 305.4 3 Carbaryl 2012 3 Carbaryl 2012 3 Chloropiorin 184.4 3 Chloropiorin 184.4 3 Diazionn 304.3 3	135 1 312 1 399 1 147 1 1.78 1 577 1 1.06 1 1.79 1 DSS 0.8	584 104 114 118 119 143 156 26 222 570 320	x F	280 136 140 159 160 6 501 511 511 534 11e In 383				2998 20 2985 129		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1079 1124 1224		141 102 4 15 17 32 34 41 51	18 (9) (3) (3) (3) (5) (5) (5) (5) (2) (10) (11) (12) (12) (13) (13) (14) (15) (15) (16) (16) (16) (16) (16) (16) (16) (16	1 1 1 4 5	5 6 8 8 7	22	17 18 19 25 27 27 38 293 48 48 379	575 264 24 33	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaioin 305.4 3 Carbaryl 2012 3 Carbaryl 2012 3 Chloropiorin 184.4 3 Chloropiorin 184.4 3 Diazionn 304.3 3	135 1 139 1 139 1 147 1 157 1 157 1 157 1 DSS 0.8 1 124 1	584 104 114 119 149 166 26 222 222 5 7 0 320 320 320	x F	280 136 140 159 159 159 159 159 159 159 159				2998 20 2985 129 859		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1079 1124 1224 1226		141 102 4 15 17 32 34 41 51 54	18 9 3 3 3 3 5 5 5 9 2 9 2 9 15 15 15 15 15 15	1 1 1 4 5	5 6 8 8 7 2 2	20 3 3 3	17 18 19 25 27 38 293 48 379 302 67 66	575 264 24 33	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 IH-Purine-2,6-dione, 3,7-dihyd 194.2 4 Carbaryl 201.2 3 Carbendazim 1912 3 Chloropicrin 164.4 3 Citrie acid 192.1 5 Dazomet 162.3 3 Diceloran 207 3 Dichlorvos 221 4 Disulfoton 274.4 3	135 1 312 1 399 1 147 1 1.78 1 1.78 1 1.78 1 1.78 1 1.79 1 DSS 0.8 1 1.24 1 1.24 1 1.24 1 1.24 1 1.24 1	584 104 114 118 119 149 156 222 570 320 320 320 320 320 320 320 320 320 32	x F	280 136 140 159 160 611 511 511 511 511 511 511 511				2998 20 2985 129 859 319		8		103 49 168		382 725 731 782 783 895 1065 1074 1620 1079 1124 1224 1224 1224 1224 1224 1224 122		141 102 4 15 17 32 34 41 51 54 57	18 9 3 3 3 3 5 5 5 9 2 9 2 9 15 15 15 15 15 15	11 11 44 55	5 6 8 8 7 2 2 7 7	20 3 3 3	17 18 19 25 27 38 293 48 379 302 67	575 264 24 33	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2.6-dione, 3.7-dihyd 194.2 4 Capsaioin 305.4 3 Carbaryl 201.2 3 Carbaryl 201.2 3 Choropiorin 164.4 3 Citric acid 192.1 5 Dazomet 182.3 3 Diazinon 304.3 3 Dicoran 207 3 Dicloran 207 3 Dicoloron 274.4 3 Camphor 152.2 3	135 1 312 1 399 1 147 1 157 1 157 1 0.06 1 1 0.08 1 1 1 1 1 1 1 1 1 1 1 1 1 1	584 104 114 118 119 143 156 222 5 7 0 320 320 320 320 320 320 320 320 320 3	x F	280 136 140 159 160 611 511 511 511 511 511 511 511				2998 20 2985 129 859 319		8		103 49 168		382 725 731 782 783 895 1065 1074 1620 1079 1124 1224 1224 1226 1273 1280 1364 1069		141 102 4 155 177 322 344 41 51 54 57 62	18 19 33 33 35 55 9 9 12 19 15 15 15 15 15 15 15 15 15 15 15 15 15	10 11 11 11 11 10 10 10 10 10 10 10	2	2: 2: 33 30	17 18 19 25 27 28 38 293 48 379 302 67 66 365 	575 264 24 33 33 334	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Carbaryl 2012 3 Carbaryl 2012 3 Carbaryl 2012 3 Chloropiorin 164.4 3 Chloropiorin 164.4 3 Diazinon 304.3 3 Dicloran 207 3 Disulfoton 274.4 3 Camphor 182.2 3 Carbarothioic acid, dipropyl- 189.3 3	135 1 312 1 139 1 147 1 157 1 157 1 DSS 0.8 1 157 1 0.06 1 157 1 0.06 1 157 1 0.06 1 157 1 1	584 104 114 118 119 143 156 26 222 5 TO 320 320 320 320 320 320 320 320 320 322 330 330	x F	280 136 140 159 159 159 159 150 501 511 511 511 511 511 511				2998 20 2985 129 859 319		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1074 1620 1079 1124 1224 1256 1273 1280 1364 1069 2135		141 102 4 15 17 32 34 41 51 54 57 62 886	18 1 13 1 13 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 15 1 16 1 17 1 18 1 19 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	10 11 11 11 11 11 10 10 10 10 10 10 10 1	2	2: 2: 33 34 1 33	17 18 19 25 27 38 293 48 293 48 379 302 67 66 365 84	575 264 24 33 33 334	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Alachlor 269.8 3 Aldicarb 199.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Carbaryl 201.2 3 Carbendazim 191.2 3 Chloropiorin 164.4 3 Citric acid 192.1 5 Dazomet 162.3 3 Diazinon 304.3 3 Dicoloran 207 3 Dichlorvos 221 4 Disulfoton 274.4 3 Carbenothioic acid, dipropyl- 189.3 3 Fluometuron 232.2 3	1.35 1 3.12 1 .39 1 .47 1 .57 1	584 104 114 118 119 149 156 286 222 570 320 320 320 320 320 320 320 320 320 32	x F	iiii iiiii iiiii iiiiii iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii				2998 20 2985 129 859 319		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1074 1620 1079 1124 1224 1256 1273 1280 1364 1069 2135 1452		141 102 4 15 17 32 34 41 51 54 54 57 62 866 34	18 19 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	10 10 10 10 10 10 10 23 24 24 26	5 6 8 8 7 7 2 2 7 7 3 8 8 0	22 33 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	17 18 19 25 27 38 293 48 379 302 67 66 365 84 315	575 264 24 33 33 334 328	
Acetaminophen 151.2 4 Acetochlor 269.8 3 Alachlor 269.8 3 Aldicarb 190.3 4 Atrazine 215.7 3 Benomyl 290.3 3 1H-Purine-2,6-dione, 3,7-dihyd 194.2 4 Capsaioin 305.4 3 Carbaryl 201.2 3 Chloropierin 164.4 3 Citric acid 192.1 5 Dazomet 162.3 3 Dicloran 207 3 Dichlorvos 221 4 Disulfoton 274.4 3 Carbenothioic acid, dipropyl- 189.3 3 Fluometuron 232.2 3	135 1 312 1 139 1 147 1 157 1 157 1 DSS 0.8 1 157 1 0.06 1 157 1 0.06 1 157 1 0.06 1 157 1 1	584 104 114 118 119 143 156 26 222 5 TO 320 320 320 320 320 320 320 320 320 320	x F	280 136 140 159 159 159 159 150 501 511 511 511 511 511 511	2			2998 20 2985 129 859 319		8		103 49 168		382 725 731 782 783 869 895 1065 1074 1620 1074 1620 1079 1124 1224 1256 1273 1280 1364 1069 2135		141 102 4 15 17 32 34 41 51 54 57 62 886	18 19 13 13 13 15 15 15 15 15 15 15 15 15 15 15 15 15	10 11 11 11 11 11 10 10 10 10 10 10 10 1	5 6 8 8 7 2 2 7 7 7 3 8 8 0 0 2	22 23 33 3 3 3 3 3 3 3 3 3 3 1	17 18 19 25 27 38 293 48 293 48 379 302 67 66 365 84	575 264 24 33 33 334	



