US EPA BENTHIC HABS DISCUSSION GROUP WEBINAR March 26, 2024, 9:00am – 10:30am Pacific Standard Time

Webinar registration: https://zoom.us/webinar/register/WN_gsc9lq0STKiGdf38UFI1Q

GUEST SPEAKERS:

BRANNON WALSH, EPA

CHRISTOPHER NIETCH, EPA & ROCHELLE LABIOSA, EPA

ROSALINA STANCHEVA CHRISTOVA, GEORGE MASON U.; SYDNEY BROWN, GEORGE MASON U.; ABEER SOHRAB, UNIVERSITY OF UTAH

I. AGENDA

I Welcome, Agenda Overview, Introductions, and Announcements Margaret Spoo-Chupka, Eric Zimdars, and Keith Bouma-Gregson

- II Presentation: Overview of USEPA National HAB Program Guest Speaker – Brannon Walsh
- III Presentation: USEPA Regions Research Assessing Field Sampling and Analytical Procedures for Characterizing Risk Posed by Harmful Benthic Cyanobacteria in Streams and Rivers Guest Speaker – Christopher Nietch & Rochelle Labiosa

IV Speakers: Effect of Culture Conditions on Growth and Toxin Production of Microcoleus Species (Cyanobacteria) Isolate from Streams in California Guest Speaker – Rosalina Stancheva Christova, Sydney Brown, & Abeer Sohrab

I. INTRODUCTIONS

Name	Affiliation	Contact Information
Margaret Spoo-Chupka	Metropolitan Water District of	Phone: 909-392-5127
	Southern CA	Email: MSpoo-Chupka@mwdh20.com
Keith Bouma-Gregson	U.S. Geological Survey	Phone: 510-230-3691
		Email: kbouma-gregson@usgs.gov
Eric Zimdars	U.S. Army Corps of Engineers	Phone: 206-764-3506
		Email: Eric.S.Zimdars@usace.army.mil
Janice Alers-Garcia	U.S. EPA, Washington, DC	Phone: 202-566-0756
		Email: Alers-Garcia.Janice@epa.gov

I. ANNOUNCEMENTS

- Upcoming Meetings
 - 13th International Conference on Toxic Cyanobacteria
 - <u>https://ictc13.gr/</u>
 - Chania, Crete
 - May 4-8, 2025
 - 12th U.S. Symposium on Harmful Algae
 - <u>https://neiwpcc.org/events/ushab12/</u>
 - Portland, ME
 - October 27th-November 1st; Call for Abstracts Open, Closes May 8th
 - U.S. EPA Harmful Algal Blooms, Hypoxia, and Nutrients Research Webinar Series
 - <u>https://www.epa.gov/water-research/harmful-algal-blooms-hypoxia-and-nutrients-research-</u> webinar-series
 - National Association of Lake Managers/California Association of Lake Managers
 - <u>https://www.nalms.org/nalms2024/</u>
 - South Lake Tahoe, CA/NV
 - November 5-8; Call for Abstracts Open

ITEM II: GUEST PRESENTATION

OVERVIEW OF USEPA NATIONAL HAB PROGRAM BRANNON WALSH, U.S. EPA

ITEM III: GUEST PRESENTATION

U.S. EPA Regions Research Assessing Field Sampling and Analytical Procedures for Characterizing Risk Posed by Harmful Benthic Cyanobacteria in Streams and Rivers

CHRISTOPHER T. NIETCH, RESEARCH ECOLOGIST U.S.EPA/ORD & ROCHELLE LABIOSA, PHYSICAL SCIENTIST U.S. EPA REGION 10

ITEM IV: GUEST PRESENTATION

Effect of Culture Conditions on Growth and Toxin Production of Microcoleus Species (Cyanobacteria) Isolate from Streams in California

ROSALINA STANCHEVA CHRISTOVA, GEORGE MASON UNIVERSITY; SYDNEY BROWN, GEORGE MASON UNIVERSITY; ABEER SOHRAB, UNIVERSITY OF UTAH

THANKS FOR ATTENDING TODAY'S MEETING!

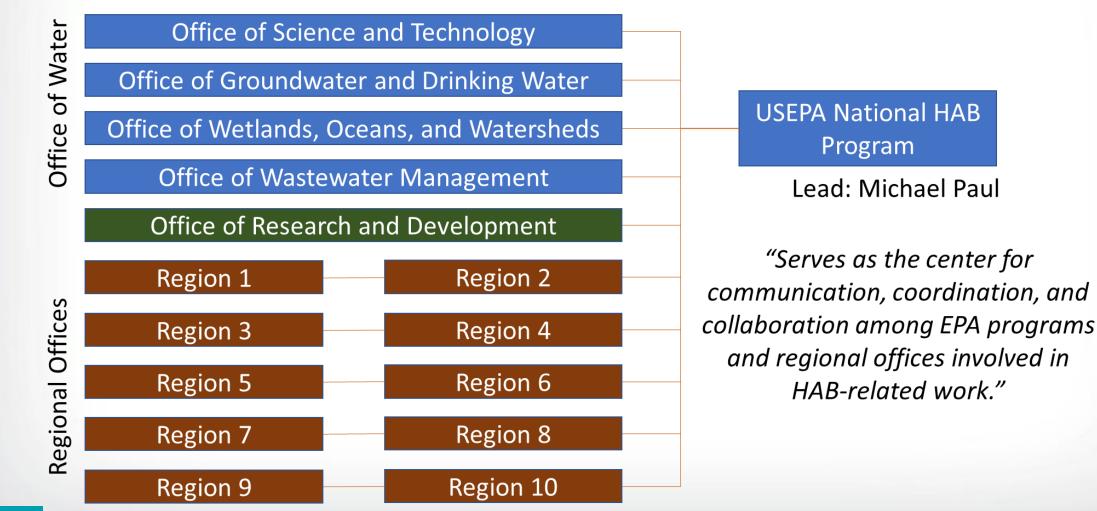
USEPA National HAB Program Overview

Brannon Walsh, USEPA

HABHRCA IWG Liaison

Presentation for

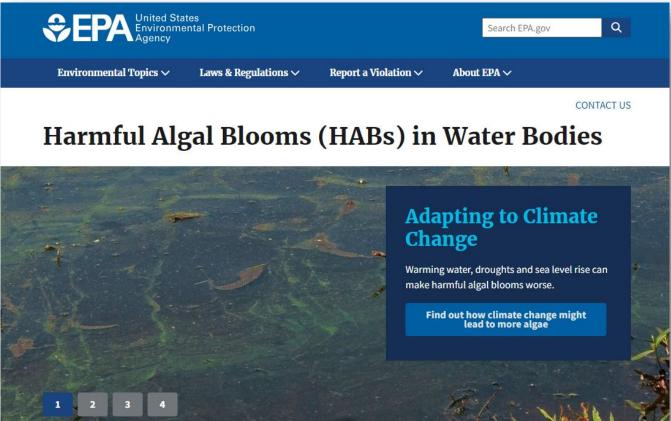
Benthic HABs Discussion Group


"The views expressed in this presentation are those of the author and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency."

March 26, 2024

€PA

USEPA National HAB Program


USEPA National HAB Program – Improving Intra-agency HAB Coordination

SEBA

USEPA National HAB Program

- Prevent Monitor
- Forecast
- Control
- Response

Certain environmental conditions in water bodies can intensify algae growth, causing algal blooms. Blooms with the potential to harm human health or aquatic ecosystems are referred to as Harmful Algal Blooms (HABs). HABs can produce toxins that present a risk to people, animals, aquatic ecosystems, the economy, drinking water supplies, property values, commercial and industrial fishing, and recreational activities like swimming.

https://www.epa.gov/habs

New Website! Hot off the Press!!

School-age children and adults

3.0 µg/L

1.6 µg/L

CONTAC

Q

Drinking Water Health Advisory (10-day)

• Prevent

• Monitor

Control

Response

Harmful Algal Blooms (HABs) in Water Bodies

Cyanotoxin

Cylindrospermopsin

Microcystins

State & Tribal HAB Monitoring Programs and Resources

Bottle-fed infants and pre-school children

0.7 µg/L

0.3 µg/L

This page provides access to a current list of state monitoring programs and other relevant monitoring resources. It also offers a compilation of the cyanotoxins thresholds used by state and Tribal programs to make advisory decisions for drinking water and recreational uses.

Table. Recommended magnitude for cyanotoxins.

Microcystins	Cylindrospermopsin					
8 μg/L	15 μg/L					

State Toxin Thresholds

The following table list toxin thresholds (for anatoxin, microcystins, cylindrospermopsin, and saxitoxins) being used by states to make advisory decisions for drinking water (DW) or recreational uses (REC). Units are in ppb or micrograms per liter. Only thresholds for which there was publicly accessible information available are listed and the links are provided in the final column. Many states used the USEPA Health Advisory (EPA HA) values for microcystin and cylindrospermopsin for drinking water advisories or USEPA Ambient Water Quality Criteria (EPA AWQC) for recreational advisories and those are noted. USEPA values are shown at the bottom of the table.

EPA Drinking Water Health Advisories for Cyanotoxins

<u>Recreational Water Quality Criteria and Methods</u>

Table 1

State Toxin Thresholds for Drinking Water and Recreation

			Anatoxir	1-A	Microcy	stins	Cylindros	permopsin	Saxitoxi	ns	
State	Application	Threshold Description	DW (ug/L)	REC (ug/L)	DW (ug/L)	REC (ug/L)	DW (ug/L)	REC (ug/L)	DW (ug/L)	REC (ug/L)	Citation/Link
AL	DW	No Thresholds	-	-	-	-	-	-		-	
AL	REC	No Thresholds	-	-	-	-	-	-	-	-	
AK	DW	No Thresholds	-	-	-	-	-	-	-	-	
AK	REC	No Thresholds	-	-	-	-	-	-	-	-	
AZ	DW	No Thresholds	-	-	-	-	-	-	-	-	
AZ	REC	No Thresholds	-	-	-	-	-	-	-	-	
AR	DW	No Thresholds	-	-	-	-	-	-	-	-	

SEPA

USEPA National HAB Program

Prevent

Monitor

• Forecast

Control

Response

Nutrient Pollution

Sources and Solutions

The Effects

Where it Occurs

In Your Classroom

MOLIUTION

SEPA United State Environmen Agency	s tal Protection		Search EPA.gov	۹		
Environmental Topics 🗸	Laws & Regulations 🗸	Report a Violation \checkmark	About EPA 🗸			
Related Topics: <u>Cyanobacterial HABs</u> Ground Water and Drinking Water Water Quality Criteria						

Preventative Measures for Cyanobacterial HABs in Surface Water

Preventative measures are the preferred approach to managing the occurrence of cyanobacterial blooms. The most effective preventative measures are those that seek to control anthropogenic influences that promote blooms such as the leaching and runoff of excess nutrients. Management practices for nutrients, specifically nitrogen and phosphorus, should have the goal of reducing loadings from both point and nonpoint sources, including water treatment discharges, agricultural runoff, and stormwater runoff. Devices that result in the mixing of lakes (for example, by air bubbling) enhance vertical mixing of the phytoplankton, which minimizes the formation of surface blooms of buoyant cyanobacteria. Also, increasing the water flow through lakes or estuaries reduces water residence time and inhibits cvanobacteria blooms; however, these efforts can be expensive and are best suited to small affected water bodies.

Various preventive measures target external nutrient input from point sources (which may include discharges from municipal and industrial wastewater treatment plants, concentrated animal feeding operations (CAFOs), Municipal Separate Storm Sewer Systems (MS4s), stormwater associated with industrial activity, and other) and non-point sources (which may include diffuse runoff from agricultural fields, roads and stormwater). In addition to external sources, nutrients exist internally within the sediment layer and cycle through the water column periodically (internal loading) to contribute towards the formation of HABs.

The table provides a summary of common measures to prevent HABs in surface waters.

