Refining Human Risk Assessment through Comparisons of Human and Animal Internal Dosimetry: PFOA as a Case Study

> Hugh A. Barton National Center for Computational Toxicology US EPA

> > Presentation for NC SAB October 19, 2006

Disclaimer: This presentation does not present official Agency Policy.

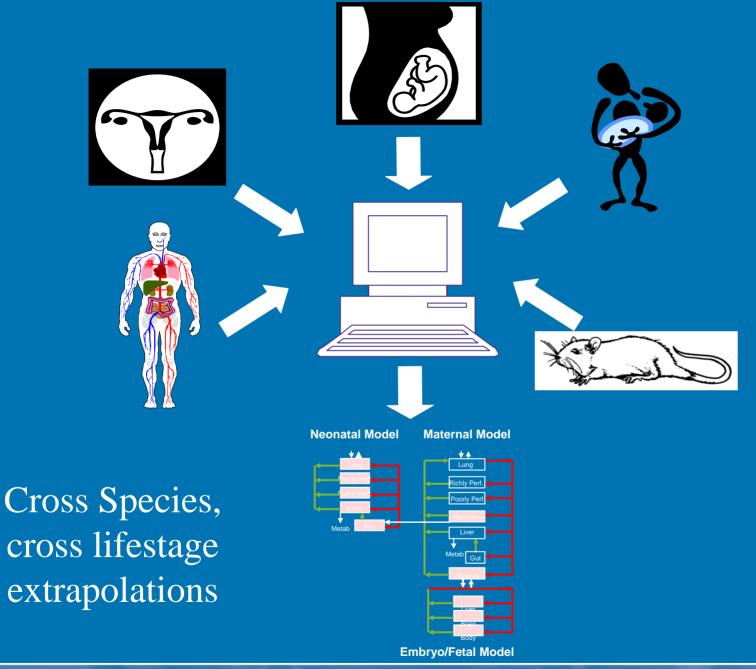
RESEARCH & DEVELOPMENT

Risk Assessment in a Mode of Action Context

Exposure

Pharmacokinetics Tissue Dosimetry

Standard pharmaceutical analysis


Pharmacodynamics Toxicity Pathway

Response

limited information environmental default

۲

RESEARCH & DEVELOPMENT

RESEARCH & DEVELOPMENT

Perfluorooctanoic Acid (PFOA)

RESEARCH & DEVELOPMENT

Background

- Unique chemical properties which make perfluorinated compounds commercially valuable
- However, some members of the class:
 - Persistent in the environment
 - Persistent in many biological organisms
 - Toxic to many biological organisms
 - Present in blood of the general US population

RESEARCH & DEVELOPMENT

Database on PFOA for Human Health Risk Assessment

- Epidemiology studies in workers
- Data in rodents and monkeys
 - Carcinogenicity in rats
 - Systemic Toxicity in rats and monkeys
 - Developmental and Reproductive Toxicity in rabbits and rats
 - Immunotoxicity in mice
 - Pharmacokinetics in rats and monkeys
- Human biomonitoring data

RESEARCH & DEVELOPMENT

Animal Carcinogenicity Data

- Two 2-year bioassays in Sprague-Dawley rats
 - Iver adenomas, Leydig cell adenomas, and pancreatic acinar cell tumors, mammary tumors?
- Quantitative analyses were not presented in the draft risk assessment as evidence was considered 'suggestive'.
- Quantitative analyses could use blood dose metrics for chronic exposure (e.g., AUC)

RESEARCH & DEVELOPMENT

Endpoints Used in Risk Assessment for Adult Toxicity

- Cynomolgus monkey
 - liver weight and possible mortality in 6-month study
 - LOAEL = 3 mg/kg-day; no NOAEL
- Male rat
 - F1 body weight from 2-generation reproductive toxicity study
 - LOAEL = 1 mg/kg-day; no NOAEL
- Female rat
 - body weight from 2-year study
 - NOAEL = 10 mg/kg-day

RESEARCH & DEVELOPMENT

Developmental Endpoints Used in Risk Assessment

- All endpoints are from a rat 2-generation reproductive toxicity study
 - Decreased preweaning litter body weight in F1 pups NOAEL = 10 mg/kg-day
 - Decreased postweaning body weight in F1 males NOAEL = 3 mg/kg-day
 - Decreased postweaning body weight in F1 females NOAEL = 10 mg/kg-day
 - Increased postweaning mortality and delayed sexual maturation in F1 males and females - NOAEL = 10 mg/kg-day
- Unknown whether prenatal, lactational and/or postweaning exposures are critical. Therefore, important to assess risks for each of these periods.