Prioritize Chemicals for ToxCast Phase I: Chemical Characteristics

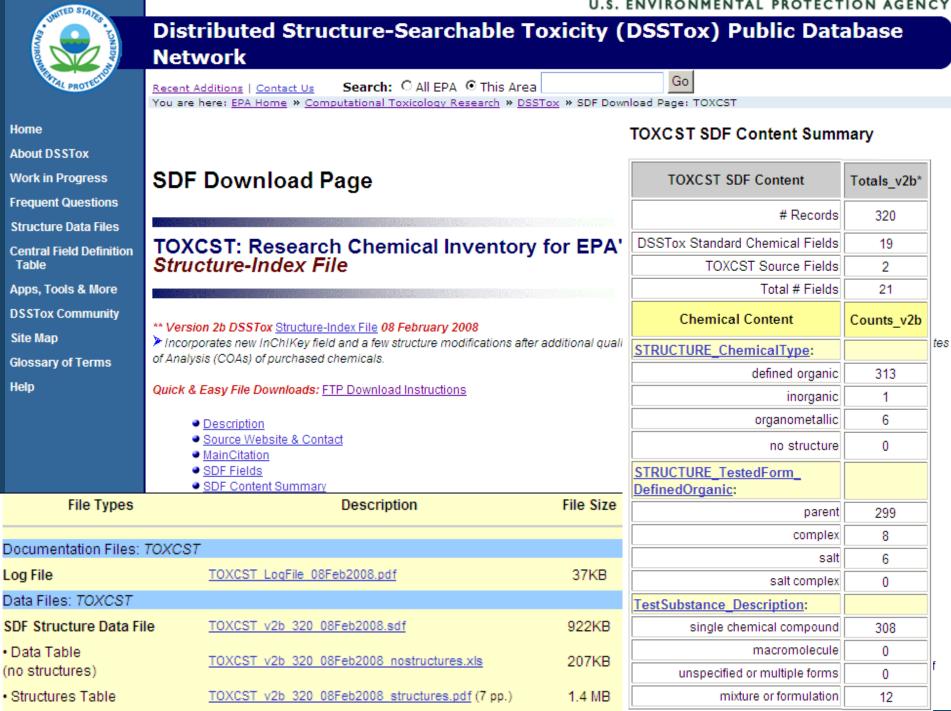
- Meet minimal HTS phys-chem requirements
 - Soluble in DMSO / water
 - Not highly volatile
 - Molecular Weight in approx range [100-1,000]
 - Available in ~pure or standard form with structure
- Span diverse structural space
- Include clusters of similar chemicals

Chemical Classes in ToxCast_320 (Phase I)



CHLORINE

ORGANOPHOSPHORUS



Mode-of-Action Classes in ToxCast_320 (Phase I)

Classification based on OPPIN

U.S. ENVIRONMENTAL PROTECTION AGENCY

DER Format Study Identifiers **EPA Pesticide Programs:** Tested Chemical Information **Data Evaluation Records (DERs)** IDs Name Purity Used for hazard identification and Study Type IDs Reviewer Information characterization Citation(s) Study Types **Executive Summary** - Chronic Summary Study Design - Cancer Summary Effects - Subchronic Endpoints (NOAEL/LOAEL) - Multigeneration \$10,000,00 - Developmental - Others: DNT, Neurotox, Immu I/Chemical Properties Derive Endpoints (NOAEL nar new mation Systemic Species - Parental - Strain Husbandry Offspring Results (full dose-response) - Reproductive Clinical signs Maternal Body weight - Developmental Clinical Chemistry/ Hematology Critical Effects for Endpoints Gross Pathology Non-neoplastic Pathology Neoplastic Pathology Office of Research and Development - Parental vs. Offspring 34 National Center for Computational Toxicology Maternal vs. Fetal

Extraction of DER information

STUDY TYPE: Combined chronic toxicity/oncogenicity feeding - Rat

OPPTS 870.4300 [§83-5]

DP BARCODE: D257223 P.C. CODE: 111901

SUBMISSION CODE: S564270 TOX. CHEM. NO.: 497AB

TEST MATERIAL (PURITY): Imazalil (purity >97.4%) SYNON YMS: R023979

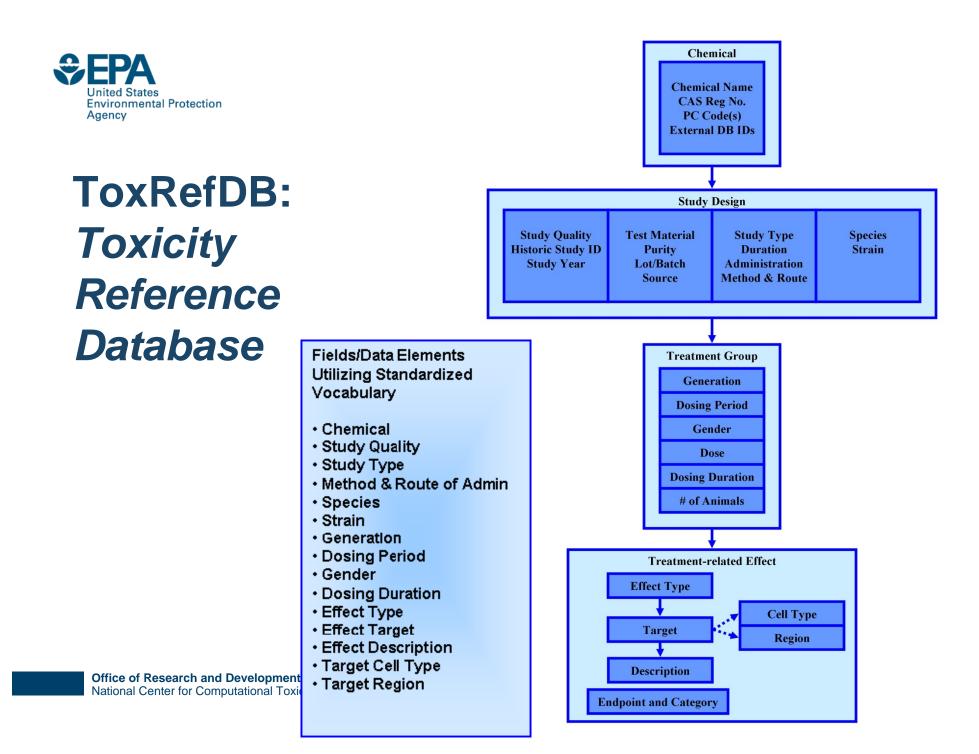
CITATION: Van Deun, K. 1999. Combined oral chronic toxicity/carcinogenicity study with Imazalil in the SPF Wistar rat. Dept. Toxicology, Janssen Research Foundation, 2340 Beerse, Belgium. Laboratory report number, 3817, June 8, 1999. MRID 44858001. Unpublished.

SPONSOR: Janssen Pharmaceutica N.V., 2340 Beerse, Belgium

EXECUTIVE SUMMARY:

In a chronic toxicity/oncogenicity study (MRID 44858001), Imazalil (≥97.4% a.i.) was administered in the diet to groups of 50 male and 50 female Hannover substrain (SPF) Wistar-derived rats at concentrations of 0, 50, 200, 1200, or 2400 ppm (equivalent to 0.0, 2.7, 10.8, 65.8, and 134.8 mg/kg/day for males and 0.0, 3.6, 14.6, 85.2, and 168.8 mg/kg/day for females) for two years. All rats were observed daily for clinical signs of toxicity and morbidity, weighed weekly, and food consumption monitored biweekly. Blood and urine samples were collected after 6, 12, and 18 months of treatment and at study end. Surviving rats were sacrificed after 104 weeks of treatment. All rats were necropsied and the tissues and organs inspected grossly and microscopically for toxicity-related effects and the carcinogenic potential of Imazali1.

