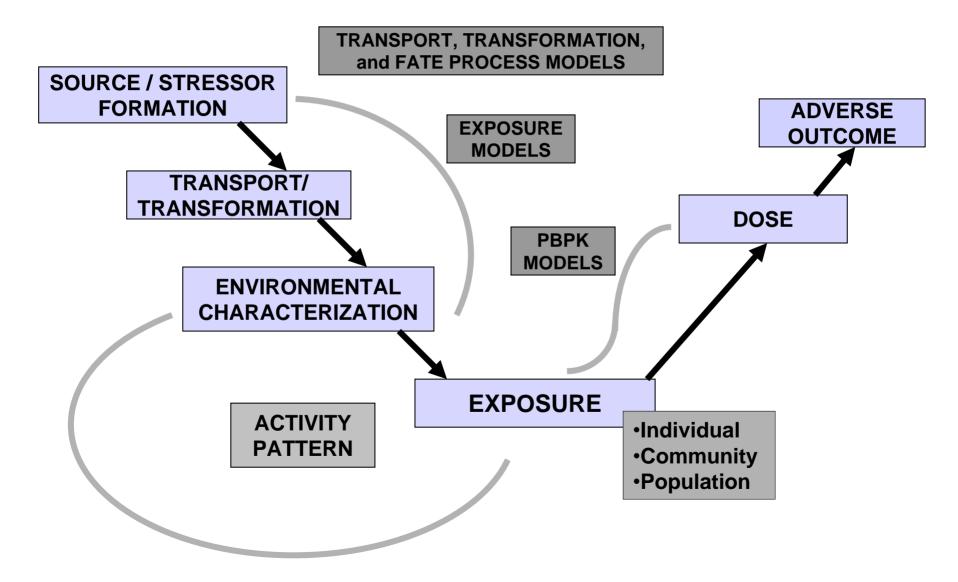
Exposure Assessment

Elaine Cohen Hubal, Ph.D US EPA NCCT Research Triangle Park, NC 919-541-4077 Hubal.elaine@epa.gov

Exposure Assessment


What exposures may be experienced by individuals or populations under real-world conditions?

Course Outline

- Human exposure assessments
- Problem formulation
- Exposure assessment approaches
- Scenario evaluation
- Exposure data
- Exposure models
- Exposure analysis
- Uncertainty and variability

Purpose of Exposure Assessment

Human Exposure Assessment

- Exposure characterization is the risk analysis step in which human interaction with the environmental agent of concern is evaluated.
- To assess exposure to a particular agent we need to know
 - Who is exposed (target)
 - How is the target exposed (pathway, route)
 - What is the pattern of exposure (where, how much, how long, how often)
- Sometimes we can measure exposure directly
- Often we need to estimate exposure