DISCLAIMER: U.S. EPA does not endorse any of the measures presented on this page

Waterbody Management Measure to Prevent HABs Example link	Description	Benefits	Limitations
Biological Measure	25		
		Assimilates nutrients and encourages particle adsorption.	
Eloating Treatment Wetlands (FTW)	Consists of emergent wetland plants growing on floating mats on the water's surface. The plant's roots provide enough surface area to filter and trap nutrients. FTWs also encourage biofilm processes that reduce cyanobacteria levels. Periodic harvesting of mature plants is	Covered surface area minimizes light penetration and limits opportunity for algae growth. Able to tolerate	Often dependent upon the amount of input (i.e., the number of plants and mats). Excessive coverage can lead to de-oxygenation of the water.
	conducted to prevent stored nutrients from re- entering the aquatic ecosystem, mitigating risk of HABs by keeping nutrient levels in balance.	fluctuations in water depth. Utilizes natural processes with	Plants only have access to nutrients in the water column and not ones in sediment.

minimal technical

SEBA

USEPA National HAB Program

• Prevent

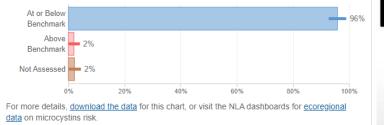
Cyanobacteria Assessment Network Application (CyAN app)

• Monitor

• Forecast

Control

• Response


Make faster decisions related to cyanobacterial algal blooms

This report sur condition. Ef What was the condition in 2017?

> Microcystins were detected in <u>21% of lakes</u> in 2017. The detection of <u>microcystins in</u> <u>the ecoregions</u> ranged from 2% to 58%. Levels exceeded EPA's recreational criterion in 2% of lakes, representing 4,400 lakes nationally, as shown below.

Exhibit 19: Microcystins Risk Condition (2017) Percentage of lakes in each condition category nationally

Cyanotoxins and the Safe Drinking Water Act: Drinking Water Protection Act, Contaminant Candidate List and the Unregulated Contaminant Monitoring Rule

• Prevent

Emerging HAB Topics

Forecast

Control

Response

Benthic HABs Discussion Group

Mission Statement:

The mission of this international collaborative is to accelerate mutual understanding of benthic HABs in rivers and lake sharing data and monitoring protocols, experiences and lessons learned

Calendar of Webinars:

Benthic HABs Discussion October 17, 2023

Contact Information:

Benthic HAB Workgroup Facilitators - Contact us to join the workgroup or to be a presenter!

Name	Affiliation	Contact Information
Eric Zimdars	U.S. Army Corps of Engineers	Phone: 206-764-3506 Email: <u>Eric.S.Zimdars@usace.army.mil</u>
Margaret Spoo-Chupka	Metropolitan Water District of Southern CA	Phone: 909-392-5127 Email: <u>MSpoo-Chupka@mwdh2o.com</u>
Keith Bouma-Gregson	U.S. Geological Survey	Phone: 510-230-3691 Email: <u>kbouma-gregson@usgs.gov</u>
Janice Alers-Garcia	US EPA, Washington, DC	Phone: 202-566-0756 Email: <u>Alers-Garcia. Janice@epa.gov</u>

* Disclaimer: The information presented in the Benthic HABs Discussion Group Webinars does not constitute an official endorsement by the U.S. government.

Developing Standardized Methods for Sampling, Analyzing and Assessing Benthic Harmful Algal **Blooms**

Innovative Science for a Sustainable Future

Background

Benthic harmful cyanobacterial blooms (HCBs) and their toxins pose a significant environmental threat to domestic animals, wildlife, and humans, and have impacted drinking water treatment operations in recent years. Specifically, dog and cattle deaths have have recently experienced benthic HCBs. Researchers are looking to characterize locations on wadeable streams and wadeable areas of larger rivers where high exposure risks have the potential to occur, such as places where children and pets (i.e., dogs) play in water, wade, or have the potential

Related Info

Past Benthic Webinars

• Prevent

Cyanobacteria Assessment Network Application (CyAN app)

Make faster decisions related to cyanobacterial algal blooms

Control

Response

Monitor

Journal of Environmental Management

journal homepage: www.elsevier.com/locate/jenvman

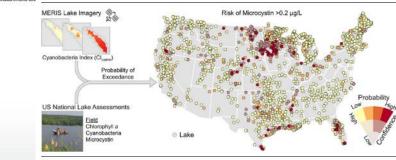
Contents lists available at ScienceDirect

Research article

Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs

Blake A. Schaeffer "," , Natalie Reynolds $^{\rm b}$, Hannah Ferriby $^{\rm c}$, Wilson Salls ", Deron Smith $^{\rm d}$, John M. Johnston $^{\rm d}$, Mark Myer $^{\rm e}$

⁸ US EPA, Office of Research and Development, Durham, NC, USA ⁶ RTI International, Research Triangle Park, NC, USA ⁶ Tetra Tech, Research Triangle Park, NC, USA ⁴ US EPA, Office of Research and Development, Athensi, GA, USA ⁴ US EPA, Office of Chemical Selfery and Pollution Prevention, Durham, NC, USA



Identifying lakes at risk of toxic cyanobacterial blooms using satellite imagery and field surveys across the United States

Amalia M. Handler ^{a,*}, Jana E. Compton ^a, Ryan A. Hill ^a, Scott G. Leibowitz ^a, Blake A. Schaeffer ^b

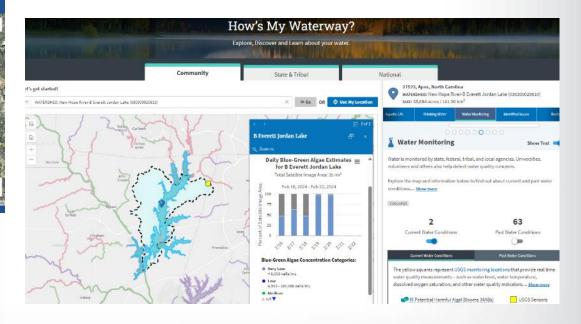
^a Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR 97333, United States of America
^b Center for Environmental Measurement an

Prevent

Operationalizing CyAN Forecasts


Q 🗇 🔅

Monitor


Forecast

Control

Response

Cyanobacteria Assessment Network vita

SEPA

USEPA National HAB Program

Prevent

Monitor

• Forecast

Control

Response

Summary of Cyanotoxins Treatment in Drinking Water

Conventional water treatment (consisting of coagulation, sedimentation, filtration and chlorination) can generally remove cyanobacterial cells and low levels of toxins. However, water systems may face challenges providing drinking water during a severe bloom event, when there are high levels of cyanobacteria and cyanotoxins in drinking water sources.

Once cyanobacteria and/or their cyanotoxins are detected in the surface water supplying the water system, the treatment system operators can act to remove or inactivate them in a number of ways. Some treatment options are effective for some cyanotoxins, but not for others. Effective management strategies depend on understanding the growth patterns and species of cvanobacteria that dominates the bloom, the properties of the cvanotoxins (i.e., intracellular or extracellular), and appropriate treatment processes. For example, oxidation of microcystin depends on the chlorine dose, pH and the temperature of the water. Applying the wrong treatment process at a specific state in treatment could damage cells and result in the release rather than removal of cvanotoxins

The table below summarizes the effectiveness of different types of water treatment to remove intact cyanobacteria cells and treatment processes that are effective in removing extracellular dissolved toxins of several of the most important cyanobacteria. Drinking water operators are encouraged to monitor the treated water to confirm the removal of cyanotoxins.

A Summary of Cyanotoxin Treatment Processes and Their **Relative Effectiveness**

Treatment Process	Relative Effectiveness
Intracellular Cyano	toxins Removal (Intact Cells)
Pre-treatment oxidation	Oxidation often stresses or lyses cyanobacteria cells releasing the cyanotoxin to the water. If oxidation is required to meet other treatment objectives, consider using lower doses of an oxidant less likely to lyse cells. If oxidation at higher doses must be used, sufficiently high doses should be used to not only lyse cells but also destroy total toxins present (see extracellular cyanotoxin removal).
Coagulation/ Sedimentation/ Filtration	Effective for the removal of intracellular toxins (cyanobacteria cells). Ensure that captured cells accumulated in sludge are removed frequently to release toxins. Ensure that sludge supernatant is not

Control Measures for Cyanobacterial HABs in Surface Water

Measures can be employed once blooms have already occurred to control the phytoplankton blooming rate and to remove blooms. The table provides a summary of the common physical and chemical measures for cyanobacterial blooms in surface waters and their respective effectiveness and limitations

To learn more about ways to manage cyanobacterial blooms visit: Report: Solutions for managing cyanobacterial blooms: A scientific summary for policy makers (PDF) Z or the ITRC's Strategies for Preventing and Managing Benthic Harmful Cyanobacterial Blooms Management Criteria Tool 🔽

DISCLAIMER: U.S. EPA does not endorse any of the measures presented on this page.

M

P

A Summary of Waterbody Management Measures for Cyanobacterial Blooms

,			-,			 Cyanotoxin 	Manag
Waterbody Management Measure	Description		Effectiveness	Limitations		Treating	0
Physical Controls							-
Aeration	Aerators operate by pumping air through a diffuser near the bottom of the waterbody, resulting in the formation of plumes that rise to the surface and create vertical circulation cells as they propagate outwards from the aerator. This mixing of the water column disrupts the behavior of cyanobacteria to migrate vertically in addition to limiting the accessibility of nutrients.		ccessfully olemented in small nds and waterbodies. y also provide more	d waterbodies. Columns Also highly		Water Treatme Comprehensiv Associated Cya Summary of Cy	
			Freshwater Cyanotoxins				
			Techniques		Anatoxins	Cylindrospermopsins	Microcy
			Biological Assays				
	Manipulation of inflow/outflow of water in the system to disrupt stratification and control cyanobacterial growth.		Mouse		Yes	Yes	Yes
			Protein Phosphatase Inhibition Assays (PPIA)		No	No	Yes
Hydrologic			Neurochemical		Yes	No	No
manipulations			Enzyme-Linked Immunosorbent Assays (ELISA)		Yes	Yes	Yes
			Chromatographic Method Gas Chromatography				
	Mechanical mixers are usually surface-		Gas Chromatography with Ionization Detection (GC/F		Yes	No	No
			Gas Chromatography with Spectrometry (GC/MS)	Mass	Yes	No	No

Liquid Chromatography Single

Quadrupole Mass Spectrometry (LC/MS)

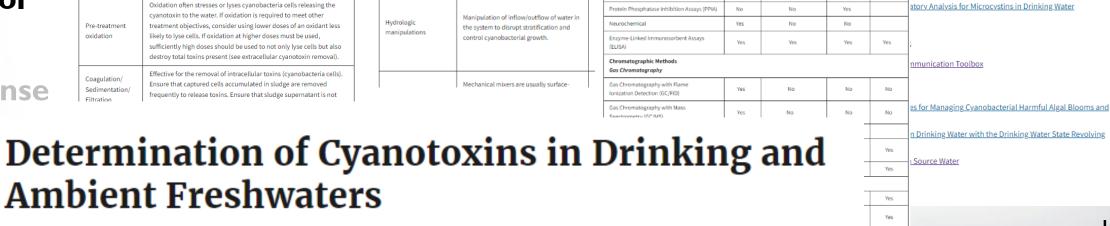
Cyanotoxin Management Tools for Public Water Systems

The following resources can help public water systems plan for and manage cyanotoxins in their drinking water. Key resources provide information on treating, monitoring and communicating the risks of cyanotoxins in drinking water.

Preparing a cyanotoxin management plan

- Recommendations for Public Water Systems to Manage Cyanotoxins in Drinking Water
- agement Plan Template and Example Plans

notoxins


- t Optimization for Cyanotoxins Document
- Performance Evaluation Protocol to Address Harmful Algal Blooms and otoxins
- notoxins Treatment in Drinking Water

vstins Saxitoxin

Yes

Yes

A Connotoving Information for Drinking Water Systems Fact Sheet urface Water

10

USEPA National HAB Program

Prevent

Monitor

• Forecast

Control

• Response

SEPA US EPA Cyanotoxins Preparedness US EPA Cyanotoxins Preparedness and Response Toolkit

Monitoring and Responding to Cyanobacteria and Cyanotoxins in Recreational Waters

This information is intended for recreational waterbody managers, which may include public health officials, lake managers, or other state, local or tribal officials, involved in monitoring water quality and protecting the health of people and animals that use waterbodies within their jurisdiction.