The absolute weights of most organs were decreased while their weights relative to body weight increased for male and female rats in the 1200 and 2400 ppm treatment groups. These effects are considered related to inanition and inappetence and not a direct result of Imazalil treatment. However, effects found in the liver and thyroid was considered directly related to treatment. The absolute liver weight of male rats in the 2400 ppm group was increased while it was decreased in female rats. The associated relative liver weights of male and female rats in the 1200 and 2400 ppm groups were significantly increased 9-26%. In addition, the absolute and relative thyroid weights of male but not femal rats in the 1200 and 2400 ppm groups were increased

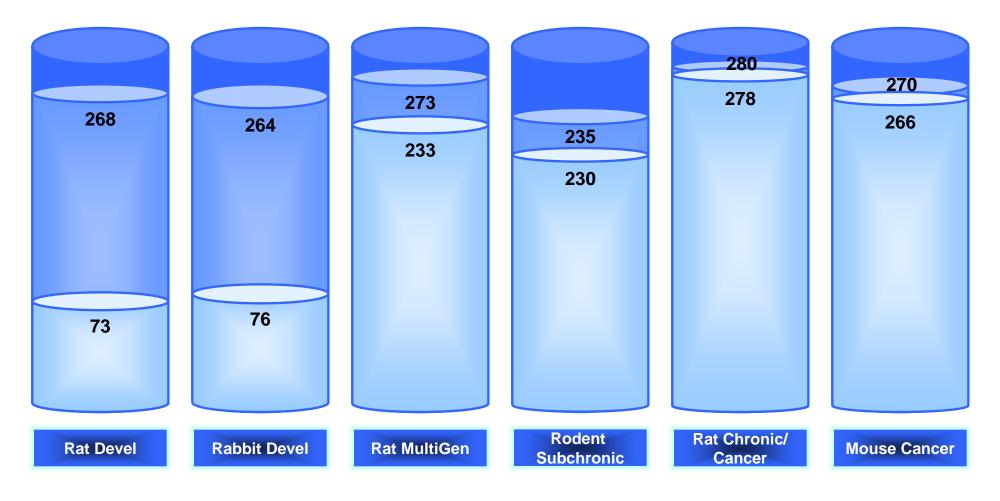

The effect of treatment on the liver (males and females) and thyroid (males only) were confirmed microscopically, but had distinct sex-related etiologies. The incidence of clear cell and basophilic foci was equivocal while assimphilic foci were significantly increased for male rats in the 2400 ppm group. In female rats of the 2400 ppm group, the incidences of clear cell and basophilic foci were significantly decreased but the incidence of eosinophilic foci was unaffected. Also, the incidence of hepatocyte faity vacualation was increased only in male rats of the 1200 ppm groups while the incidence of pigmentation was increased only in females of the 200, 1200, and 2400 ppm groups in addition, the location of hepatocellular hypertrophy was distinctly different. Female rats in the 1200 and 2400 ppm groups had significant increases in centracinar and penacinar hypertrophy. Finally, the incidence of thyroid follocular cell hyperplasia was increased only in male rats of the 1200 ppm and rats of the 1200 ppm groups. Finally, the incidence of thyroid follocular cell hyperplasia was increased only in male rats of the 1200 ppm groups and rats of the 1200 ppm groups in 2400 ppm groups in 2400 ppm groups in the 1200 ppm groups while the incidence of thyroid follocular cell hyperplasia was increased only in male rats of the 1200 ppm groups.

The lowest observed adverse effect level (LOAEL) for male and female rats was 1200 ppm (65.8 and 85.2 mg/kg/day, respectively) with a corresponding no observed adverse effect level (NOAEL) of 200 ppm (10.8 mg/kg/day males, 14.6 mg/kg/day females). These are based on the effects found on body weight, weight gain, and the macro- and microscopic effects noted in the liver of all rats and the thyroid of male rats.

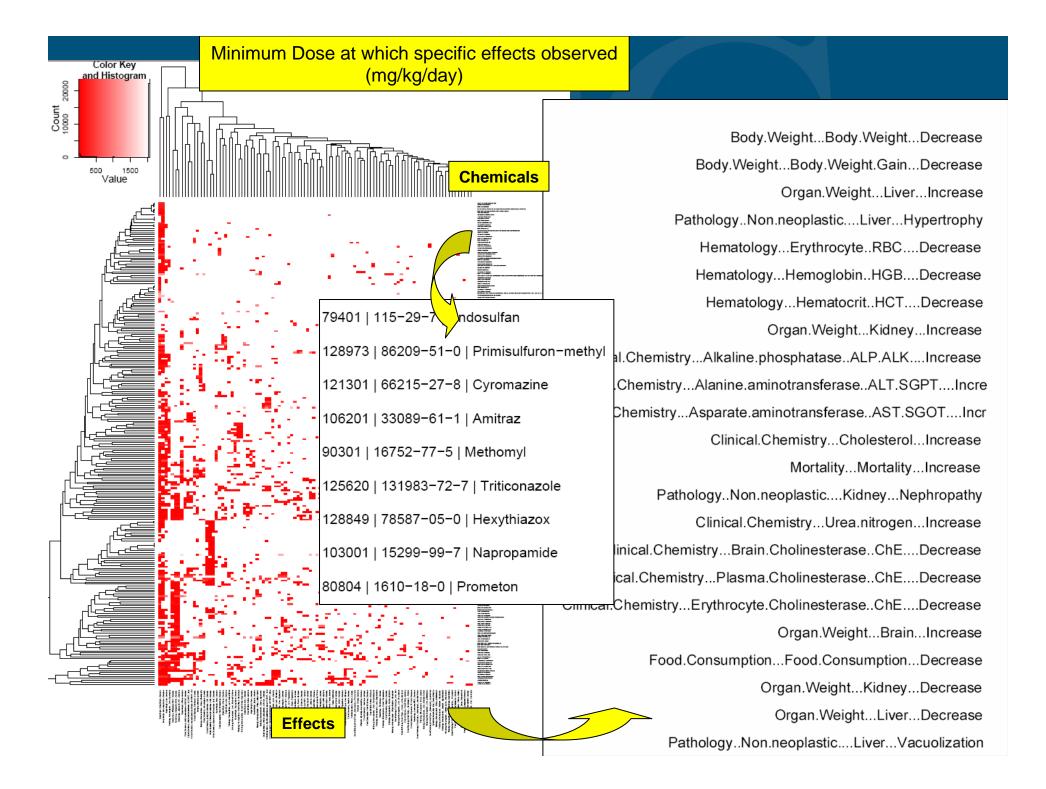
Male rats had a significant increase in the incidence of hepatocellular adenomas and thyroid follicular neoplasia while no increase was found for female rats. These results indicate a difference in the disposition of Imazalil between the sexes increases hepatic and thyroid neoplasia in male rats, likely through differences in metabolic activation of the test material

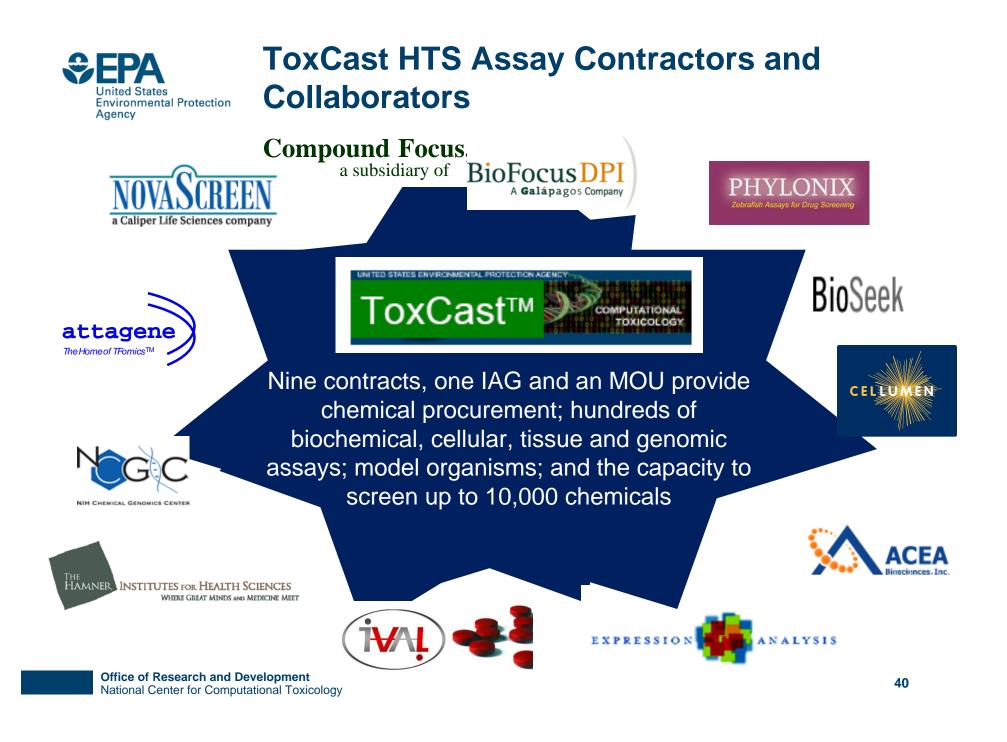
This chronic toxicity/oncogenicity study in the rat is Acceptable/guideline and satisfies the guideline requirement for a combined chronic toxicity/oncogenicity study in rats [83-5]. No deficiencies were noted for this study.