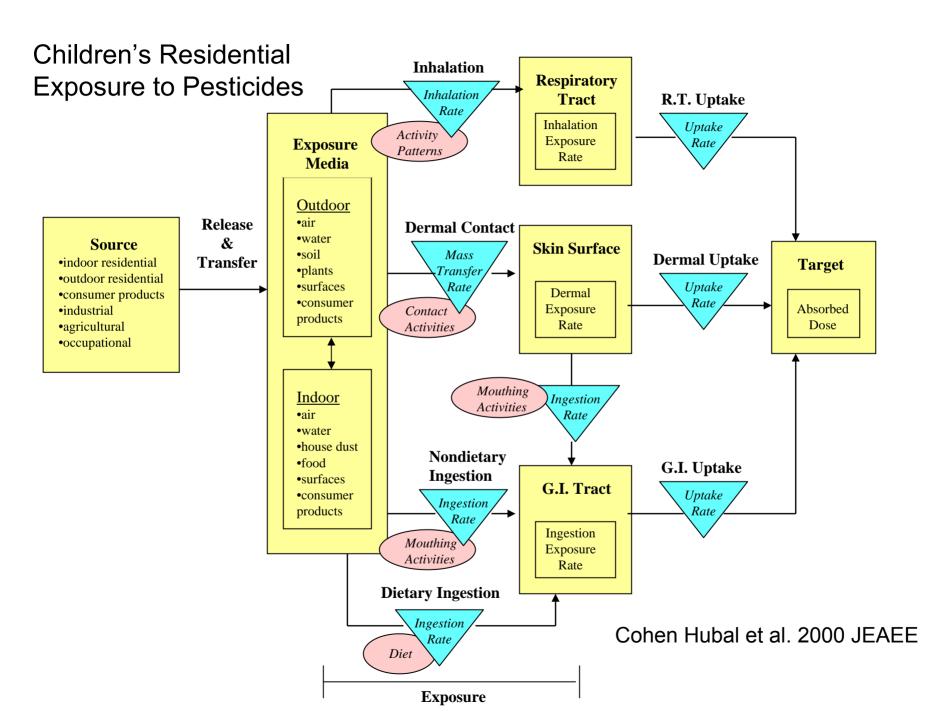
Definitions

• Exposure

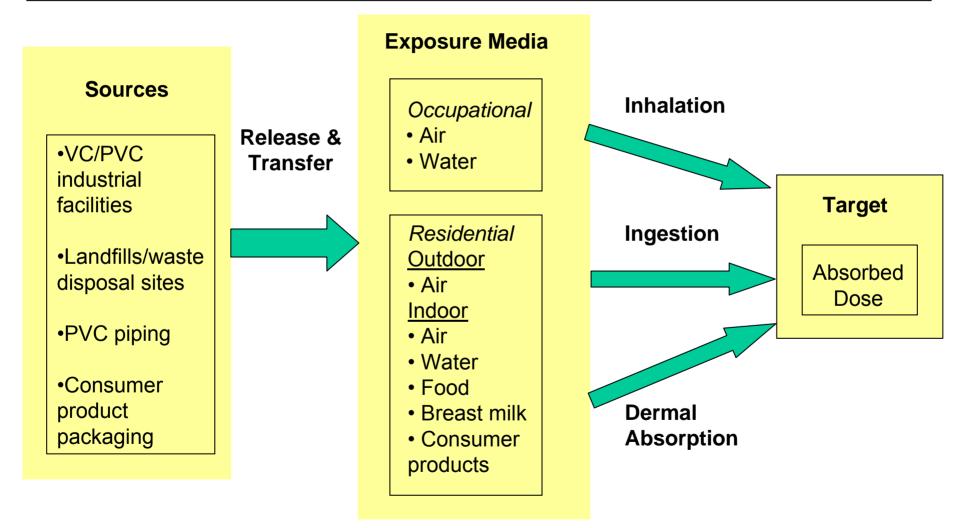
- Contact between an agent and a target. Contact takes place at an exposure surface over an exposure period.
- Dose
 - Amount of agent that enters a target after crossing an exposure surface. If exposure surface is an absorption barrier, dose is an absorbed dose/uptake dose; otherwise, it is an intake dose.

Definitions

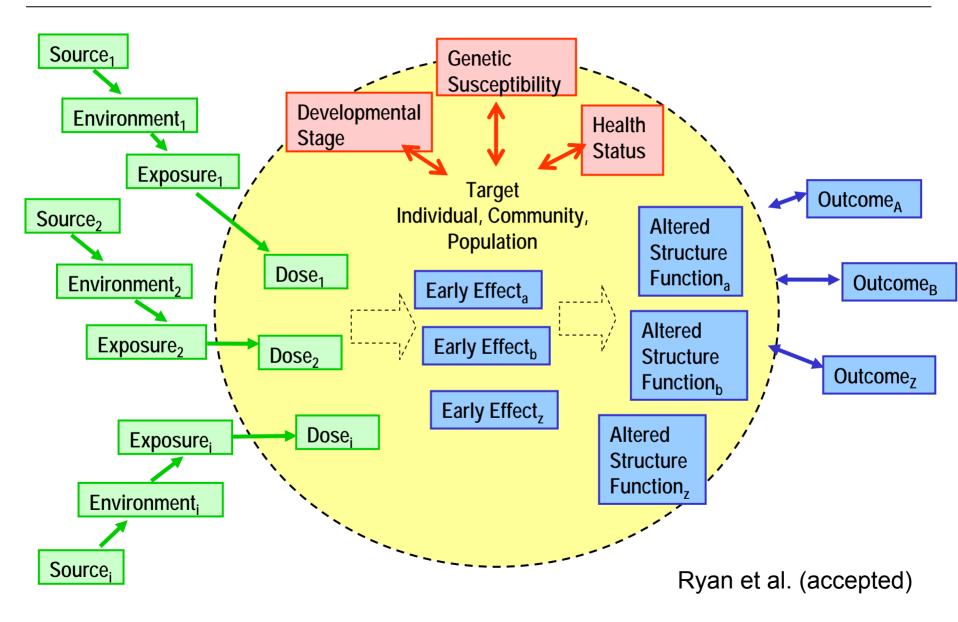
- Exposure pathway
 - Course an agent takes from the source to target.
- Exposure route
 - Way in which agent enters target after contact (e.g., ingestion, inhalation, dermal absorption).
- Exposure scenario
 - Combination of facts, assumptions, inferences that define situation where potential exposures may occur. May include sources, exposed population, time frame, microenvironment(s), and activities.