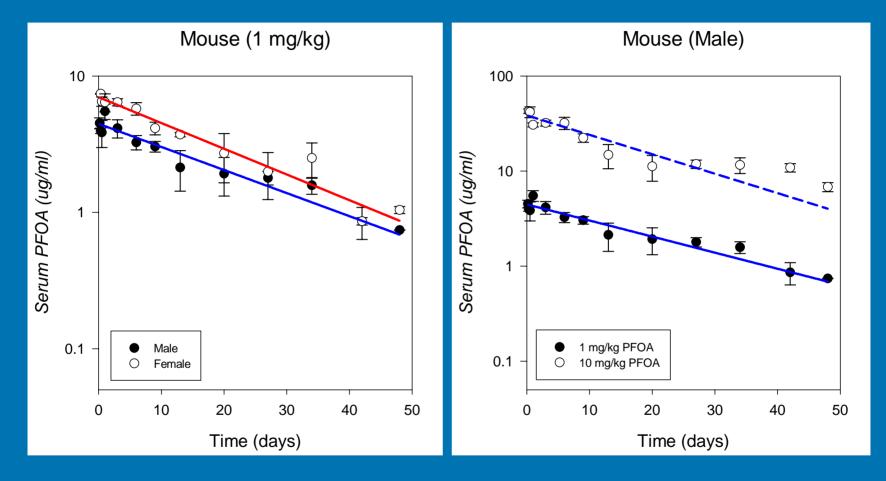
RESEARCH & DEVELOPMENT

Pharmacokinetics and Distribution

- Well absorbed
- Not metabolized
- Distributed mainly in serum and liver
- Urinary & biliary elimination
- Enterohepatic circulation

RESEARCH & DEVELOPMENT

Pharmacokinetics and Distribution


Half-life:

- Female rats estimates range from 2.8 16 hours
- Male rats estimates range from 5.75 8.4 days
- Elimination in young male and female rats is developmentally regulated
- Male & female mice 12 20 days
- Female monkey 20.9 days
- Male monkey 32.6 days
- Human 4.4 years (Burris et al., 2002)

RESEARCH & DEVELOPMENT

Mouse Oral Gavage PK

Lau C, Strynar MJ, Lindstrom A, Hanson RG, Thibodeaux JR and Barton HA. (2005) Pharmacokinetic evaluation of perfluorooctanoic acid in the mouse. Toxicol Sci 84, S-1 (The Toxicologist) Abstract #1232.

RESEARCH & DEVELOPMENT

Risk Assessment Approach

 Margin of Exposure (MOE) compares animal NOAEL/LOAEL with human exposure to evaluate potential for adverse outcomes.

Exposure Dose NOAEL Rat (mg/kg/day)

Exposure Dose Human (mg/kg/day) Internal Dose NOAEL Rat (AUC)

> Internal Dose Human (AUC)

RESEARCH & DEVELOPMENT

Risk Assessment Approach

- Human blood concentrations have been measured. Apply directly or assume steady state.
- Animal blood concentrations in toxicity studies or in pharmacokinetic studies permit prediction of NOAEL/LOAEL blood concentrations.

Monkey Data

Steady-state for liver and mortality (LOAEL)

Steady-state for adult humans

- Male Rat Data
 - <u>AUC for body weight (LOAEL 2-gen)</u>
 AUC for adult humans
- Female Rat Data
 - AUC for body weight (NOAEL 2-year)

AUC for adult humans

RESEARCH & DEVELOPMENT

MOE: Developmental Toxicity

- Prenatal Rat Data
 - <u>Cmax or AUC pregnant rat male pup body weight (NOAEL)</u>
 Css or AUC for adult human females
- Lactation Rat Data MOE not calculated
- Postweaning Rat Data
 - <u>AUC for 4-week weanlings pup mortality (NOAEL)</u>
 AUC for humans age 2-12

Delay Sexual Maturation and Postweaning Body Weight Rat Data

<u>AUC for 4-5 week female delay/body weight (NOAEL)</u>
 <u>AUC for humans age 2-12</u>

AUC for 4-8 week male delay/body weight (NOAEL)