Office of Research and Development National Center for Computational Toxicology

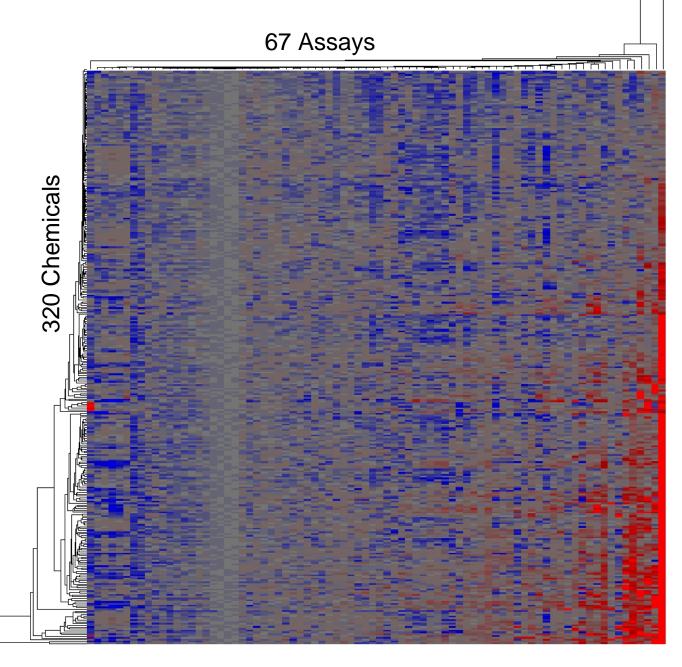


🖼 Toxicological Reference Database - Study Input Form	
Data Entry Completeness Score Inited States Environmental Profession Ageneration and the states Environmental Profession Ageneration Agenerati	ToxRefDB Input Form
Historic Study Identifiers Study/Data Quality MRID# 44858001 Primary Study Year 1999 Supplemental MRID/Historic ID(s) Study-Level Comments Note: Thyroid weights inc in male and decrease in female. (hoth statistically significant)	Test Material Information Search Chemical List Search PC Code Chemical [mazalil Image: Chemical List Image: Chemical List
Study Type Study Type Combined chronic toxicity/carcinogenicity	Animal and Dose Information Species rat Method/Route of Administration Strain [Other] Animal and Dose Administration Comments (Including Not In List)
Study Duration Start 0 day Additional Study Duration Information Finish 104 week Image: Constraint of the study of t	Strain: Hannover substrain (SPF) Wistar-derived
	Study Effect List
Upload Form Info Treatment Group List Use Excel upload Treatment Group Gender Dose Period form to add Treatment Group Gender Dose Period treatment groups. Category Category Type	View or Add Effect Data Composition #/ by Type
Click "Bulk Upload"; Copy and paste into form Adult (P1) F Initial-to-Terminal 3.6 mg/kg/da	ay 104 week 50 V Adult (P1) V
and upload groups. Adult (P1) M Initial-to-Terminal 10.8 mg/kg/ds Group Form Adult (P1) F Initial-to-Terminal 14.6 mg/kg/ds	
Bulk Upload Adult (P1) M Initial-to-Terminal 65.8 mg/kg/ds Adult (P1) F Initial-to-Terminal 85.2 mg/kg/ds	ay 104 week 50 Initial-to-Terminal V
Update List Adult (P1) M Initial-to-Terminal 134.8 mg/kg/ds EFFECT DATA Adult (P1) F Initial-to-Terminal 168.8 mg/kg/ds	
Click on "View or Add Critical Effect Data by Type" to input effect data for any treatment group by effect type. Delete Selected Treatment Group Search Effect Vocabulary	Fisher's Exact Test Toggle to Critical Effects Form
Study Design Level Controls	ne/ Toggle back to ToxRefDB Switchboard
Record: I I I I I I I Filered)	