Definitions

• Exposure assessment


 Process of estimating the magnitude, frequency, and duration of an exposure, along with characteristics of the target exposed. Ideally, describes sources, pathways, routes, and uncertainties.

Problem Formulation


- Scope of assessment
 - Scale (national, site specific)
 - Target (vulnerable life stages, subpopulations)
- Develop conceptual model
 - Guide for collection of exposure data and other required information
 - Traditionally, follow source-to-effects paradigm
 - Shift to target-oriented view

Conceptual Model: Vinyl Chloride (VC) Exposure

Target Oriented Model

Exposure Assessment Approaches

- Questionnaire based metrics (epidemiology)
- Surrogate exposure metrics (ambient measures)
- Exposure measurement (direct or point-ofcontact)
- Biomonitoring (dose reconstruction)
- Modeled estimates (indirect or scenario evaluation)

Scenario Evaluation Approach

- Currently, modeled estimates (scenario evaluation) are often used to conduct risk assessments required to make regulatory decisions.
- Identify potentially significant exposure scenarios
 - Chemical Properties, Environmental Sources, Fate, and Transport
 - Population
 - Pathways
 - Exposure Patterns
 - Location, Activities, Behaviors

Chemical Properties, Fate and Transport

- Molecular weight
- Vapor pressure
- Solubility in water
- Henry's law constant
- Log Kow
- Density
- Log Koc
- State at room temp
- Formulation/vehicle

<u>Vinyl Chloride</u> 62.4987 333 kPa 1.1 g/L 18.8 1.38-1.58 0.910 g/cm³

Colorless gas

Properties at 20 degrees C. WHO (1999)

Sources

Sources

Vinyl Chloride Sources

- Industrial Sources
 - 27 million tons/year produced world wide
 - Most is polymerized to produce PVC
 - There are no direct consumer uses
- Other Sources
 - Found in and around industrial and municipal landfills/ waste disposal sites

Vinyl Chloride Environmental Fate

- Vinyl Chloride formed from degradation of higher chloroethenes (e.g., trichloroethene TCE) in environmental media
- Degradation of Vinyl Chloride is slow resulting in build up in landfills and surrounding areas, leaching into groundwater

WHO (1999); Keilhorn (2000)

Population

- Population (target)
 - Occupational
 - General
 - Vulnerable life stage or subpopulation
- For vinyl chloride
 - Occupationally exposed
 - General population
 - Population near VC/PVC plants or waste disposal sites
 - Developing fetus and breast-fed infant of occupationally exposed mother