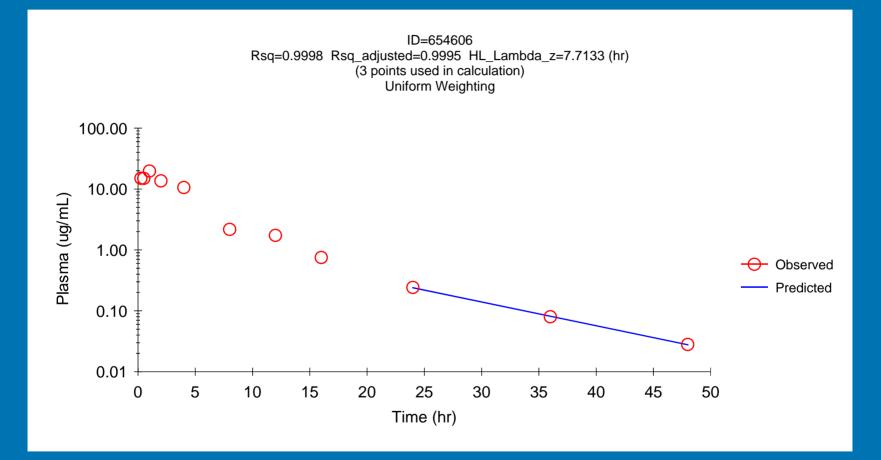
AUC for humans age 2-12

RESEARCH & DEVELOPMENT

Predicting Rat Dose Metrics

- Measured blood levels in some toxicity studies:
 - steady state analysis for males would be possible,
 - rapid clearance in females precludes similar analysis
- Use pharmacokinetic model to predict blood dose metric
 - AUC (chronic, two-generation)
 - Cmax (two-generation)

RESEARCH & DEVELOPMENT


PK Model Options

- Noncompartmental analysis
 - Used in several reports of rat PK
- Compartmental analysis
 - Human blood concentrations interpretable as approximating steady state levels given estimates of long half life
 - Extensive rat PK studies permit estimation of parameters in compartmental models (4 rats/dose/sex, 0.1, 1, 5, 25 mg/kg oral, 1 mg/kg intravenous)
- PBPK Model
 - Potentially gives comprehensive description of determinants of kinetics,
 - Very limited data available in humans and even for rodents appears to require a research effort

RESEARCH & DEVELOPMENT

Noncompartmental Fitting (model independent)

RESEARCH & DEVELOPMENT

Noncompartmental Modeling AUC_{INF}/D (hr·ug/mL/mg/kg)

	Male	Female
0.1 mg/kg oral	1097 ± 310	31.7 ± 5.9
0.1x mg/kg oral	2111 ± 587	34.4 ± 3.3
1 mg/kg oral	1194 ± 216	39.1 ± 10.2
1 mg/kg iv	1123 ± 100	30.7 ± 6.8
5 mg/kg oral	1222 ± 250	20.8 ± 2.0
25 mg/kg oral	942 ± 285	29.5 ± 7.0