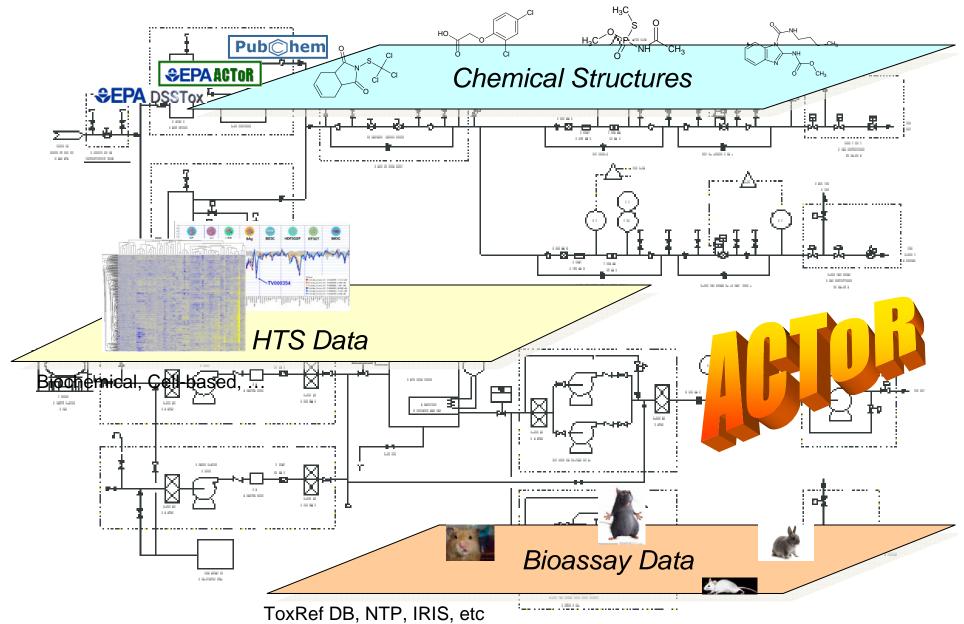

Data Entry Status



Office of Research and Development National Center for Computational Toxicology

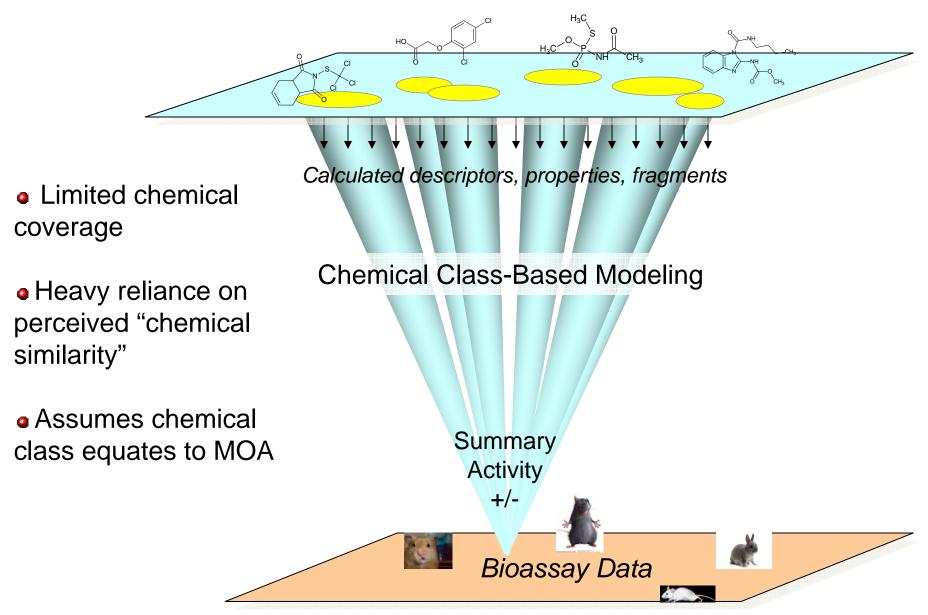

Current as of February 8, 2008

Assay Type	# Assays	# Endpoints	Assay Source	Comment	Source	ToxCast_320 Status 04dec2007
HTS	240	240	Human, rat, other	Enzyme inhibition, receptor binding	NovaScreen	Single concentration data delivered; multiple concentration to follow
uHTS	10+	10+	Human and rodent	Nuclear receptor reporter gene assays	NIH Chemical Genomics Center	Multiple concentration (11) data from 2 of 10 assays delivered
Reporter Gene Assays	2	67	HepG2 cells (human liver)	Nuclear receptor, transcription factor	Attagene	Single concentration data delivered; multiple concentration to follow
Genomics	1	22,000	Hepatocyte- Kupffer co- culture	PCR, microarrays	IVAL and Expression Analysis	Multiple concentration (5) in rat system underway
Kinetic Cell Growth	1	Kinetic	A549 cells (human lung)	Real time electrical impedance	ACEA Biosciences	Multiple concentration (8) data delivered
Cell Co- Culture	1	6	Human liver, lung, kidney cells	Cytotoxicity, shared metabolism	IVAL	Multiple concentration (8) data underway
Complex Cell Culture	8	87	Primary human cells	Cell signaling pathways	Bioseek	Multiple concentration (4) data delivered
HCS	1	11	HepG2 cells (human liver)	Imaging cytotoxicity	Cellumen	Multiple concentration (10) data delivered
Tissue Slice Culture	1	1	Rat liver, lung, kidney	Precision-cut Tissue slices	Hamner Institutes	Multiple concentration (5) data underway
Zebrafish	1	11	Danio rerio	Teratogenesis	Phylonix	Multiple concentration (3) data underway for 20 chemicals
TOTAL	265	22,433				




Attagene Heatmap

Office of Research and Developm National Center for Computational T

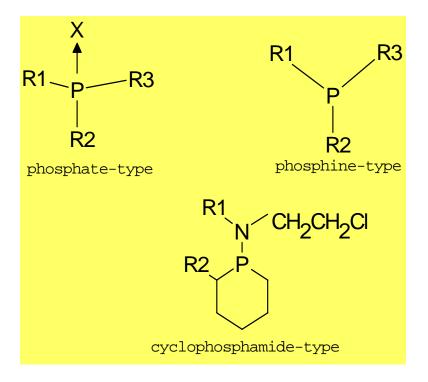

Part III Incorporating SAR Concepts into ToxCast

ToxCast: Multidimensional Data

Structure-Activity Approaches to Toxicity Prediction

Oncologic Carcinogenicity Estimation Expert System: *Chemical Class – Based Prediction Modules*

Acyl and Benzoyl Halide Type Compounds Acrylate Reactive Functional Groups Acrylamide Reactive Functional Groups Aflatoxin Type Compounds Aldehyde Type Compounds Aliphatic Azo and Azoxy Type Compounds Alkanesulfonoxy Ester Type Compounds Alkyl Sulfate and Alkyl Alkanesulfonate Type Compounds Aromatic Amine Type Compounds Anhydride Type Compounds Arylazo Type Compounds Aryldiazonium Salts C-Nitroso and Oxime Type Compounds Carbamate Type Compounds Carbamyl Halide Type Compounds Coumarin and Furocoumarin Type Compounds **Dicarbonyl Type Compounds Epoxide Reactive Functional Groups Ethyleneimine Reactive Functional Groups** Haloalkylamine Reactive Functional Groups Haloether Reactive Functional Groups Halogenated Aromatic Hydrocarbon Type Compounds Halogenated Cycloalkane Type Compounds


ortho-Halogenated Heterocyclic Type Compounds Halogenated Nitroaromatic Type Compound Halogenated Linear Aliphatic Type **CompoundsHalothioether Reactive Functional Groups** Hydrazo Type Compounds **Reactive Ketone Reactive Functional Groups** Lactone Type Reactive Functional Groups Nitrosamide Type Compounds Nitrosamine Type Compounds Nitroalkane and Nitroalkene Type Compounds Nitrogen Mustard Reactive Functional Groups Organophosphorus Type Compound Peroxide Type Compounds Phenol Type Compounds Phosgene Type Compounds Polycyclic Aromatic Hydrocarbons -HeterocyclicPolycyclic Aromatic Hydrocarbons -Homocyclic Siloxane Type Compounds **Reactive Sulfone Reactive Functional Groups** Sulfur Mustard Reactive Functional Groups Sultone Reactive Functional Groups Thiocarbamate Type Compounds **Thiocarbonyl Type Compounds Triazene Type Compounds Urea Type Compounds**

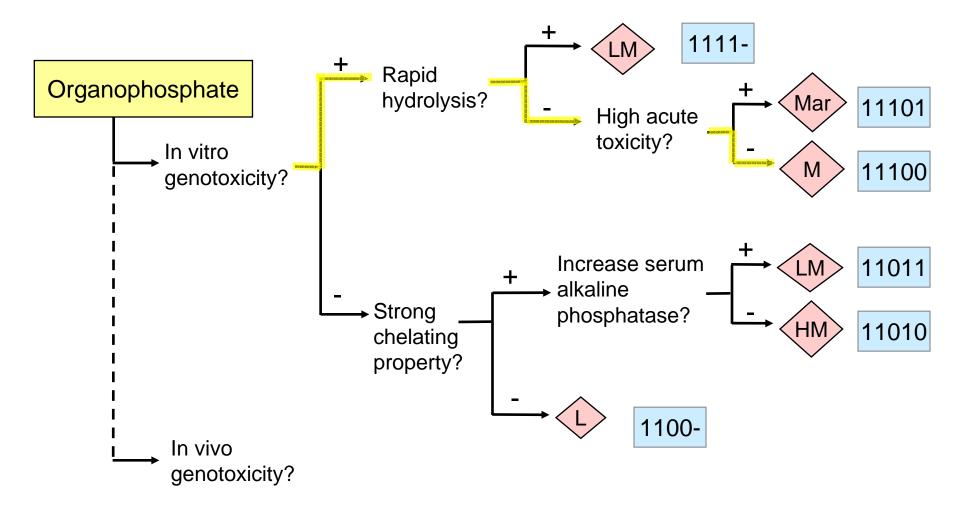
Oncologic Carcinogenicity Estimation Expert System:

Organophosphate

R1/R2/R3 = alkyl groups or aryl groups

P X-alkyl or X-aryl where X is oxygen, sulfur or in some cases nitrogen, linking the phosphorus to the alkyl/aryl group

phosphine-type \rightarrow phosphine and phosphine-oxide

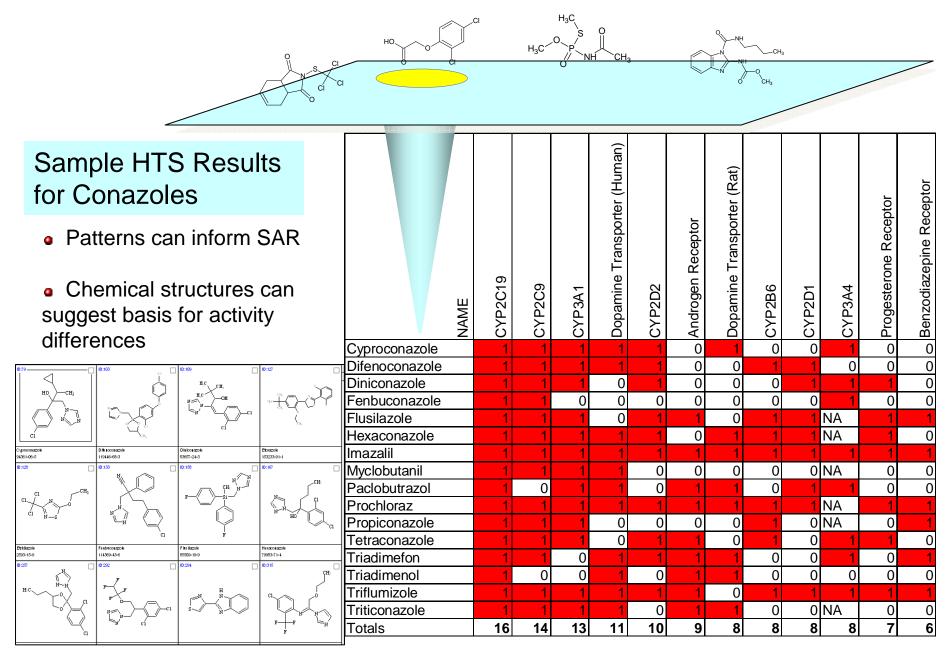

cyclophosphamide-type \rightarrow cyclophosphamide, isophosphamide, trophosphamide

R1/R2/R3: alkyl (Cn), hydrogen (H), benzyl (CH2C6H5), phenyl (C6H5), Morpholino, NR'R" (where R'R" can be one of the above).