Exposure Pathways – Vinyl Chloride

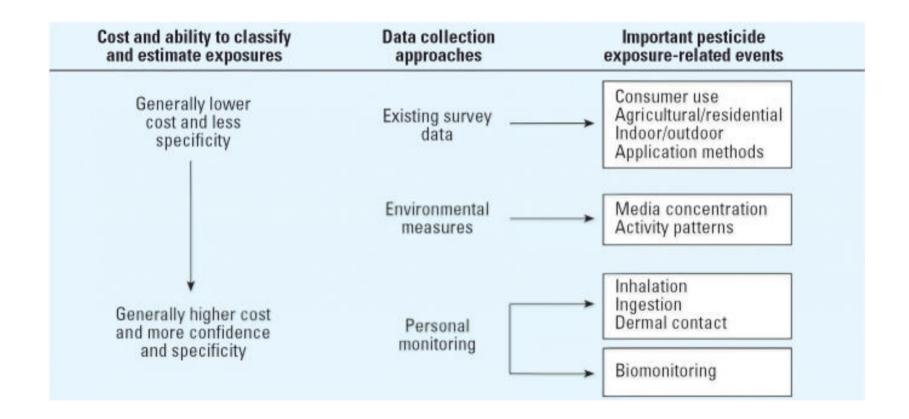
- Inhalation of outdoor air near VC/PVC plants or waste disposal sites
- Inhalation of indoor air near waste disposal sites (subsurface migration)
- Ingestion of contaminated drinking water
- Ingestion of food, beverages packaged in PVC
- Dermal absorption from cosmetics packaged in PVC
- Exposure to fetus from occupationally exposed mother
- Ingestion of breast milk from occupationally exposed mother

Exposure Patterns

- Depending on the exposure assessment, different estimates of exposure and dose may be required
 - Chronic
 - Acute
 - Short-term/ Intermittent
- Locations
- Activities/behaviors

Exposure Patterns

- Exposure over a period of time can be represented by a time-dependent profile of exposure concentration
- Area under the curve of this profile is magnitude of exposure, in concentration-time units


$$E = \int_{t_1}^{t_2} C(t) dt$$

E = magnitude of exposure C(t) = exposure concentration as function of time t2 - t1 = exposure duration

Exposure Data

- Exposure measurement data
- Exposure media concentrations
- Exposure factor data
 - Contact rates of target with exposure media
 - Contaminant transfer efficiency from the exposure medium to the portal of entry
 - Contaminant uptake rates through portal of entry
 - Human activities

Exposure Data Collection

Environ Health Perspect. 2006 June; 114(6): 929–935.

Published online 2006 February 16. doi: 10.1289/ehp.8530.

Copyright: This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original DOI

Biomonitoring Data

- The National Report on Human Exposure to Environmental Chemicals (CDC, 2005)
 - Provides an ongoing assessment of the U.S.
 population's exposure to environmental chemicals using biomonitoring.
 - Measured chemicals or their metabolites in blood and urine samples from a random sample of participants from the National Health and Nutrition Examination Survey (NHANES)
 - Presents exposure information for the U.S. population for 148 chemicals

Human Exposure Measurement Data

- **HEDS** (Human Exposure Database System)
 - Integrated data repository system that contains chemical measurements, questionnaire responses, documents, and other information related to EPA human exposure research studies
 - NHEXAS (National Human Exposure and Assessment Study)
 - CTEPP (Children's Total Exposure to Pesticides and other Persistent Organic Pollutants)

Human Time-Activity Data

 CHAD (Consolidated Human Activity Database) Contains activity/and questionnaire data obtained from pre-existing human activity studies collected at city, state, and national levels

Dietary and Consumer Product Use Data

- FDA's Total Diet Survey
 - Market basket survey
 - Food purchased from grocery stores 4x per year
 - From 3 cities in each of 4 US geographic regions
 - Foods prepared for consumption and analyzed
- EPA's Source Ranking Database (SRD)
 - Developed for screening a large number of indoor air pollution sources
 - Compilation of product composition information from a variety of sources

Exposure Factor Data

- US EPA Exposure Factors Handbook (1997)
- US EPA Child-Specific Exposure Factor Handbook (2006)
- Exposure Factors (Intake and Uptake)
 - Drinking water consumption rates
 - Specific food consumption rates
 - Incidental soil ingestion rates
 - Pulmonary ventilation rates
 - Dermal surface areas