DISCLAIMER: This information does not impose legally binding requirements on EPA, states, tribes, or the public, nor does it confer legal rights. It does not constitute a regulation, nor does it change or substitute for any Clean Water Act provision or EPA regulation. Any mention of trade names, products, or services does not convey and should not be interpreted as conveying official EPA approval, endorsement, or recommendation for use.

On this page:

- Visual signs of a Cyanobacterial Bloom
- Developing an Emergency Response Plan for Cyanotoxins

Related Information

- <u>Communicating about</u>
 <u>Cyanobacterial Blooms in</u>
 <u>Recreational Waters</u>
- Nutrient Pollution Policy and Data
- <u>Recreational Water Quality Criteria</u>
 <u>or Swimming Advisories for</u>
 Cyanotoxins
- Final Technical Support Document: Implementing 2019 Recommended Recreational Criteria or Swimming Advisories for Microcystins and Cylindrospermopsin

€PA

÷

Incident Action Checklist – Harmful Algal Blooms

For on-the-go convenience, the actions in this checklist are divided up into three "rip & run" sections and are examples of activities that surface water utilities can take to: prepare for, respond to and recover from harmful algal bloom (HAB) incidents. You can also populate the "My Contacts" sections with critical information that your utility may need during the HAB incident.

Harmful Algal B

Increasingly, utilities face drinking water to their cu

elivery of safe n lead to prolonged

RECREATIONAL WATER CLOSURE ISSUED

FOR IMMEDIATE RELEASE

Media Contact: [insert name, title, telephone and fax number, and e-mail of spokesperson] WHY IS THERE A CLOSURE?


- [Cyanotoxin or cyanobacteria name], a toxin produced by cyanobacteria (formerly known as blue-green algae) was detected in the water at levels that could cause harm at [location] on [date].
- Samples collected on [dates] show [cyanotoxins or cyanobacteria name] in [location] at [levels and/or ranges], which are above the state-designated recreational water health advisory levels. WHAT SHOULD 1 DO?
- Do not swim, wade or come in contact with the water, scum, foam or algae at [location].
- Seek medical attention if you or family members are experiencing illness after swimming or playing in water. Recreational waters containing [cyanotoxin or cyanobacteria name] at levels exceeding the state's guidelines for issuing a Health Advisory can put you at risk of various adverse health effects including upset stomach, vomiting and diarthea. Exposure to concentrations of cyanotoxins higher than the state's guideline values could potentially result in more serious illnesses, including liver or kidney damage.
- Animals may be vulnerable to adverse health effects of [cyanotoxin or cyanobacteria name] at the detected levels indicated above. Contact a veterinarian if animals show signs of illness.
- If you, your family members or your animals have experienced adverse [cyanotoxin- or cyanobacteria-related] health effects, please contact [State or local Health Department] to report the illness.

Outreach and Other Resources

• Prevent

- Monitor
- Forecast
- Control
- Response

HAB Webinars

Access to upcoming and past webinars on HABs.

- Harmful Algal Blooms, Hypoxia, and Nutrients Research Webinar Series 2024
- EPA CyanoSymposium 2023 October 16, 18, 23, and 26, 2023

Other organizations regularly sponsoring webinars relevant to HABs include:

- North Central Region Water Network Algal Bloom Action Team Webinars [2]
- Great Lakes HABs Collaborative Other HAB List-serves and Discussion Groups
- <u>National Harmful Algal Bloom C</u>

The following list-serves may be of interest to those working on HABs:

Cyanobacteria Collaborative Google Group (cyano_collab). Approximately weekly notification on mainstream media, science media, scientific papers, and conferences, webinars and newsletters related to cyanobacteria. How to join a Google Group: <u>Find and join a group - Google Groups Help</u> . Search for cyano_collab

Past HAB Webinars

Related Information

<u>Cyanobacteria Collaborative Google Group</u>

US HAB Listserve - The purpose of this mailing list is to disseminate information and announcements to the HAB Community, including

Recent Papers and Upcoming Meetings

entists, and between

ailings are typically

This page provides technical experts with access to recent publications and information on upcoming meetings. It also provides links to upcoming HAB webinars that may be of interest.

For information on archived EPA outreach, including webinars visit:

- EPA Outreach on HABs
- On this page:
- <u>Recent Papers</u>
- <u>Upcoming Meetings</u>
- Upcoming Webinars

Contact: Michael J. Paul, USEPA 202-564-1665 paul.michael@epa.gov https://www.epa.gov/habs

12th U.S. Symposium on Harmful Algae October 27-November 1, 2024 Holiday Inn Portland by the Bay in Portland, Maine.

https://neiwpcc.org/events/ushab12/

Search: US HAB Meeting 2024

Sepa

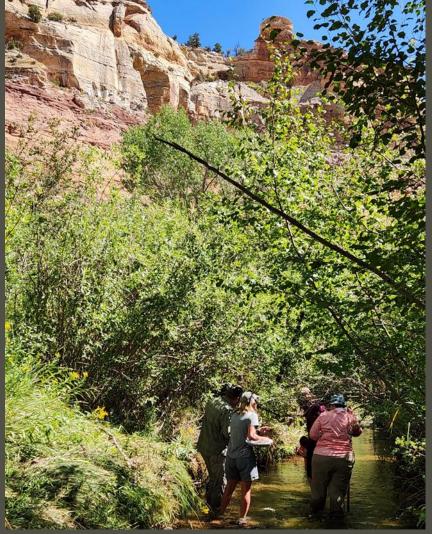


Image from Lower Calf Creek, UT, Training Site– 15Aug2023

USEPA Regions Research

Assessing field sampling and analytical procedures for characterizing risk posed by harmful benthic cyanobacteria in streams and rivers

Chris Nietch¹ and Rochelle Labiosa² ¹Ecologist, USEPA, ORD, Cincinnati, OH; ²Physical Scientist, USEPA, R10, Seattle, WA

The Issue

- Benthic harmful cyanobacteria blooms (HCBs) pose a significant threat to domestic animals, wildlife, and humans
- State, tribal, and local agencies need greater understanding of the risk posed by benthic HCBs
- The Interstate Technology and **Regulatory Council (ITRC) developed** guidance, but did not provide specific recommendations for characterizing risk quickly and effectively
- Results will inform sampling protocols and analyses that will help partners develop plans that use common approaches and inform decisions about when to post and remove alerts

Benthic HCB in the Eel River, CA

underwater view of toxin producing Microcoleus mat

Periphyton is the biofilm of streams and rivers, a mixture of algae, cyanobacteria, heterotrophic microbes, and detritus that is attached to submerged surfaces in most aquatic ecosystems.

Kiosk at Lower Calf Creek Falls Trailhead, Escalante, UT, 17Aug2023

SEPA

ROAR _ Core Research Team

Tina Laidlaw (R8), Chris Nietch (ORD), Jim Lazorchak (ORD) – oversight

Laura Webb (R7), Tina Laidlaw (R8), Rochelle Labiosa (R10), Avery Tatters and Chris Nietch (ORD) – **field procedures and ecological measures**

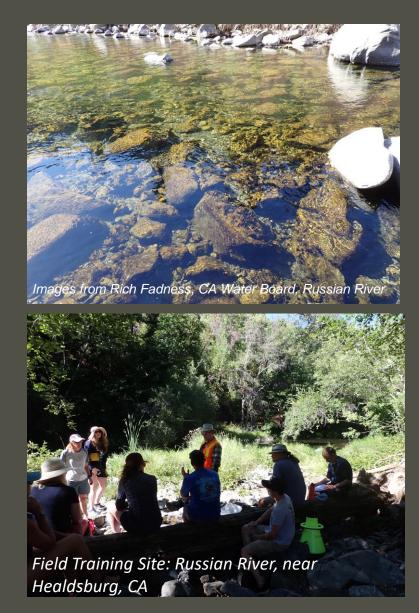
Heath Mash and Toby Sanan (ORD: LCMSMS), Marcie Tidd (R8: ATX/STX ELISA), Meghan Dunn (R10: Nutrients), Hillary Snook (R1: MYC/CYL), and Laura Webb (R7: AFDM/CHLA/Phyco) – **analytical chemistry**

Jingrang Lu (ORD: QPCR) and Erik Pilgrim (ORD: DNA Metabarcoding) – **molecular biology**

Chris Nietch, Nate Smucker, Avery Tatters (ORD) – ecological interpretations

External partners (E.g., Dana Michels (R9); Rich Fadness, Michael Thomas, Carly Nilson, and Marisa VanDyke (CA Water Boards)), Hannah Bonner, UTDEQ, Robyn Henderek, NPS, WA USGS, and many others – **expert advice and sampling effort**

Benthic HCB ROAR -Strategy for 2023


Goals

- Each of 7 field teams (representing EPA Regions 3, 5, 7, 8, 9, & 10) sampled one site of interest; 2 events (4 visits total)
- Test different in-stream sampling methodologies
- Conduct <u>"experiments" to quantify effectiveness</u> of proposed methods
- Test-run sample transfer, processing, and analyses logistics and methods
- Develop and test data acquisition and management strategies

Project Scheduling

- Study design, write QAPP, and write SOP, February June
- Field crew training, July August
 - Two field training events provided: Santa Rosa, CA and Escalante, UT
- Field sampling, September October
- Field measurements managed by the end of January 2024
- Lab analyses completed by end of February 2024
- March April 2024, analyze and interpret data
- May June 2024, study design, etc. for 2024 benthic HCB season

Lessons learned and results from 2023 are informing the sampling design for 2024, including sampling more sites but doing fewer procedures at each

2023 Benthic HCB Study Sites

Field Team	Sample ID*	State	City	2023 sampling locations	Lat, Long
Region 3	R3NFSR	VA	Strasburg	North Fork Shenandoah River (Strasburg Town Park)*	38.972861, -78.351111
ORD (Region 5)	R5SMR	он	St. Marys	St. Mary's River at St. Marys	40.535342, -84.378224
Region 7	R7IC	KS	Kansas City	Mill Cree near Shawnee Station	39.017313, -94.815727
Region 8	R8RS1	UT	Escalante	Lower Calf Creek near Escalante	37.795997, -111.413100
Region 9	R9AR	CA	Sacramento	American River @ Oregon Bar	38.863448, -121.058674
Region 9	R9SFER_01	CA	Phillipsville	South Fork Eel River @ Phillipsville	40.199195, -123.775900
Region 10	ROAR_R10ColLG	WA	Richland	Columbia River, Leslie Groves Park	46.312003, -119.261317

Two main objectives of <u>Benthic HCB ROAR</u> sampling procedures design in 2023

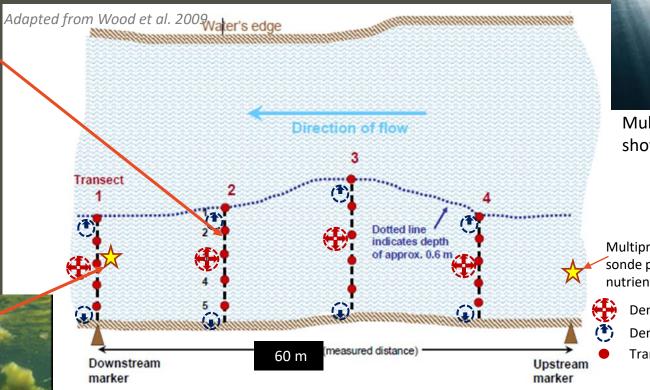
Transect Methods

Characterize the relative extent of potential toxin-producing benthic cyanobacteria at the <u>reach scale</u> and within the context of reach ecology, including the whole periphyton community

Disturbance Methods

Assess the potential risk of toxin exposure through direct contact that might occur during human recreation or use of the reach by domestic pets, livestock, and wildlife, or through drinking water whose source was contaminated with cyanotoxin(s)