X1/X2/X3/X4: Oxygen (O), Sulfur (S)

Substituents: Halogens (CI, Br, I, F), hydroxyl (OH), carboxylic acid (COOH), sulfonic acid (SO3H) and additionally alkyl (Cn) on the aryl ring..

Combining SAR and Biofunctional Information in Oncologic: Predicting Carcinogenicity of Organophosphates



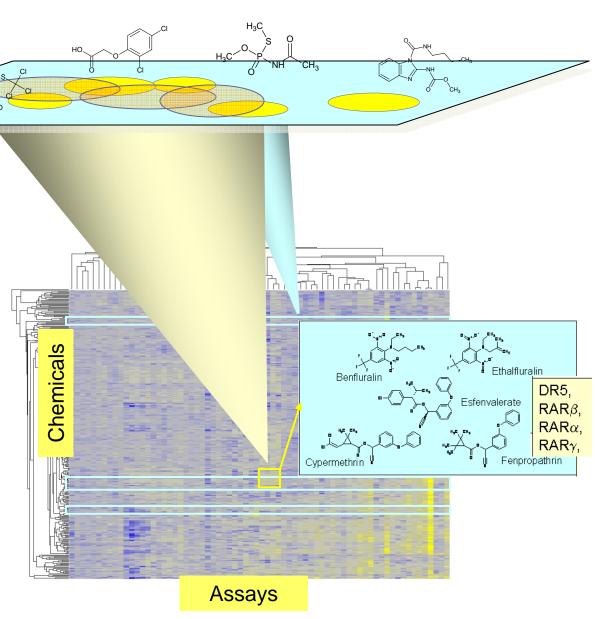
Woo et al. (1996) Environ. Carc. & Ecotox. Revs., C14:1-42

Oncologic Carcinogenicity Estimation Expert System: *Chemical Class – Based Prediction Modules*

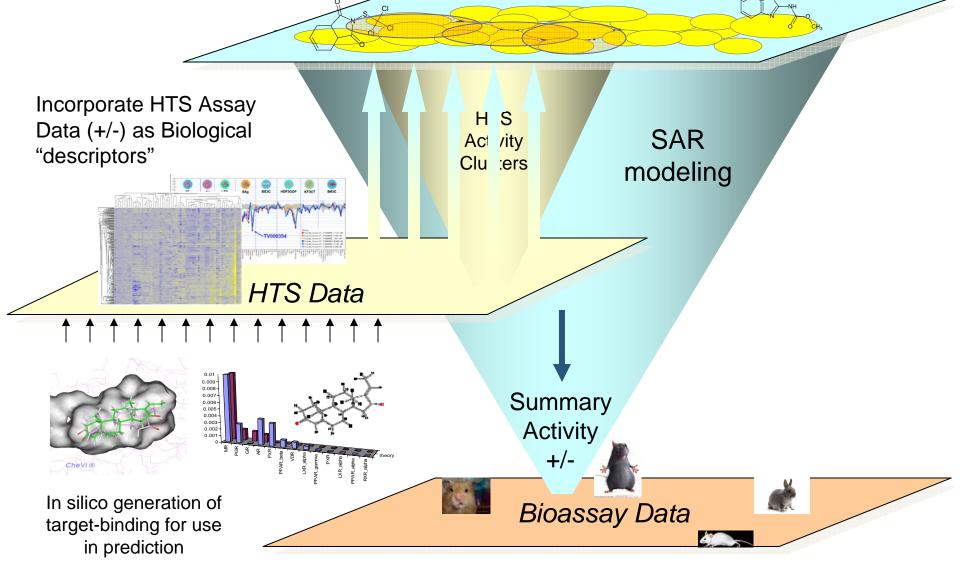
Acyl and Benzoyl Halide Type Compounds	ortho-Halogenated Heterocyclic Type Compounds
Acrylate Reactive Functional Groups	Halogenated Nitroaromatic Type Compound
Acrylamide Reactive Functional Groups	Halogenated Linear 1111-
Aflatoxin Type Compounds	Type
Aldehyde Type Compounds	CompoundsHalothioeur ar reactive Functional Groups
Aliphatic Azo and Azoxy Type Compounds	Hydrazo Type Compounds
Alkanesulfonoxy Ester Type Compounds	Reactive Ketone Reactive Functional Groups
Alkanesulfonoxy Ester Type Compounds	Nitrosamide Type Compounds
Alkyl Sulfate and Alkyl Alkanesulfonate Type Compounds	Nitrosamine Type Compounds
Aromatic Amine Type Compounds	Nitrosamine Type Compounds
Anhydride Type Compounds	Nitrogen Mustard Reactive Functional Groups
Arylazo Type Compounds	Organophosphorus Type Compound
Arylazo Type Compounds	Peroxide Type Compounds
Carbamate Type Compounds	Phosgene Type Compounds
Carbamate Type Compounds	Phosgene Type Compounds
Carbamyl Halide Type Compounds	Phosgene Type Compounds
Coumarin and Furocoumarin Type Compounds	Polycyclic Aromatic Hydrocarbons -
Dicarbonyl Type Compounds	Homocyclic Siloxai e Type Compounds
Epoxide Reactive Functional Groups	Reactive Sulfone Reactive Functional Groups
Ethyleneide Functional Groups	00000010100000000101001 1100-0
Haloether Reactive Functional Groups Halogenated Aromatic Hydrocarbon Type Compounds Halogenated Cycloalkane Type Compounds	Thiocarbamate Type Compounds Thiocarbonyl Type Compounds Triazene Type Compounds Urea Type Compounds