Kemper 2003

RESEARCH & DEVELOPMENT

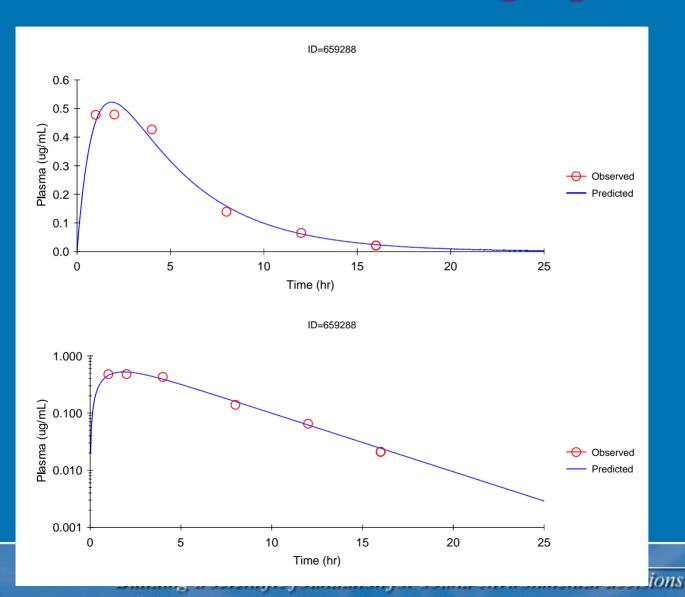
One Compartment Model

$$C = \frac{k_a D}{V(k_a - k_e)} (e^{-k_e t} - e^{-k_a t}).$$

AUC = $D/(V \times ke)$ Css = $DR/(V \times ke)$ For 100% absorbed

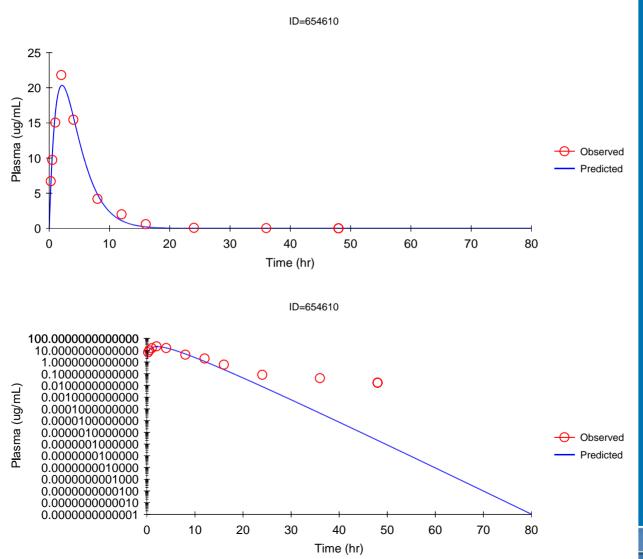
۲

RESEARCH & DEVELOPMENT


Compartmental Modeling

- 1 compartment model
 - Generally fitted rat PK data well, though there were indications of poorer fitting at late times at higher doses for females, some doses for males, and intravenous dosing
 - Values for volume of distribution, absorption rate, and elimination rate used to predict dose metrics for adults
- 2 compartment model
 - Improved some fits, but parameters not consistent across datasets

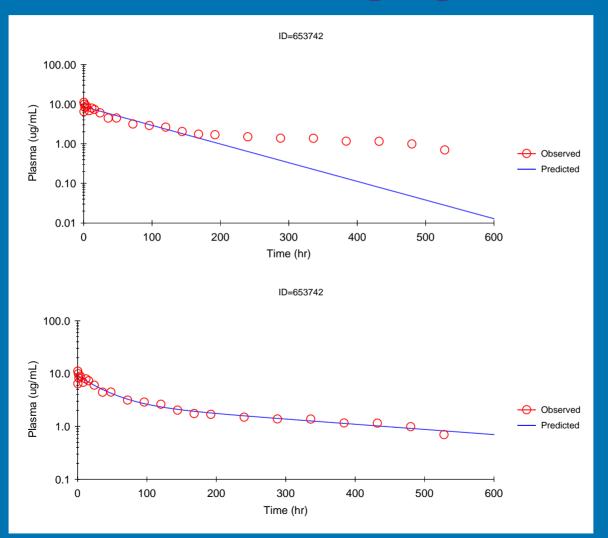
RESEARCH & DEVELOPMENT



Compartmental Modeling Female CD Rats, 0.1 mg/kg, 1 comp

Data: Kemper 2003 Analysis: EPA 2005

Compartmental Modeling Female CD Rats, 5 mg/kg, 1 comp



Data: Kemper 2003 Analysis: EPA 2005

ons

Compartmental Modeling Male CD Rats, 1 mg/kg intravenous

Data: Kemper 2003 Analysis: EPA 2005

RESEARCH & DEVELOPMENT

Non- & Compartmental Modeling AUC_{INF}/D (hr·ug/mL/mg/kg)

	Male	Female
0.1 mg/kg oral*	1097 ± 310	31.7 ± 5.9
0.1x mg/kg oral*	2111 ± 587	34.4 ± 3.3
1 mg/kg oral*	1194 ± 216	39.1 ± 10.2
1 mg/kg iv*	1123 ± 100	30.7 ± 6.8
1 mg/kg **	1011	27.6
5 mg/kg oral*	1222 ± 250	20.8 ± 2.0
25 mg/kg oral*	942 ± 285	29.5 ± 7.0
*Kemper 2003 **Predicted with 1 Compartment Model		

RESEARCH & DEVELOPMENT

Predicting Chronic Steady State

Diet * (ppm)	Dose Rate (mg/kg/day)	Predicted C _{ss} (µg/mL)**	Measured* Avg 5, 8, 14 wks (µg/mL)
1	0.06	3	7.0
10	0.64	27	47.4
30	1.94	82	87.0
100	6.5	274	148.7