SEPA


Transect method set-up: channel sections >10m

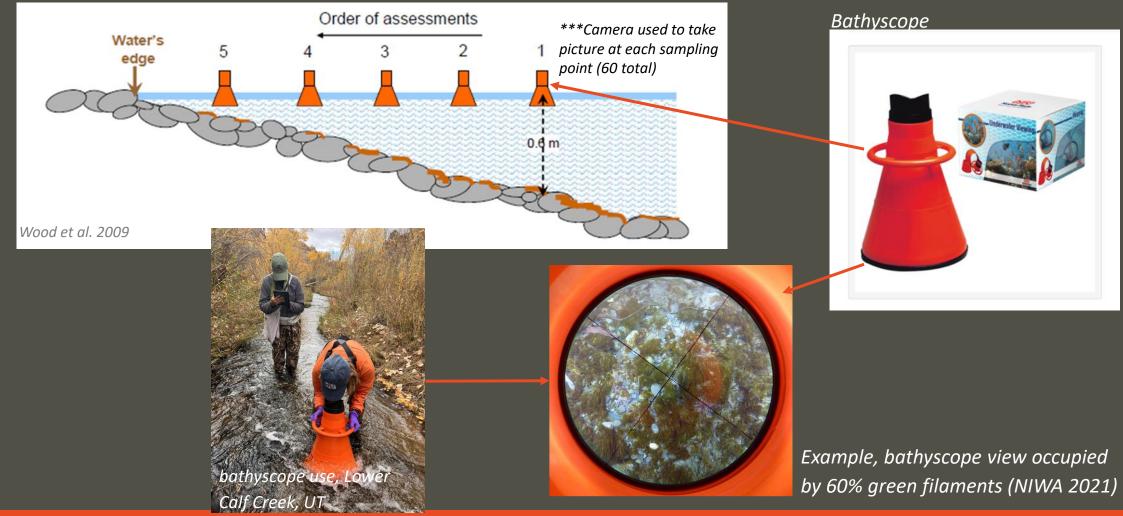
Sampling locations for:

- Substrate type
- <u>%Cover</u> Bathyscope visual assessment
- <u>Periphyton Composite</u>
 <u>-</u>Sample substrate(s)
 from 8 of the
 bathyscope locations;
 2 in each transect.
- <u>Disturbance Sample</u> 1 location with max cyanobacteria cover

SPATT sampler in the Eel River, CA. Figure 2 in Bouma-Gregson et al 2018

Zig-zag set-up scheme used for stream reaches under 10m width

Multiparameter data sonde – YSI EXO-type shown, or similar


Multiprobe – data sonde placement, nutrient grab sample

Densiometer (4 readings) Densiometer (1 reading) Transect section marker

Convex densiometer for estimating canopy cover

Transect Sampling Procedure: Cross section of transect and bathyscope viewing for <u>%Cover</u>

SEPA

St. Mary's River Site, OH. Note strandings and floating chunks of benthic mats

Disturbance Sampling Procedure: Considered and tested different approaches

The goal: Obtain a 'standardized' sample that characterizes the exposure potential (worse-case scenario)

Location sampled: Target area with highest cyanobacterial presence

One approach: UDEQ-NPS (2021) – "stomp and catch" calls for stepping in an approximate 1 m² area 5 s while scooping water from the disturbed area using a 2.5-gallon bucket and attempting to capture any dislodged mats in the bucket ITRC (2022b).

<u>Concern:</u> Toxin quantities not normalized to a known area or quantity of mat material to compare across sites or establish future guideline

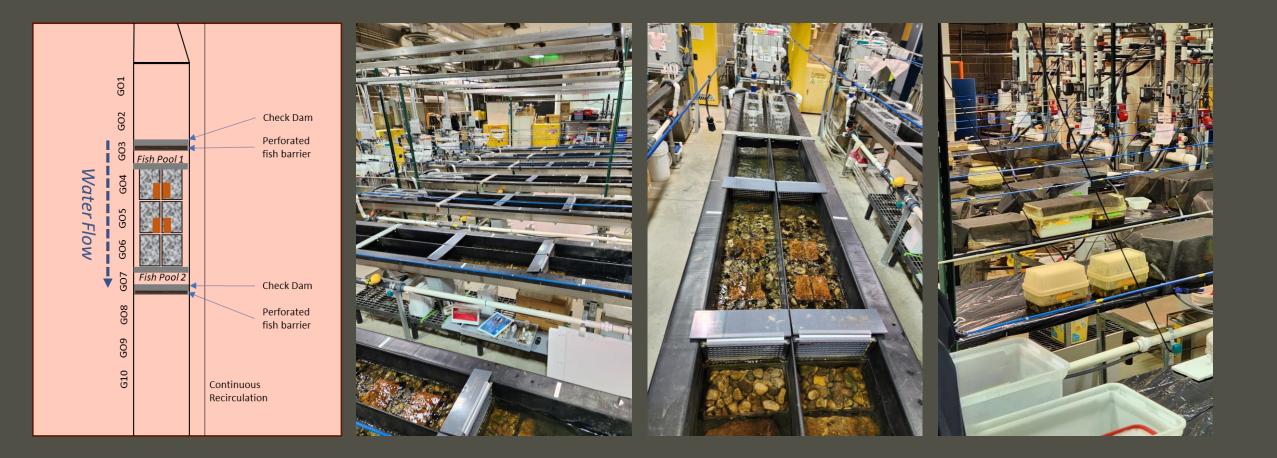
Test disturbance sampling with Surber or Hess sampler

- 1. Bulk Biomass Sample
- 2. Water Parcel Sample

HESS Sampler

Confluence to American River, CASouth Crew – 26Sep2023

€PA


Questions and experiments to inform effectiveness of in-reach sampling procedures

1. %Cover validation experiment

- Does the transect set-up and sampling protocol adequately characterize the extent of benthic cyanobacteria in the section of concern?
- 2. Benthic HCB vs. NRSA periphyton composite sample acquisition experiment
 - A NRSA reach set-up is overlayed and extended from the Benthic HCB reach to determine how the periphyton composite measures compare.
- 3. Disturbance sampling techniques adjustment and comparison experiment
 - Does adjusting the disturbance sampling technique so that measures of toxins in the bulk biomass disturbed as well as in a parcel of the disturbed water column prove relevant to the risk characterization?
 - Conduct a "stomp-and-catch" disturbance sampling approach to the Hess/Surber sampling technique to determine if a standardizable approach is practical and more informative.
- 4. Benthic HCB reach scale spatial variability experiments
 - How does spatial variability effect the risk characterization?
 - Periphyton composite samples are processed separately, and additional disturbance samplings are scheduled.

5. Longer-term multiparameter sonde deployment (diel dissolved oxygen, pH, and temp)

Teams with access to a multi-parameter sonde and that can perform a longer-term deployment (i.e., at least 7 d or over the entire period of SPATT deployment).

Experimental Stream Facility – 2023 Study – Benthic Cyanobacteria Mesocosm study

- Controlled cyanobacteria dominance of periphyton for three strains of cyanobacteria
- Measurements to assess effects on stream insects and a native fish (central stoneroller)

2023 Analytical Plan

	Periphyton I&E Microscopy by contractor (GLEC) FlowCam by Heath Mash	by Avery Tatters	Metabarcoding (using 16s and cyano- specific primers) by Erik Pilgrim	qPCR by Jingrang Lu	Cyanotoxins - ELISA anatoxin and saxitoxin by Marcie Tidd (R8) ; microcystin and cylindrospermopsin by Hilary Snook (R1)	Toxins - LC/MS/MS Toby Sanan focuses on periphyton ¹ Heath Mash focuses on water and SPATTs	Chlorophyll, Phycocyanin, Dry Wt/AFDM by Laura Webb (R7)	Nutrients, Chlorophyll, and Phycocyanin -TKN, TP, NO2-3, DisP, & Anions by R10 Laboratory -Chl and Phyco by Laura Webb (R7)
Periphyton Transect Sampling Method Obj: Estimate of relative abundance of cyanobacteria at the reach scale that can be compared to other reach-scale measures								
Disturbance Sample (test different sampling approaches) Obj: Evaluate exposure to benthic mats. Target worst case scenario identified when using viewing bucket. Normalized by area.								
Surface Water Grab Samples (+ Additional water sample also collected during SPATT retrieval)								
SPATTs								

¹Toby's analysis: LC-MS/MS for anatoxins (+ homo, dihydro), cylindrospermopsins (couple of congeners) + microcystins (typical suite of 14-15), using labeled toxins for isotope dilution

Samples Scheduled for 2023

Karen Odkins, California Department of Fish and Wildlife, Statewide HAB Coordinator, CaSouth Crew Member preparing for field sampling

Set EPA

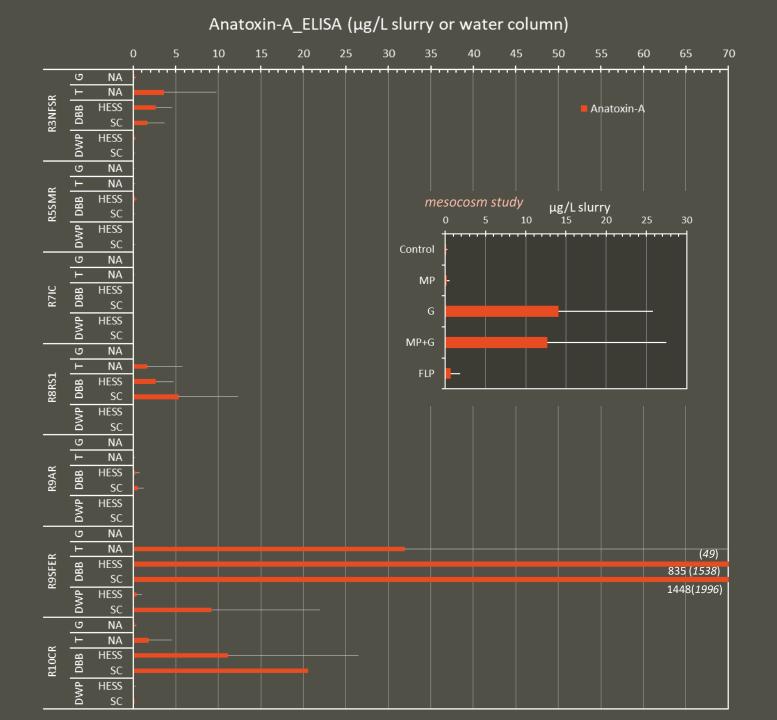
Analysis	Matrix	Total # of Samples	
TP/TKN and NO3+NO2	SW	28	
Dissolved P	SW	35	
Anions	SW	28	\checkmark
Toxins-LC/MS/MS	SPATTs	28	
Toxins-LC/MS/MS	SW and Periphyton	245	
ELISA_ATX-STX	SW and Periphyton	217	
ELISA_MC-CYL	SW and Periphyton	217	
Cyanobacteria Microscopy	Periphyton	189	\checkmark
FlowCam	SW and Periphyton	217	
Periphyton Algael&E	Periphyton	28	
QPCR	SW and Periphyton	224	\checkmark
Metabarcoding	Periphyton	147	
Dry Weight and AFDM	Periphyton	147	\checkmark
Chl-a	SW and Periphyton	224	
Phycocyanin	SW and Periphyton	224	\checkmark
Total		2198	

98% of samples scheduled were collected

🖊 Data delivered

CANorth Crew: Rich Fadness/Mike Thomas, CA Water Board

T1.1-SP2: NoAlgae(25%), Cyano(75%)


T2.1-SP2: NoAlgae(70%), Cyano(10%), GreenFil(20%)

Preliminary Anatoxin A results

Field Site Sample Types G= Surface water grab T= Periphyton transect (composite) DBB= Disturbed benthic biomass DWP= Disturbed water parcel HESS= Sampled with Hess sampler SC = Sampled with stomp and catch

Mesocosm Study Treatments (i.e., cultured strains of cyanobacteria isolates) Control = No cyano strain addition MP = Microcoleus/Phormidium strain G = Geitlerinema strain MP+G = Both strains added FLP = Florida Phormidium strain

OPB JAN. 22, 2024

in The News https://www.opb.org/article/2023/10/16/epa-study-columbia-river-toxic-algae/

Big trouble on the Columbia: EPA studies river's toxic algae spread

₽ f ₽

By Anna King (Northwest News Network) Oct. 16, 2023 9 a.m.