Recommended Values for Inhalation Rate

Activity Level	Age Range (years)	Males		Females	
		Mean m³/day	Ν	Mean m³/day	Ν
	Long-term Es	posures			•
(All)	birth to <1 year	8.76	419	8.53	415
	1 to <2 years	13.49	308	13.31	245
(Percentiles see Tables 7-	2 to <3 years	13.23	261	12.74	255
13 and 7-14)	3 to <6 years	12.65	540	12.16	543
	6 to <11 years	13.42	940	12.41	894
	ll to <l6 td="" years<=""><td>15.32</td><td>1337</td><td>13.44</td><td>1451</td></l6>	15.32	1337	13.44	1451
	16 to <21 years	17.22	1241	13.59	1182
	Short-term Ex	rposures			
Sleep or Nap	birth to <1 year	4.44	419	4.20	415
	1 to <2 years	6.48	308	6.61	245
(Percentiles see Tables 7-	2 to <3 years	6.64	261	6.57	255
15 and 7-16)	3 to <6 years	6.28	540	6.02	543
	6 to <11 years	6.64	940	6.28	894
	ll to <16 years	7.57	1337	6.93	1451
	16 to <21 years	7.65	1241	6.34	1182

U.S. EPA. (2006) Child-specific exposure factors handbook (external review draft).

Exposure Models

- Aggregate Models
- Dietary Models
- Waste Site Models
- Consumer Product Models
- Air Models
- Occupational Models

Exposure Analysis

- Screening level assessment
- Refined assessment
- Supplemental data collection
- Aggregrate assessments address exposure to an agent by multiple sources, routes, pathways
- Cumulative assessments address exposures
 to multiple agents or stressors

Exposure Algorithms

- For each route, the algorithm mathematically expresses exposure as a function of
 - Chemical concentration in the exposure medium
 - Contact rate
 - Rate of transfer from the exposure medium to the portal of entry
 - Exposure duration

Example: Inhalation Exposure

For each exposure event, inhalation exposure is defined as follows:

$E_{inhale} = C_{air} \times IR \times AB \times ED / BW$

- AB = fraction absorbed
- ED = exposure duration (h/d)

BW = body weight (kg)

Vinyl Chloride Media Concentrations

- Levels of VC in air and water very low for locations distant from industrial sources.
 - Ambient air concentrations ND-24 ug/m³
 - Drinking water ND 1.1 ug/L
- Few reports on VC levels found in food, pharmaceutical or cosmetic products in recent years.
 - Latest data (1990s) bottled drinking water 0.01-0.08 ug/L
- Infrequent use of biomonitoring for VC exposure
- Assessment for occupationally exposed parents and their children requires information for occupational environment

WHO (1999)

Vinyl Chloride Media Concentrations

- Exposure assessments for populations near sites requires sitespecific information
- Ambient air concentrations
 - US residential in vicinity of VC/PVC plants up to 3200 ug/m³ (late 1970s)

WHO (1999)

- Indoor air concentrations
 - Homes near landfills up to 1 g/m^3 (early 1990)
- Groundwater samples 50-500 μ g/L near industrial sites
- Drinking water
 - (likely contaminated systems) ND 8 μ g/L

VC Exposure Estimates: Inhalation

 Estimate from the mid 1980s of the respiratory intake of VC reported for the USA ranged from 0 to 48.3 mg/day

Cair = 0 to 2.1 mg/m³

 $IR = 23 \text{ m}^3/\text{day}$

 However, it was estimated in the mid 1990s that over 100,000 Californians living near landfills, may be exposed to VC levels of 2.59 g/m³ (1 ppb) or more

VC : Drinking Water Ingestion

- 1985 estimated drinking water intake exceeded
 - 1 g/L for 0.9% of the population,
 - 5 g/L for 0.3%
 - 10 g/L for 0.1% of the population
- Daily VC intakes = 2, 10 and 20 g/day BW = 70 kg IR = 2 L water/day
- Maximal values were120 g/day

WHO (1999)

Uncertainty and Variability

 Variability, sensitivity and uncertainty analyses are conducted to determine impact of the available exposure data on the resulting analysis

 Use of probabilistic techniques to address variability

Conclusion

- Results of the exposure characterization are iterated with the hazard and dose-response
 - critical windows of susceptibility identified in hazard analysis
 - important exposure periods identified in exposure analysis
- Results of exposure analysis feed into the risk characterization
- Used to make public health policy and regulatory decisions