*Palazzolo 1993 **1 Compartment Model

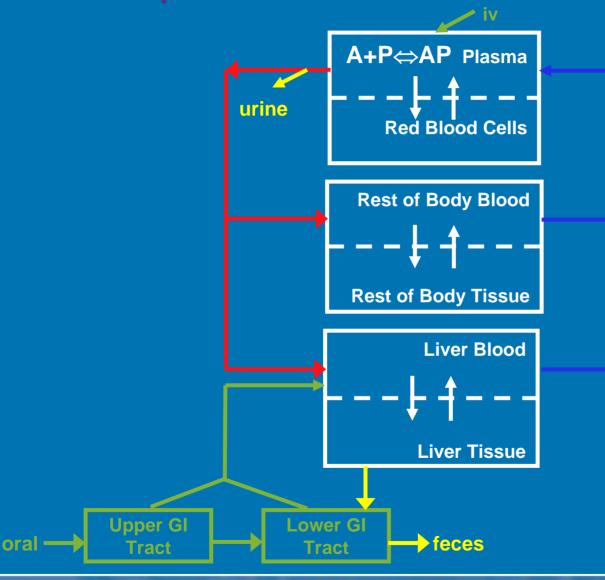
RESEARCH & DEVELOPMENT

Predicting Female Rat Plasma

Time	Dose Rate (mg/kg/day)	Predicted C (µg/mL)*	Measured (µg/mL)
2 hr	3	12	11±3**
2 hr	10	41	27±4**
24 hr	10	0.35	0.37±0.08 #
2 hr	30	123	67±10**
24 hr	30	1.06	1.0 ±0.4#

*1 Compartment Model**Mylchreest (2003) pregnant rats#York (2002) lactating rats

RESEARCH & DEVELOPMENT

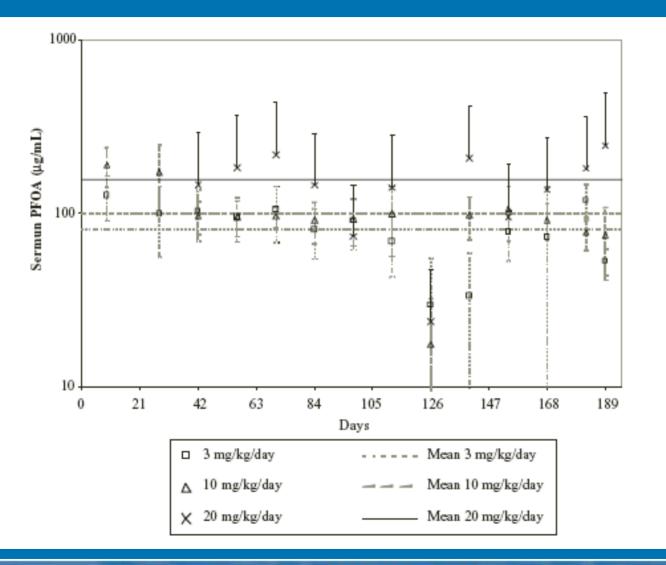

Predicting Rat Dose Metrics

- Have adequate data and satisfactory model (1 compartment) to predict Cmax and AUC for adult male & female rats at NOAEL/LOAEL in toxicity studies to evaluate MOE
- Limited predictions made for weanling pups, but not lactational period, for MOE evaluation