▶ 0:00 / 4:02 ----

https://www.kuow.org/stories/bi g-trouble-on-the-columbia-epastudies-river-s-toxic-alaae-spread

npr

Network

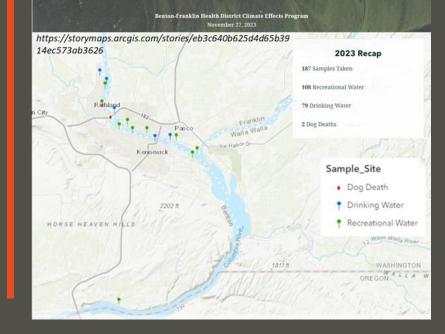
U.S. Environmental Protection Agency scientists Rochelle Labiosa, right, and Lil Herger examine the Columbia River for toxic algae as Jason Pappani leans over to reach into the water. Courtery of Rajah Bose

High Country News

WATER

Another gunky, toxic season for Utah waters

Harmful algae blooms, fueled by warming temperatures and nutrient runoff, plague the state.


Guananí Gómez-Van Cortright | Nov. 9, 2023 |

f У 🗹 PRINT

https://www.hcn.org/articles/water-another-gunky-toxicseason-for-utah-waters

BFHD Harmful Algae Bloom Season Recap

Tracking Harmful Algal Blooms in Benton & Franklin County Fresh Waters

Benthic HCB ROAR in the news - 2023

Primary methods/guidelines reviewed for 2023 sampling procedures

- Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish, Second Edition. . U.S. Environmental Protection Agency: Office of Water, Washington, D.C. EPA 841-B-99-002:337p.
- Biggs, B. 2000. New Zealand Periphyton Guideline: Detecting, Monitoring, and Managing Enrichment of Streams. National Institute of Water and Atmospheric Research for the Ministry of the Environment, Christchurch, New Zealand.
- Biggs, B., and C. Kilroy. 2000. Stream periphyton monitoring manual. NIWA for Ministry for the Environment, Christchurch, New Zealand, NIWA.226p.
- Bouma-Gregson, K., R. M. Kudela, and M. E. Power. 2018. Widespread anatoxin-a detection in benthic cyanobacterial mats throughout a river network. PLOS ONE 13:e0197669.
- Danielson, T. 2019. Protocols for Sampling Algae in Wadeable Rivers, Streams, and Freshwater Wetlands-April 2014, Updated May 2019. Maine Department of Environmental Protection, Augusta, ME DEPL W-0634B-2014:19p.
- Fetscher, A. Elizabeth, Meredith D. A. Howard, Rosalina Stancheva, Raphael M. Kudela, Eric D. Stein, Martha A. Sutula, Lilian B. Busse, and Robert G. Sheath. 2015. Wadeable streams as widespread sources of benthic cyanotoxins in California, USA. Harmful Algae 49: 105-116. https://doi.org/https://doi.org/10.1016/j.hal.2015.09.002.
- FSI. 2008. Using Forest Densiometers. WD041005 01/08-800, Forestry Suppliers, Inc., Jackson, MS.
- Howard, Meredith D. A., Carey Nagoda, Raphael M. Kudela, Kendra Hayashi, Avery Tatters, David A. Caron, Lilian Busse, Jeff Brown, Martha Sutula, and Eric D. Stein. 2017. Microcystin Prevalence throughout Lentic Waterbodies in Coastal Southern California. Toxins 9 (7): 231.
- ITRC. 2021. Learning to Identify Cyanobacteria Blooms. Interstate Technology and Regulatory Council, YouTube Video.
- ITRC. 2022a. Monitoring for benthic cyanobacteria. Interstate Technology and Regulatory Council, Washington, DC.
- ITRC. 2022b. Strategies for Preventing and Managing Harmful Cyanobacteria Blooms (HCBs)
 Benthic cyanobacteria. Online Publication of the Interstate Technology and Regulatory Council.
- Kilroy, C., D. J. Booker, L. Drummond, J. A. Wech, and T. H. Snelder. 2013. Estimating periphyton standing crop in streams: a comparison of chlorophyll a sampling and visual assessments. New Zealand Journal of Marine and Freshwater Research 47:208-224.
- Laramie, M. B., D. S. Pilliod, C. S. Goldberg, and K. M. Strickler. 2015. Environmental DNA sampling protocol - filtering water to capture DNA from aquatic organisms. Report 2-A13, Reston, VA.

- Moulton II, S. R., J. G. Kennen, R. M. Goldstein, J. A. Goldstein, and H. J. A. 2002. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program. U.S. Geological Survey, Open-File Report 02-150.
- NIWA. 2021. Periphyton identification Guide. National Institute of Water and Atmospheric Research, Christchurch, New Zealand.:209p.
- OWEB. 2000. Stream shade and canopy cover monitoring methods, Chapter 14. Water Quality Monitoring Technical Guidebook, Addendum, Oregon's Watershed Enhancement Board, Salem, OR.:35p.
- Stevensen, J., and L. L. Bahls. 1999. Periphyton Protocols. Page 23p in M. T. Barbour, J. Gerritsen, B. D. Snyder, and J. B. Stribling, editors. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish, 2nd edition U.S. Environmental Protection Agency, Office of Water, Washington, DC.
- UDEQ. 2019. Standard operating procedure for measurement of percent filamentous algae in headwater streams, Revision 9. Utah Department of Environmental Quality, Division of Water Quality, Salt Lake City, UT.:28p.
- USEPA. 2017. National Rivers and Streams Assessment 2018/19: Field Operations Manual Wadeable EPA-841-B-17-003a. U.S. Environmental Protection Agency, Office of Water, Washington, DC.
- USEPA. 2022. Protocol for the USEPA Region 3 Stream Algal Aesthetics Survey. U.S. Environmental Protection Agency, Nutrient STEPS (NSTEPS) program, Washington, D.C.
- UDEQ-NPS. 2021. In: ITRC 2022 Strategies for Preventing and Managing Harmful Cyanobacterial Blooms (HCB-2) Appendix B.2 Case Studies:1pp.
- Wood, S., D. P. Hamilton, W. J. Paul, K. A. Safi, and W. M. Williamson. 2009. New Zealand guidelines for cyanobacteria in recreational fresh waters: interim guidelines. . Publication 981. Wellington, New Zealand, Ministry for the Environment.:82.
- Wood, S. A., L. T. Kelly, K. Bouma-Gregson, J.-F. Humbert, H. D. Laughing house IV, J.
 Lazorchak, T. G. McAllister, A. McQueen, K. Pokrzywinski, J. Puddick, C. Quiblier, L. A. Reitz,
 K. G. Ryan, Y. Vadeboncoeur, A. Zastepa, and T. W. Davis. 2020. Toxic benthic freshwater
 cyanobacterial proliferations: Challenges and solutions for enhancing knowledge and
 improving monitoring and mitigation. Freshwater Biology 65:1824-1842.

Effect of culture conditions on growth and toxin production of *Microcoleus* species (Cyanobacteria) isolated from streams in California

Rosalina Stancheva¹, Abeer Sohrab², Sydney M. Brown¹

¹Department of Environmental Science and Policy, George Mason University, Fairfax, VA ²Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT E-mail: *rchris13@gmu.edu* (Corresponding author R. Stancheva Christova)

US EPA Benthic HABs Discussion Group | March 26, 2024

Road Map

Research Project: URoL:EN: Understanding the rule of life facilitating the proliferation of toxic cyanobacterial benthic mats in flowing freshwaters

Research team:

Ramesh Goel (PI) and Harry Sundar (Co-PI) – University of Utah, Salt Lake City, UT Joanna Blaszczak (Co-PI) and Robert Shriver (Co-PI) – University of Nevada, Reno, NV Rosalina Stancheva Christova (Co-PI) – George Mason University, Fairfax, VA

- Part 1: Microcoleus monoclonal strains from streams in the Western US
 - Dr. Rosalina Stancheva
- Part 2: Molecular taxonomy of *Microcoleus* from streams in California
 - Abeer Sohrab (Ph.D. student at the University of Utah)
- Part 3: Establishing baseline *Microcoleus* life histories
 - Sydney Brown (Ph.D. student at George Mason University)

Introduction

- Microcoleus (Oscillatoriales) is a benthic mat-forming cyanobacterium
- Some species produce neurotoxins
 - Anatoxin-a (ATX)
 - Dihydroanatoxin-a (dhATX)
 - Homoanatoxin-a
 - Dihydrohomoanatoxin-a
- Common in streams
- Dog kills

Dog dies on Russian River, tests positive for toxic algae 2015

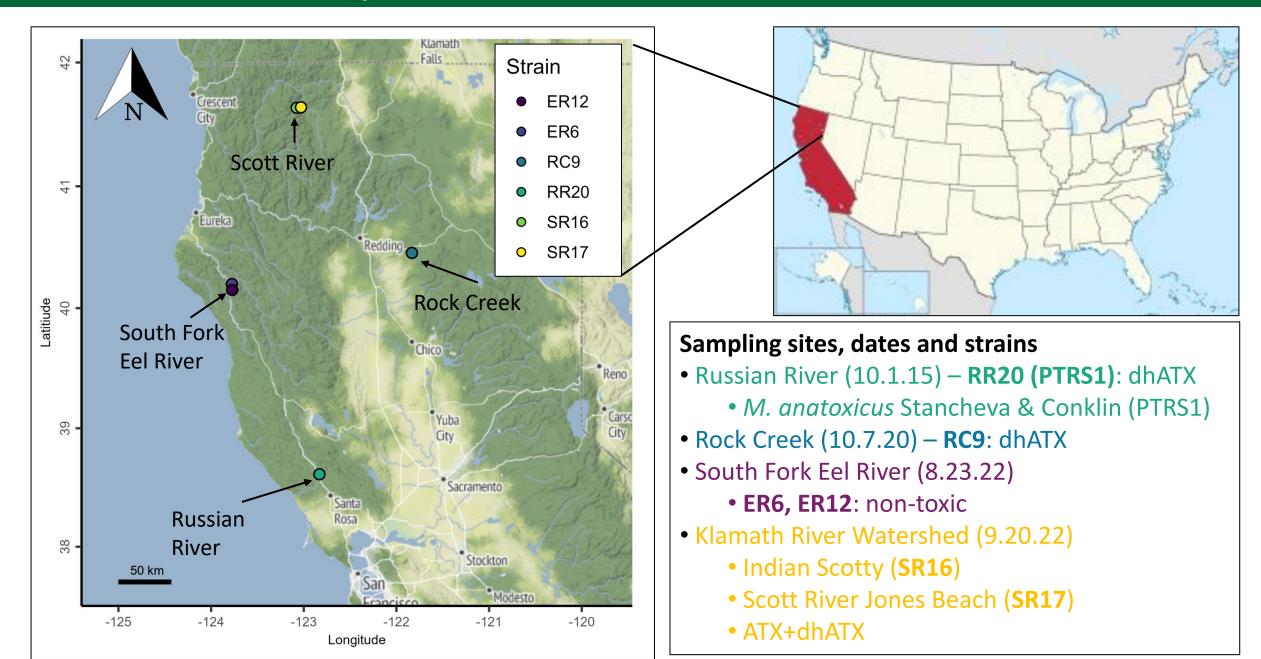
The test results are preliminary. Sonoma County public health officials are deciding what to do next, including whether to urge people and their pets to avoid the Russian River. | \equiv