Bioactivity Profile of Structure Class

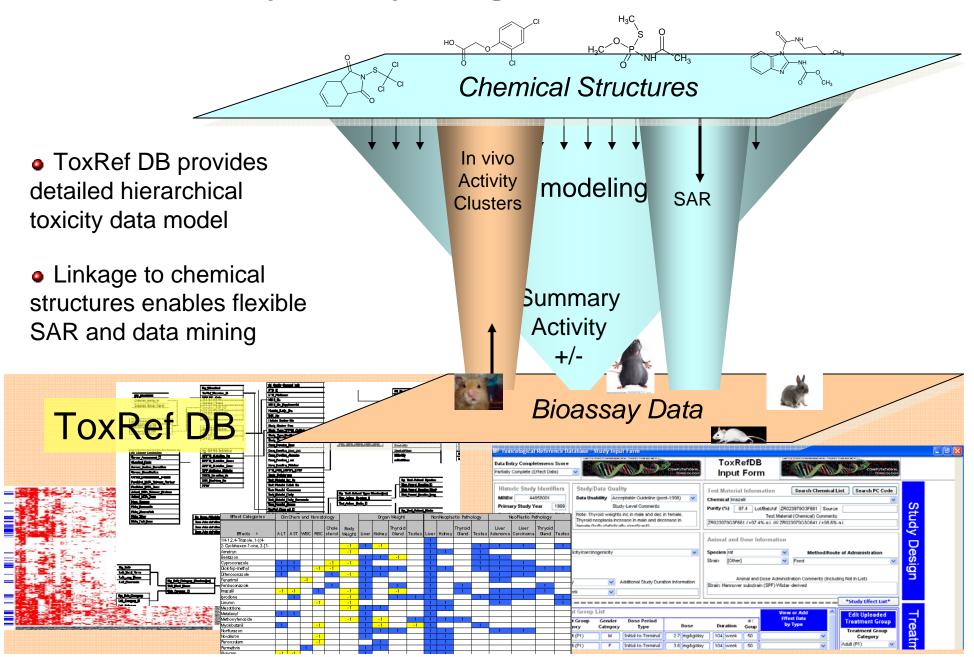
Structure Class vs Bioactivity Class

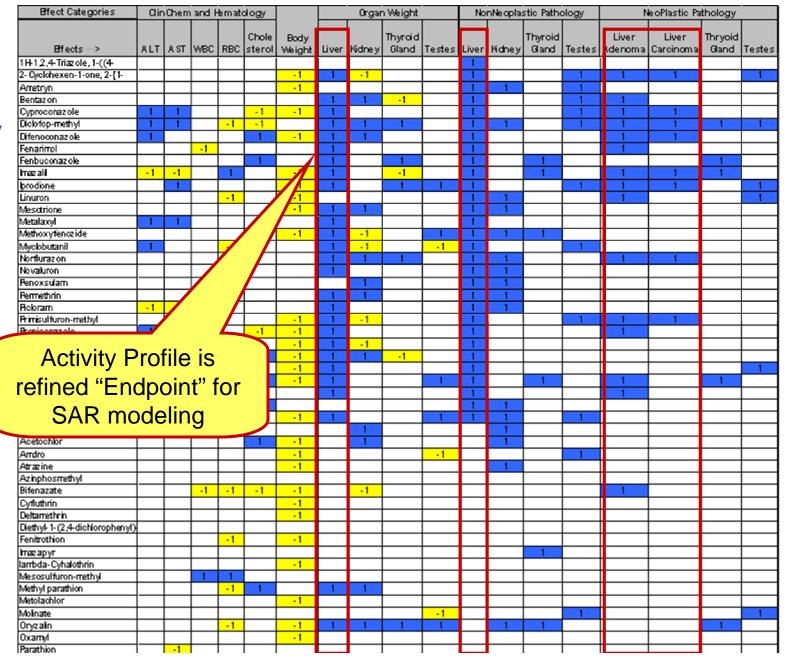

Chemical structure class:

Cluster according to activity and mechanism
Differences in activity profiles can discriminate within structure class

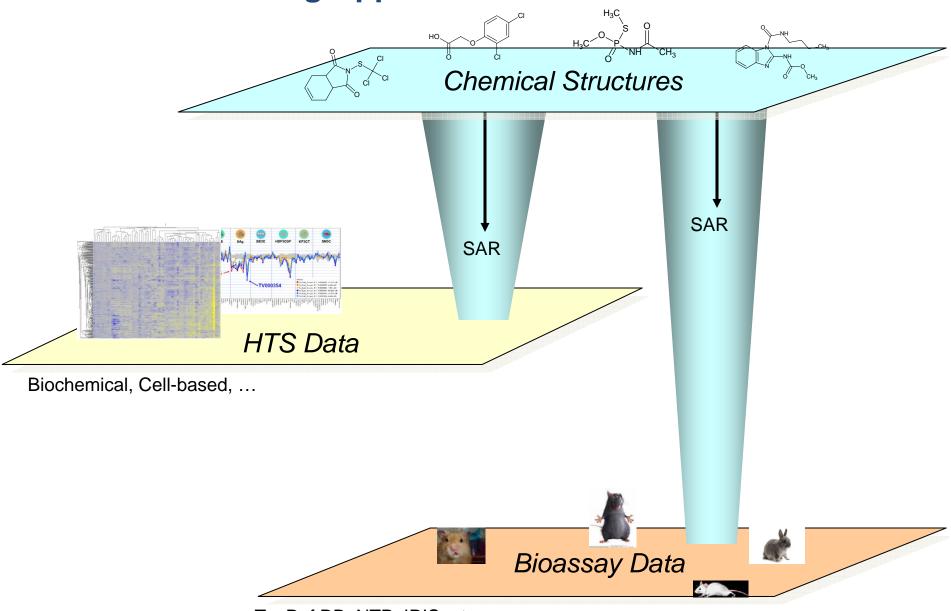

Bioactivity profile class:

• Can project onto multiple chemical classes


- Potentially broader coverage of chemical space
- Implies mechanistic similarity

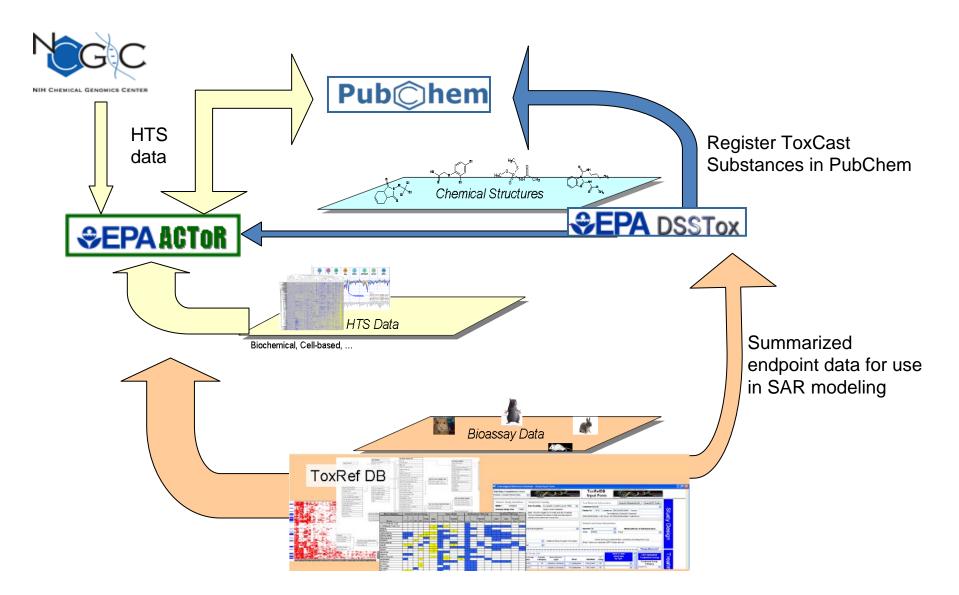


Use of Bioassay Activity Categories in SAR



ToxRefDB Profiling of Liver Effects for Pesticides

Liver nonneoplastic histopathology and increased organ weight are often associated with tumors and cancer



Structure-Analog Approaches

ToxRef DB, NTP, IRIS, etc

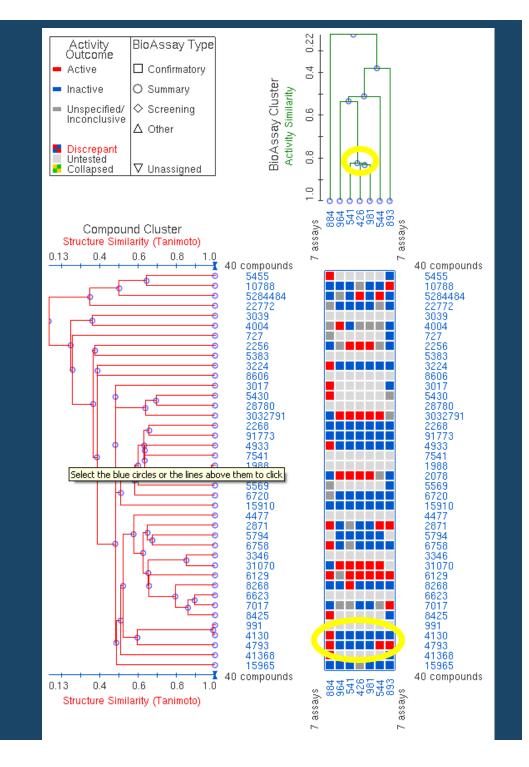
ToxCast: Data Publication & Exploration

ToxCast_320

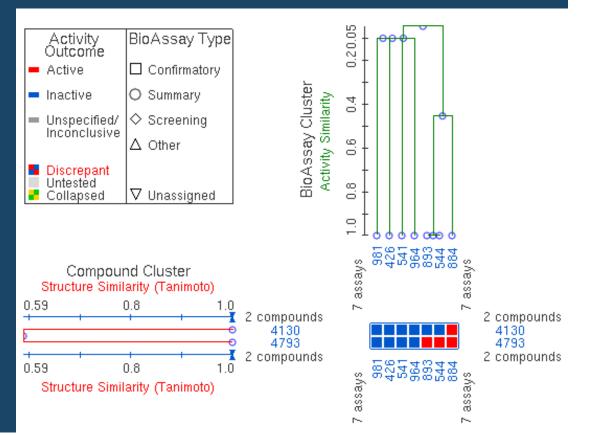
Bioactivity Analysis:

Retrieve all bioassay data in PubChem for ToxCast_320

482 Bioassays 45 Compounds


	S N(ervices »	PU BioActivity A			n		PubChem BioAss PubMed Ent	ay 🔽 rez Structure Po	GO JbChem Hel				
Ø			ty An	alysis:	482 B	ioassays (473	3 Te	sted) and 45 (Compounds						
•	Summa	ary 🕹	DataTa	able 🗐 🛛 S	tructur	e-Activity 💷									
	?} co	Revise Select Add Ad Add Te	Compo Active ctive ested	5 (9 showr und Select ompounds	-			*							
	🚺 Bi	Revise Select Select Add Ad Add Te Add Re	Active Tested ctive ested	ay Selectio ioAssays	n:					4.20 4.2					
То	tal Pag	es: 24			Dis	play: 20 💌	Go	To Page 1	14	4 > 1	►I I				
#		Active I	nactive I	Discrepant	Tested	Outcome Method	Name								
1	884	16	15	з	39	Confirmatory	qHT	'S Assay for Inhib	itors and Substrat	es of Cytochrome	P450 3A4				
2	✓ 544	9	15	1	30	Confirmatory		l Viability - SH-SY							
3	✓ 541	7	20		30	Confirmatory		l Viability - NIH 31	3T3						
	✓ 426	7	20	1	30			l Viability - Jurkat							
5	964	6	20 23	1	30 30	Confirmatory			-003 - Assay at 40	Jnr					
°		6	25	1	30	Confirmatory		l Viability - LYMP2 IS Assay for Inhib		hydroxysteroid (1	7-beta)				
		6	Sc		dh	ioassa	gHTS Assay for Inhibitors of HSD17B4, hydroxysteroid (17-beta) rogenase 4								
8	□ 167 □ 165	6 5				ivassa	NCI Yeast Anticancer Drug Screen. Data for the bub3 strain								
-		5		-	10		NC.	reast Anticancer	orug Screen. Da	to for the clinz radi	- su alli				

۲.	S NCBI	Pub©hem													Chem BioA PubMed E	_	ructure F	GC PubChem He	
PubChem » BioAssay Services » BioActivity Analysis: Data Table BioActivity Analysis: 7 BioAssays and 45 Compounds (8 Tested)																			
s	Summary 😣 🛛	mary Data Table Structure-Activity																	
												for							
) Total BioAs				ncise®	Data Ta	ble Cor	nnlete®	Plot	Select	-07		7 B	ioas	ssay	'S			
	_			-						JUCICU					J				
Pag #	ge: 1 of 1 Structure	Sort: C				AID_426 Outcome			AID_544 Score	AID_544 Outcome	AID_884 Score	AID_884 Outcome	AID_884 Potency [uM]*	AID_893 Score	AID_893 Outcome	AID_893 Potency [uM]*	AID_964 Score	AID_964 Outcome	AI Po
1		17389169	28780	2	54	Active	0	Inactive	56	Active	0	Inactive		0	Inactive		21	Inconclusive	• 12
2		17389924	8268	0	39	Inconclusive	0	Inactive	0	Inactive	0	Inactive		0	Inactive		0	Inactive	
3	<mark>∖</mark> ≹∽ұ ^L ≖	17389681	5284484	¥ 1	0	Inactive	0	Inactive	0	Inactive	20	Inconclusive	25.1189	64	Active	5.0119	0	Inactive	
4	No.	17388788	31070	1	0	Inactive	0	Inactive	70	Active	21	Inconclusive	10	0	Inactive		0	Inactive	
5	Å.	17389772	6720	1	0	Inactive	73	Active	0	Inactive	0	Inactive		0	Inactive		0	Inactive	


Structure-Activity Bioactivity Analysis:

7 bioassays, 45 Actives

View Bioassay Profile by Structure Similarity Cluster

View bioassay profile of structure similarity cluster

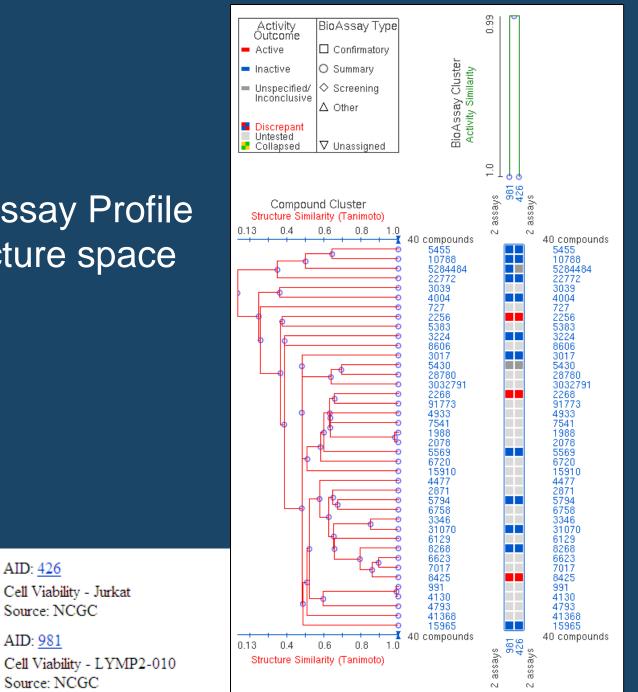
□ 1: CID: <u>4130</u>

□ 1: CID: 4793

Related Structures, Assays, Literat

Parathion-methyl; METHYL PARATHION; Methylparathion ... IUPAC: dimethoxy-(4-nitrophenoxy)-sulfanylidenephosphorane MW: 263.207461 | MF: C8H10NO5PS

Related Structures, Assays, Literatu



phosalone; Benzophosphate; Benzphos ... IUPAC: 6-chloro-3-(diethoxyphosphinothioylsulfanylmethyl)-1,3-benzoxazol-2-one MW: 367.808561 | MF: C12H15CINO4PS2

Similar Bioassay Profile across structure space

□ 1: AID: 426

□ 1: AID: 981

Incorporating SAR Concepts into ToxCast: Conclusions

- HTS data offers:
 - activity-based clustering of chemicals
 - biofunctional information for refining class-based SAR
 - new "biological" descriptors for global SAR
- In vivo bioassay profiles expanding "endpoints" for SAR

• Structure-analog approaches coupled with HTS and ToxRef in vivo data offer powerful data mining tools

 Public tools for structure-based exploration of data becoming available

Acknowledgements:

EPA DSSTox Team:

Maritja Wolf (DSSTox) and Tom Transue (Structure-browser) – Lockheed Martin, Contractors to the US EPA

NIEHS/NTP – NTP HTS Program:

Ray Tice, Cynthia Smith, Beth Bowden, Brad Collins

NCCT ToxCast Team:

Robert Kavlock (Director, NCCT) David Dix (ToxRefDB, HTS, Genomics) Keith Houck (HTS) Matt Martin (ToxRefDB) Richard Judson (ACToR) Rocky Goldsmith (Modeling)

- ToxML: Chihae Yang Leadscope
- UNC-CH School of Pharmacy: Alex Tropsha, Hao Zhu, Ivan Rusyn
- PubChem Project: Steve Bryant, Yanli Wang, Jane Tseng
- Carcinogenic Potency Project: Lois Gold
- NIH Chemical Genomics Center: Chris Austin, Ajit Jadhav

This work was reviewed by EPA and approved for publication but does not necessarily reflect official Agency policy.