RESEARCH & DEVELOPMENT

Conceptual PBPK Model for Adult

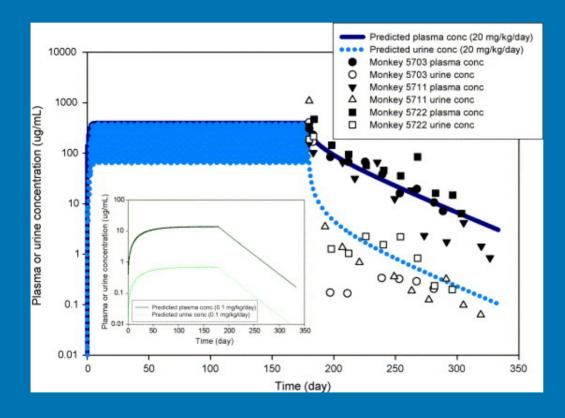
RESEARCH & DEVELOPMENT

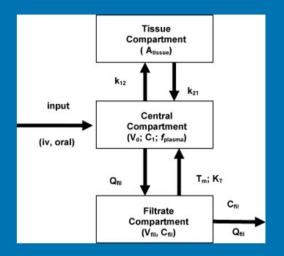

Proposed PBPK Model

- Andersen ME, Clewell HJ 3rd, Tan YM, Butenhoff JL, Olsen GW. Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys-Probing the determinants of long plasma half-lives. Toxicology. 2006 Oct 3;227(1-2):156-64.
- Motivation: Kinetics of single and repeated dose studies were possibly inconsistent or unknown indicated dosedependencies
- Model
 - Two compartment (essentially classical compartmental model)
 - Kidney filtration of free plasma PFOA
 - Dose-dependent kidney resorption transporter

RESEARCH & DEVELOPMENT

Monkey Repeated Dose Serum PFOA




Butenhoff JL et al. Pharmacokinetics of perfluorooctanoate in cynomolgus monkeys.Toxicol Sci. 2004 Dec;82(2):394-406.

RESEARCH & DEVELOPMENT

Monkey Repeated Dose Serum PFOA

Andersen ME et al Pharmacokinetic modeling of saturable, renal resorption of perfluoroalkylacids in monkeys-Probing the determinants of long plasma half-lives.Toxicology. 2006 Oct 3;227(1-2):156-64.

RESEARCH & DEVELOPMENT

Predicting Human Dose Metrics

- Measured PFOA blood concentrations in two population studies.
- Use directly for MOE comparisons based upon Cmax.
- Assume steady state to calculate AUC for MOE

RESEARCH & DEVELOPMENT

Biomonitoring Data U.S. General Population

- US Adults--645
- 332 males, 313 females
- age 20-69 yrs
- 6 ARC blood banks in various geographic locations (LA to Boston)
- Samples collected in 2000
- ~10 samples/10-yr age interval/ sex

- US Children--598
- 300 males, 298 females
- age 2-12 yrs
- Study of group A streptococcal infections
- Samples collected in 1994-1995 from 23 states and DC

RESEARCH & DEVELOPMENT

Human Biomonitoring Data

	Arithmetic	90th		Geometric
Population	Mean	Percentile	Range	Mean
	<u>(ppb)</u>	(ppb)	(ppb)	(ppb)
Adults (20 - 69 years,				
American Red Cross				
blood banks, 20	00,			
n=645)	5.6	9.4	1.9 – 52.3	4.6
Children (2-12 years,				
1995, n=598)	5.6	8.5	1.9 – 56.1	4.9

RESEARCH & DEVELOPMENT

Draft Risk Assessment MOEs

Monkey	16,739 GM (8191 90 th percentile)
Adult Female	398 GM (195 90 th percentile)
Adult Male	9158 GM (4481 90 th percentile)
Pregnant female	C _{max} 3095 GM (1548 90 th percentile)
	AUC 823 GM (412 90 th percentile)
Young (F1 mortality)	Male: 17,194 GM (9912 90 th percentile)
	Female: 11760 GM (6779 90 th percentile)
Young (delayed sexual maturation)	Male: 78,546 GM (45,279 90 th percentile)
	Female: 10,485 GM (6,044 90 th percentile)

RESEARCH & DEVELOPMENT

Advantages of Blood Dosimetry-Based Assessment

- Reflects aggregate (multi-route) historical environmental exposures
- Overcomes lack of adequate exposure pathway information
- Measure of internal dose reflects substantial pharmacokinetic differences across species and between rat sexes.

RESEARCH & DEVELOPMENT

Challenges of Blood Dosimetry-Based Assessment

- Need data: pharmacokinetic studies, toxicity study dosimetry
- Total concentration, free concentration, other?
- Is there a consistent relationship between blood and target tissue concentrations (body burden)?
- MOE evaluates current status future trends?
- Evaluating general population, lifestages, and subpopulations.

RESEARCH & DEVELOPMENT

Acknowledgments

- OPPT Risk Assessment Team
- Kathy Anitole
- Angela Auletta
- Colette Hodes
- David Lai
- Elizabeth Margosches
- Andrea Pfahles-Hutchens
- Jennifer Seed
- Hugh Barton (NCCT)

- PK & Modeling
- Leona Clark
- Christopher Lau
- Andy Lindstrom
- Mark Strynar

RESEARCH & DEVELOPMENT