The Mysterious Dog-Killing Bacteria Plaguing a Popular National Park 2022

ND TIMES

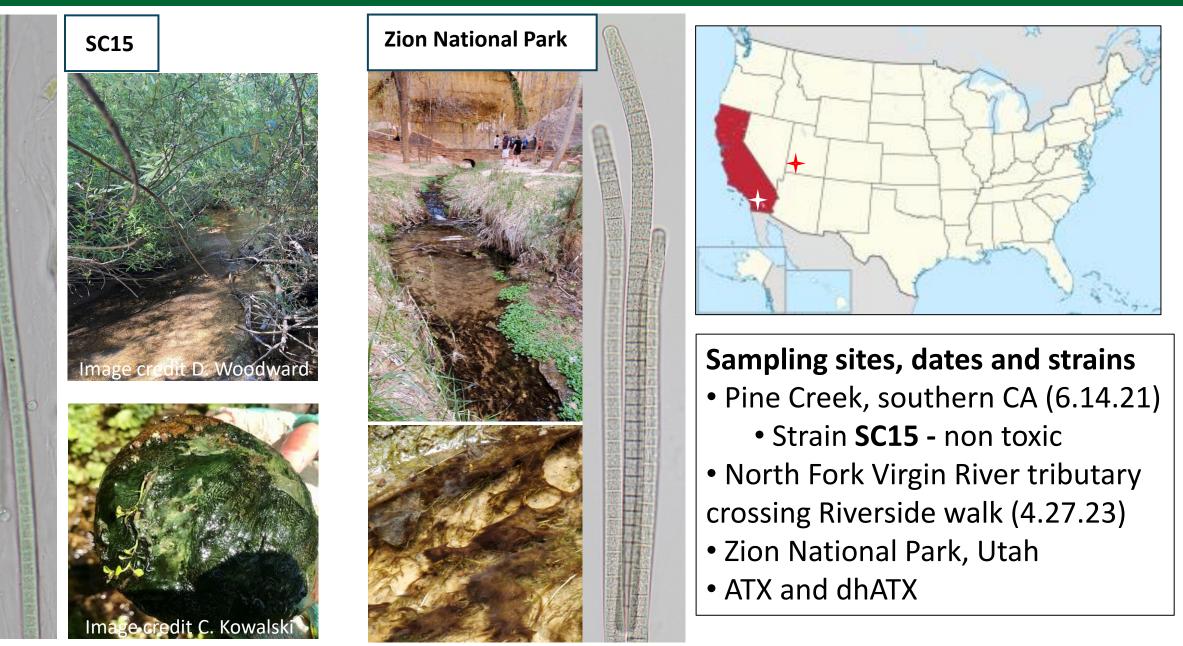
ew weeks ago, Zion National Park was forced to warn visitors against the Narrows due to a toxic bacteria spreading thr terways.

Daniel Modlin | Published Nov. 25, 2022 4:48AM EST

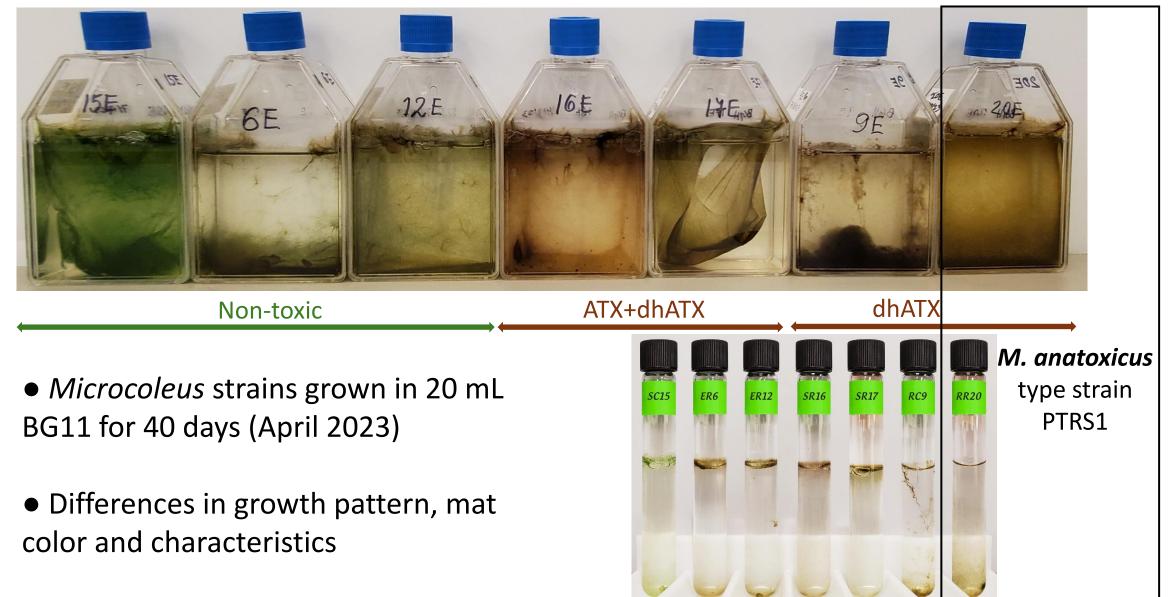


Microcoleus from Zion National Park, 2023

f 🗙 📾


Study Area: Northern California

Monoclonal Microcoleus Strains


Stream	рН	Conductivity (μS/cm)	Ortho-P (mg/L)	Nitrate (mg/L)	Toxins	N ₂ -fixers (algae)	Strains
Eel River	8.6-8.9	236.8-248.4	0.0038-0.0042	0.015-0.023	None	Present	ER6 & ER12
Rock Creek	7.1-8.4	80.7-96.5	0.0051-0.046	0.05-0.06	dhATX	Absent	RC9
Russian River	7.96-8.07	209-238	0.031-0.071	0.023-0.13	dhATX & ATX*	Present	RR20 (PTRS1)
BG11	7.2	2200	5.1	245	NA	NA	NA
ER6 & ER12	age credit J. Br	C	20 age credit Conklin et al		SR16 & SR17		

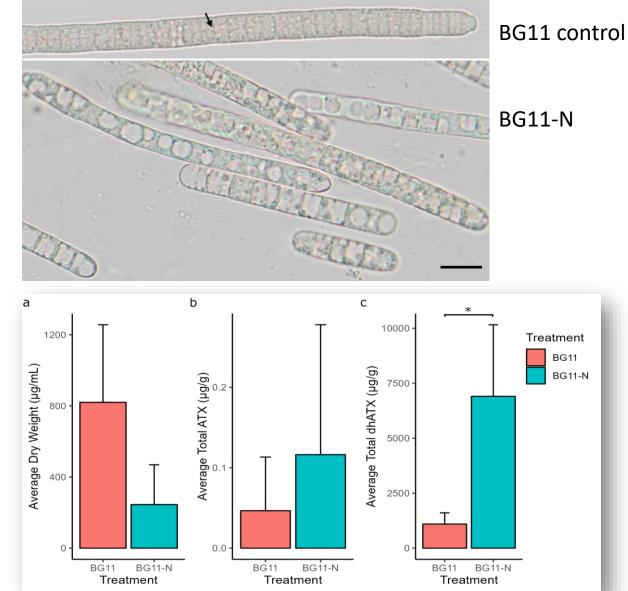
Study Area: Southern California and Utah

Monoclonal Microcoleus Strains

• *Microcoleus* strains grown in 200 mL BG11 for 6 months (January 2024)

M. anatoxicus PTRS2 Nitrogen Depletion Tolerance

Nutrient depletion experiment


- PTRS2, June 2019
- BG11 and BG11-N for 40 days
- Dry weight, ATX and dhATX at day 40

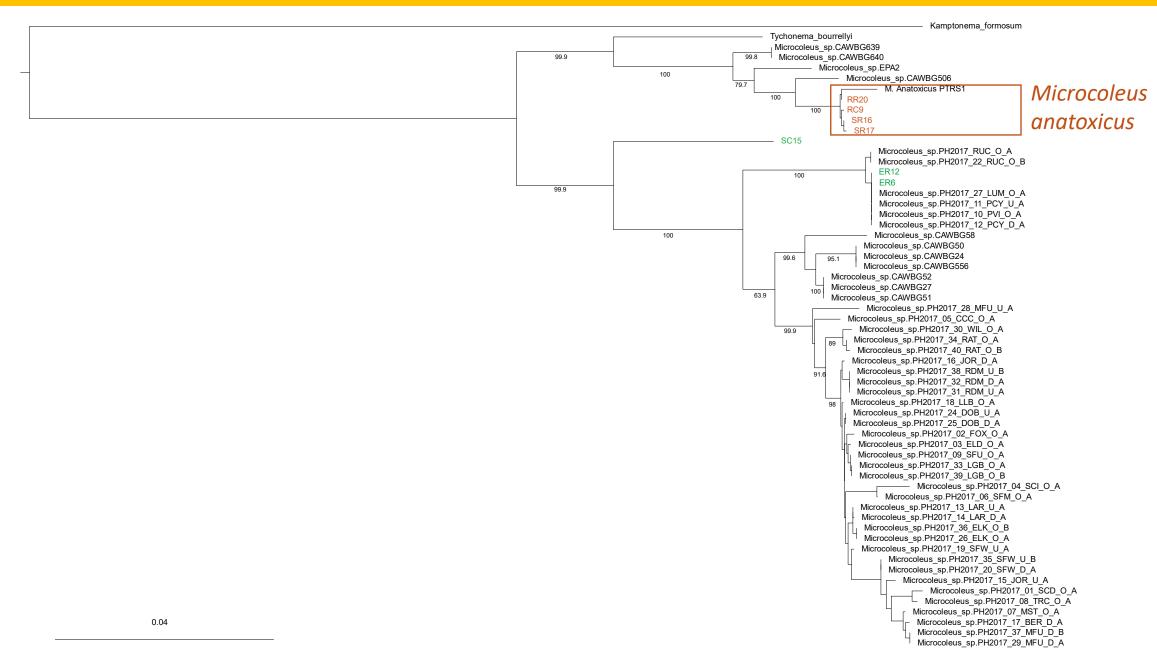
Growth conditions

- 125 ml Pyrex[®] glass Erlenmeyer flasks
- 21°C, light irradiance 100 μmoles·m^{-2.}s⁻¹
- 12:12 hr light/dark cycle

• Results

- Reduced cell growth
- Increased production of ATX and dhATX
- Cells were keratomized, without storage granules
- Heath et al. 2014 reported similar response of *M*. *autumnalis* to N reduction

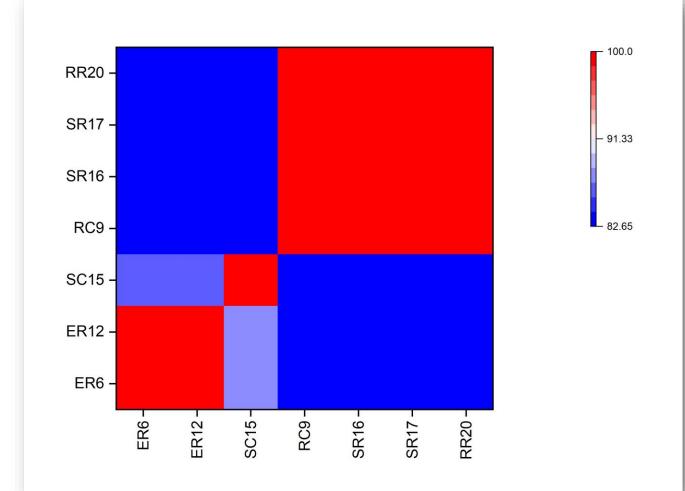
Bars represent average value ± 95% confidence interval


Molecular taxonomy of *Microcoleus* from streams in California (Presented by Abeer Sohrab)

Molecular Methods

- DNA was extracted from 7 *Microcoleus* strains described above by the QIAGEN All Prep DNA/RNA Kit
- Single *Microcoleus* MAGs of completeness > 95% and contamination < 5% were successfully formed from each sample
- Phylogeny Tree: Maximum-likelihood trees with branch supports were constructed based on concatenated alignments of 120 single-copy core marker genes obtained from GTDB-Tk v0.2.1
- Trees were built using the ultrafast bootstrap approximation in IQ-TREE v1.6.9. and visualized using FigTree Version - v1.4.4
- The tree was rooted at midpoint with bootstrapping values greater that 50% shown

GENOMES	COMPLETENESS	CONTAMINATION
R6	97.96	0.23
R9	95.22	0.66
R12	97.85	0.23
R15	98.18	0.00
R16	96.64	0.22
R17	95.48	0.22
R20	96.69	0.00


Microcoleus Phylogeny

Microcoleus Genome Comparison

Comparison of genomes based on average nucleotide identity (ANI)

- Non-toxic strains ER12 and ER6 are classified into the same cluster of nontoxic species as described by Tee et al. (2021)
- Toxic strains RC9, SR16, SR17, and RR20 (*M. anatoxicus* type strain PTRS1) group together in the cluster associated with toxic *Microcoleus* species
- Non-toxic strain SC15 from southern California is distinctive, forming its own cluster, as indicated in the heat map

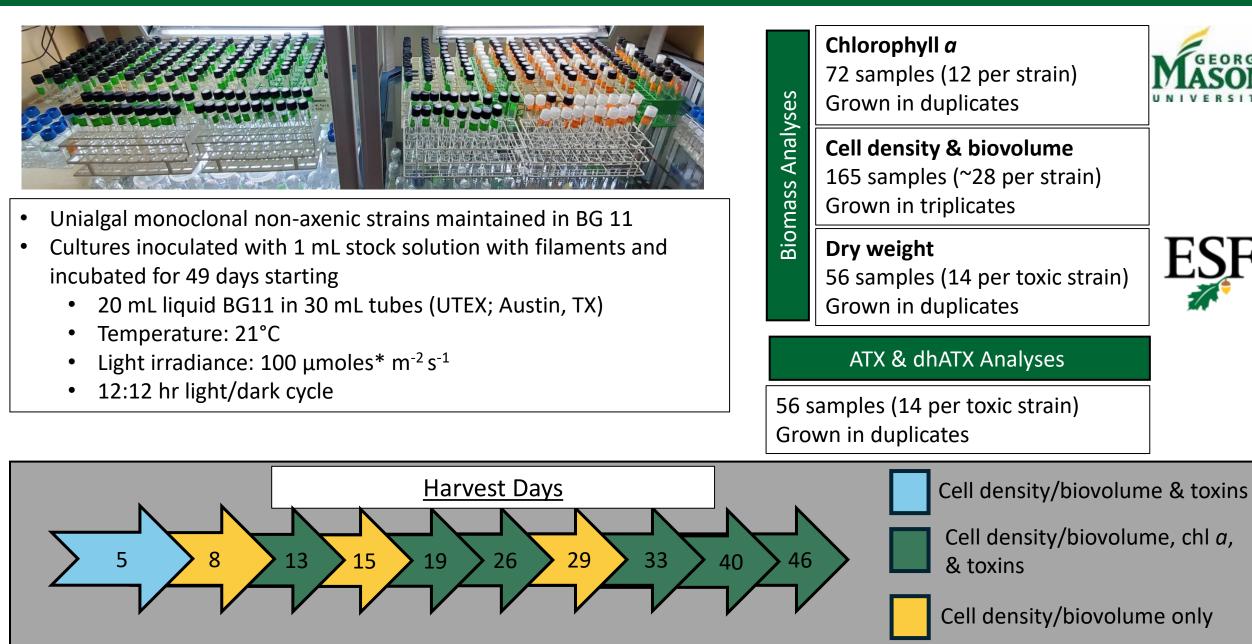
Heat map showing ANI similarity for all 7 *Microcoleus* genomes.

Establishing baseline *Microcoleus* life histories (Presented by Sydney Brown)

Research collaborators/coauthors: Jordan Zabrecky², Joanna Blaszczak², R. Christian Jones¹, Abeer Sohrab³, Gregory L. Boyer⁴, Bofan Wei⁴, Laurel Genzoli⁵, Kalina M. Manoylov⁶, T. Reid Nelson¹, Robert Shriver², Ramesh Goel³, Rosalina Stancheva¹ ¹Department of Environmental Science and Policy, George Mason University, Fairfax, VA ²Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV ³Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT ⁴Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, NY ⁵Division of Biological Sciences, University of Montana, Missoula, MT ⁶Department of Biological and Environmental Sciences, Georgia College & State University, Milledgeville, GA ⁷Department of Biological Sciences, California State University San Marcos, San Marcos, CA

Experiment Hypothesis

Study goals


• Characterize growth rates and toxin production of *Microcoleus* strains with varying toxicity

Hypotheses

- 1. Non-toxic strains will grow better than toxic strains under laboratory conditions (previously demonstrated by Heath et al. 2016)
- 2. Peak toxin-production will have negative effect on cell growth (analyzed by specific growth rate)

Experiment Setup

Experiment Methods

Biomass Analyses

Cell density & Biovolume

- Cell density calculated per unit of volume using modified APHA 1992 methods
- Cell density converted to biovolume (better correlation with other biomass measures) (Hillebrand et al. 1999)

Chlorophyll a

• Samples filtered, frozen, and measured fluorometrically (Parsons et al. 1984, Wetzel et al. 1991)

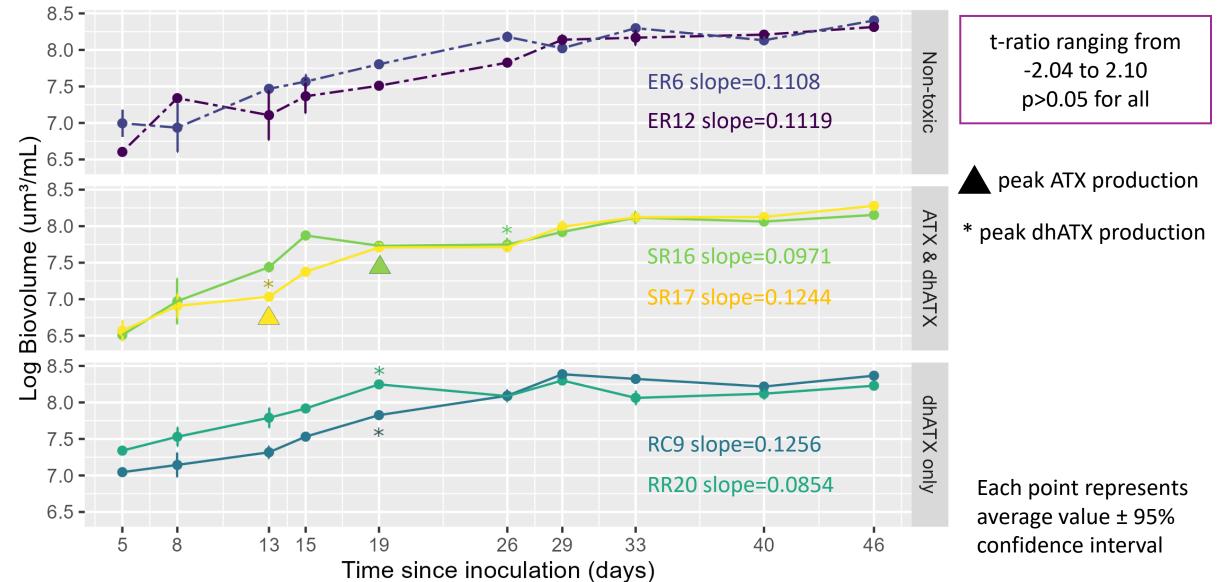
Dry Weight

- Samples filtered, freeze dried, and weighed **ATX and dhATX Analyses**
- LCMS/MS

Intracellular: Analyzed toxins in cells on filter Extracellular: Analyzed toxins in filtrate

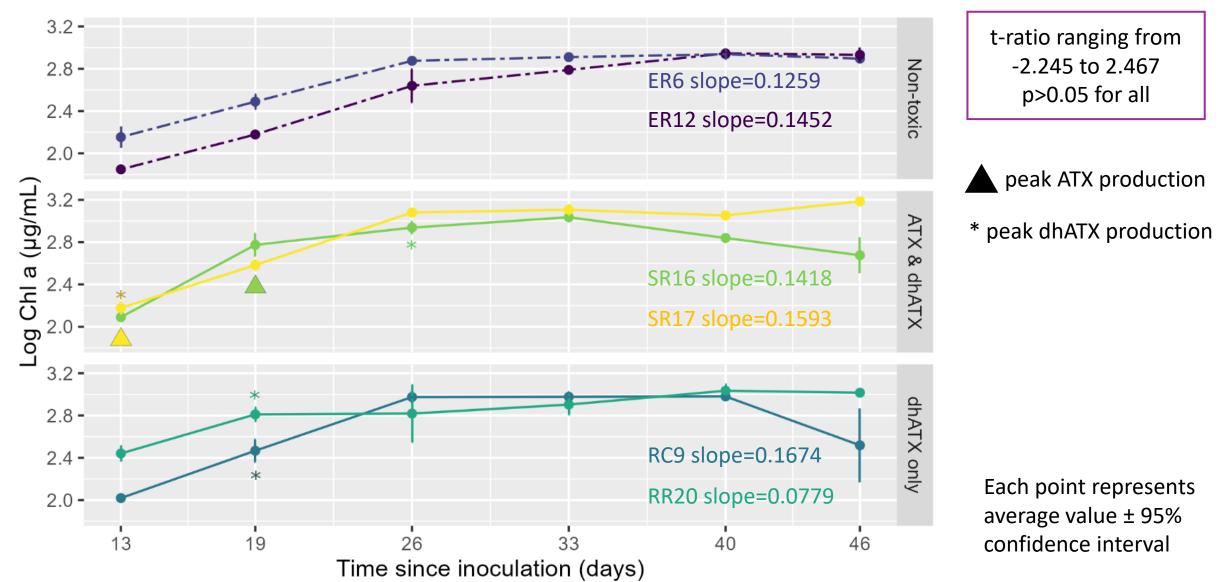
Statistical Analyses

Growth curves: Calculated via R: A language and environment for statistical computing (R Core Team 2024)

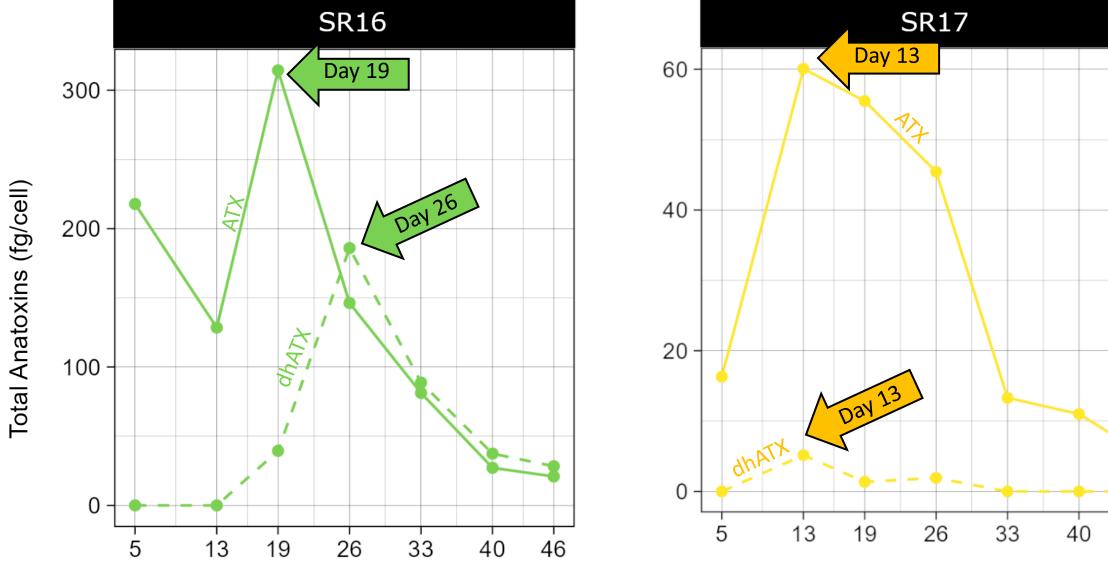

- During exponential phase (up to day 29), slopes (growth rates) were calculated using GLM gamma family with log link
 - Confirmed best fit by AIC
- Tukey corrected pair-wise comparisons run on contrasts
 - 'emtrends' package (Lenth 2024)

Statistical Analyses Specific Growth Rate

$$u = \frac{\ln(X_n) - \ln(X_{n-1})}{T_n - T_{n-1}}$$

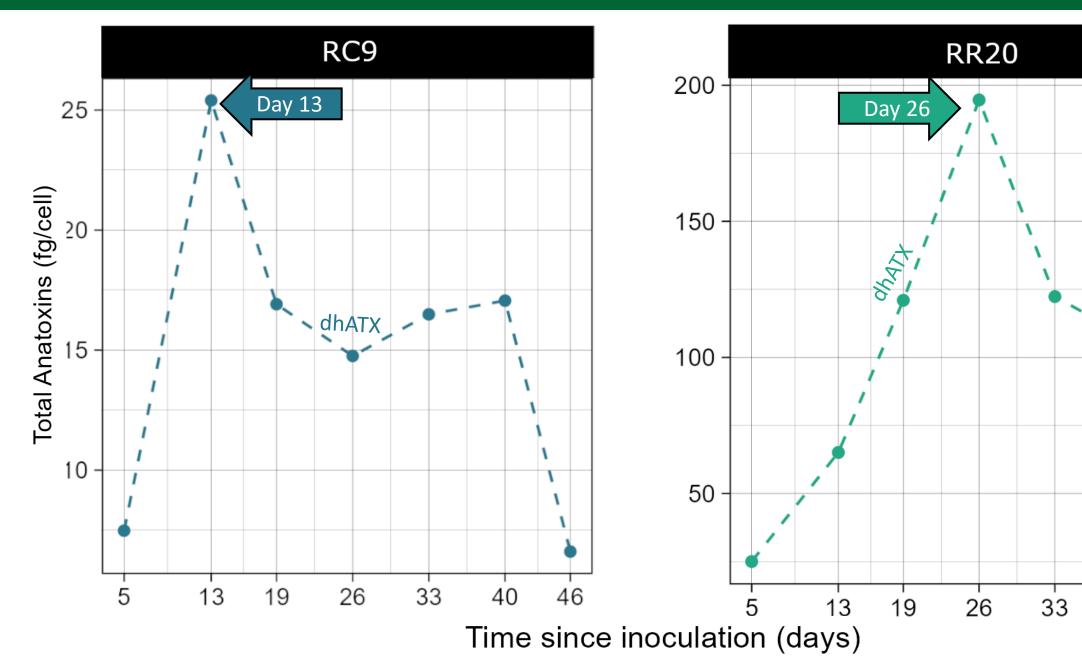

Growth Curves - Biovolume

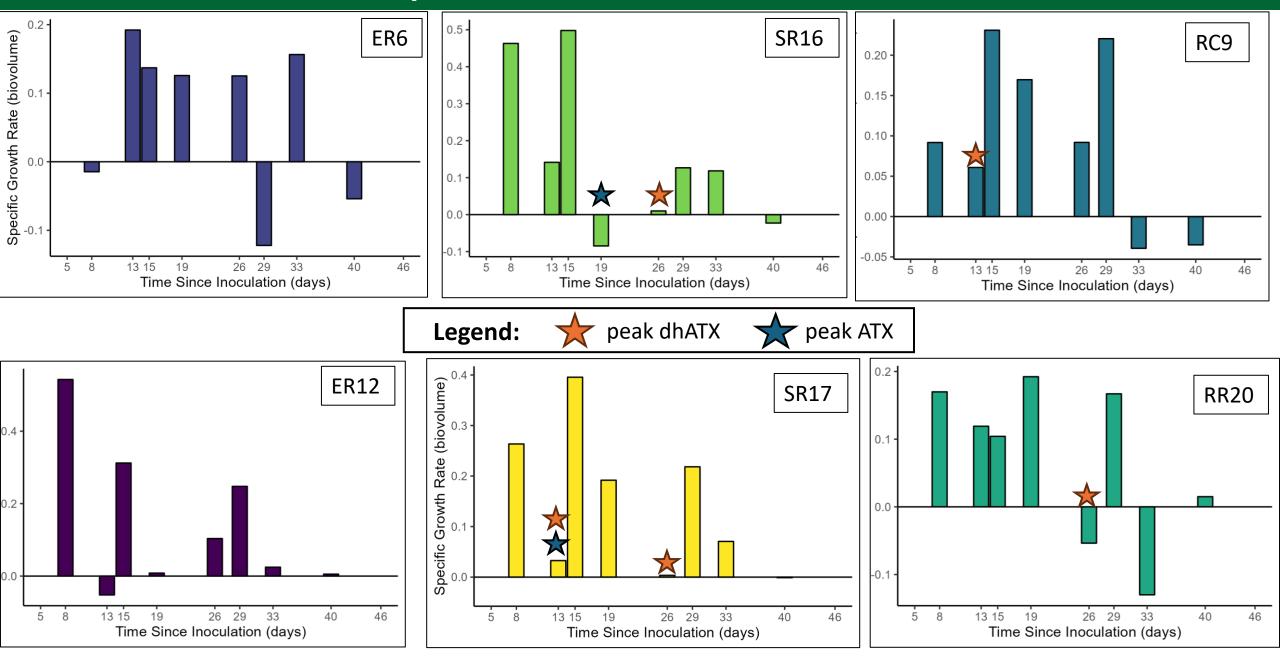
• During the exponential phase, there is no difference in growth rates across all strains



Growth Curves – Chlorophyll a

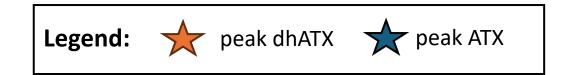
• During the exponential phase, there is no difference in growth rates across all strains


ATX and dhATX Production

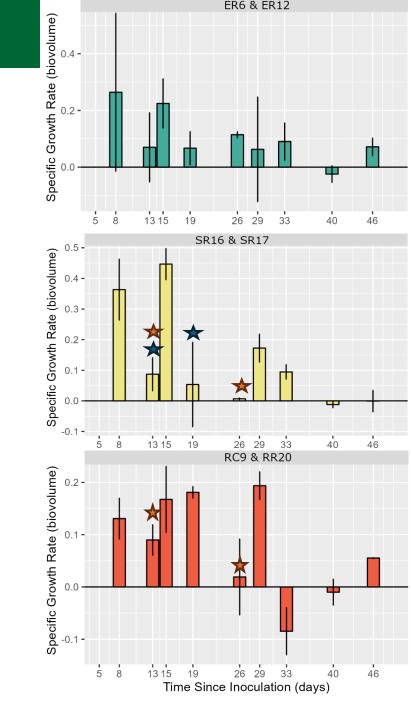

Time since inoculation (days)

46

dhATX Production

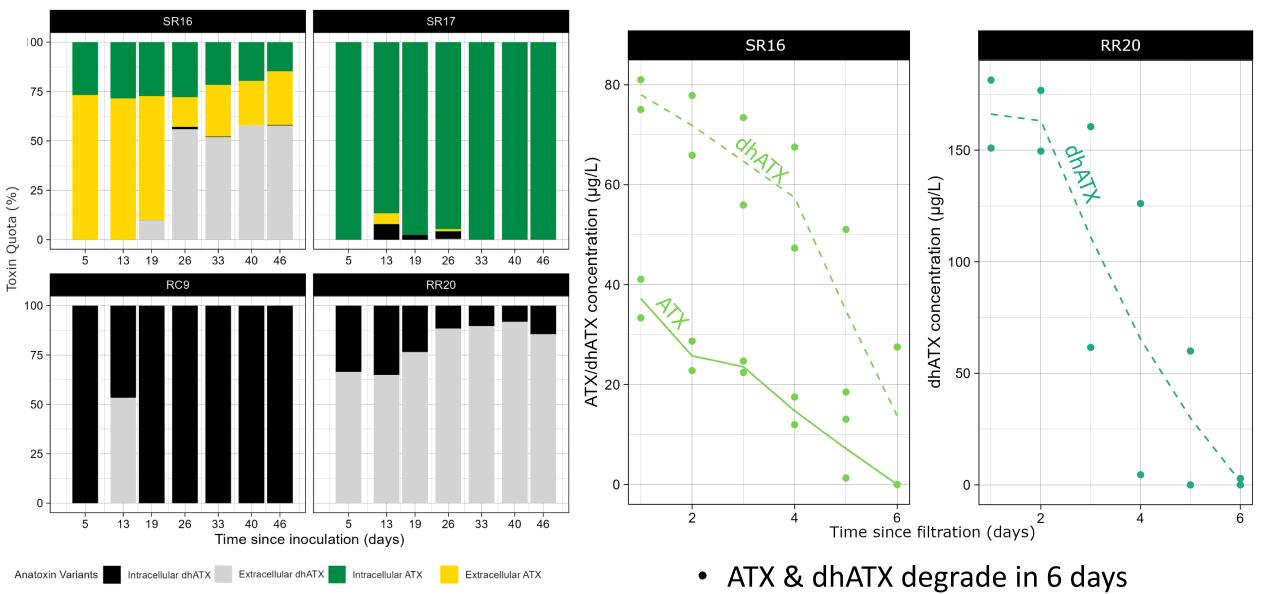


Specific Growth Rates

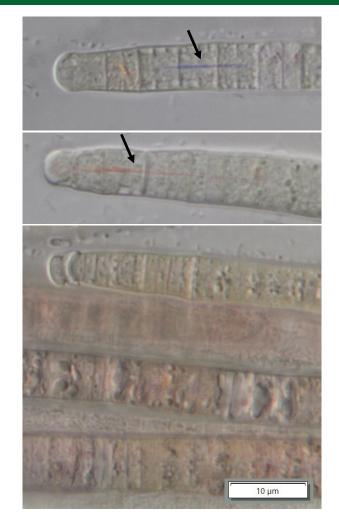


Specific Growth Rates

- Non-toxic strains had a more or less steady decrease in specific growth rate over time
- Peak ATX & dhATX production corresponds with reduced specific growth rates



Bars represent average value ± 95% confidence interval



Extracellular vs. Intracellular Toxins


• Extracellular toxins prevail in strains SR16 & RR20 but not in SR17 & RC9

Filament Morphology

Damaged cell walls of the most toxic strains SR16 and RR20 40 days in culture

Take home Messages

Study outcomes

- Toxic and non-toxic strains represent two different species, the toxic is *M. anatoxicus*
- Toxic and non-toxic strains showed similar overall growth curves and slopes
 - All strains reached stationary phase around day 30, when mats were formed
- ATX and dhATX production peaked at day 13 for SR17, but later for SR16 (days 19 and 26)
- SR17 maximum toxin concentrations are five times lower than SR16
- dhATX production peaked at day 13 (RC9) and day 26 (RR20)
- RC9 maximum toxin concentrations are eight times lower than RR20
- The later maximum in toxin production corresponds with higher total toxin concentration and dominance of extracellular portion

Hypotheses revisited

1. Non-toxic strains will grow better than toxic strains under laboratory conditions (previously demonstrated by Heath et al. 2016)

Rejected: Overall growth rates are comparable between toxic and non-toxic species under high nutrient conditions in the current culture condition

2. Peak toxin-production will have negative effect on cell growth (analyzed by specific growth rate)

Supported: Both ATX and dhATX peak production corresponds with reduced cell growth

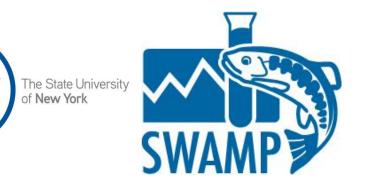
Future Research

Current experiment considerations which need further explorations

- BG11 is a high nutrient medium
- Batch cultures we do not know how the culture chemistry change affects growth and toxin production
- Size of containers effects timing of reaching stationary phase
- Measure nutrient change in our culture conditions
 - Loss of N in the medium may trigger toxin production
- Filament morphology, cytology characterization and staining

Acknowledgements

- Dr. Goel lab
- Dr. Blaszczak lab
- Dr. Shriver lab
- Dr. Sundar lab
- Dr. Boyer lab
- Dr. Jones Lab
- Dr. Manoylov



- Dr. Read lab
- Bonnie Bennett, Joshua
- Cahill, Lauren Genzoli
- Rich Fadness
- Debbie Woodward
- Marco Sigala, Cajun James

SUNY

• Susanna Wood

- NR CK TRACK
- Yurok and Karuk Tribes of California
- Sierra Pacific Industries
- CSUSM
- California's Surface Water Ambient Monitoring Program
- NSF URoL:EN award #2222322
- NSF-REU: award #1852189

