

High-Throughput Phenotypic Profiling with the Cell Painting Assay and Applications for Next Generation Risk Assessment

Joshua A. Harrill

USEPA Center for Computational Toxicology and Exposure (CCTE)

Michigan State University Institute for Integrative Toxicology January 30th, 2024

Office of Research and Development

Disclaimer

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency, nor does mention of trade names or products represent endorsement for use.

Outline

Background

- Computational Toxicology Research at EPA
- New Approach Methods
- High-Throughput Phenotypic Profiling with Cell Painting
 - Assay Concept
 - Implementation at EPA
 - Laboratory workflows
 - Computational workflows
 - Study Design
 - Data infrastructure and accessibility
 - Bioactivity Screening Results
- Applications for Chemical Risk Assessment
 - Bioactivity Exposure Ratio (BER) Analysis
 - Mechanistic Inference
 - Chemical Grouping

Who is CCTE?

Center for Computational Toxicology and Exposure (CCTE)

A research organization at US EPA Office of Research and Development tasked with **developing** and **applying** cutting edge innovations in methods to rapidly evaluate chemical toxicity, transport and exposure to people and environments.

Rapid Assay Development Branch (RADB)

Develops the next generation of **high-throughput toxicity assays** to comprehensively cover the potential **molecular and phenotypic responses** resulting from chemical exposure and **fill gaps** in biological pathways and processes not addressed using existing assays.

EPA CompTox Blueprint Research Areas

ToxCast: Uses targeted high-throughput screening (HTS) assays to expose living cells or isolated proteins to chemicals and assess bioactivity and potential toxic effects.

Mostly targeted assays (*chemical* $X \rightarrow$ *target* Y). Incomplete coverage of human biological space.

New Strategy for Hazard Evaluation: Improve efficiency and increase biological coverage by using broad-based (i.e. non-targeted) assays that cast the broadest net possible for capturing the potential molecular and phenotypic responses of human cells in response to chemical exposures.

NAMs-Based Tiered Hazard Evaluation Approach

High throughput profiling (HTP) assays are proposed as the first tier in a NAMs-based hazard evaluation approach.

HTP Assay Criteria:

- 1. Yield bioactivity profiles that can be used for **potency estimation**, **mechanistic prediction** and evaluation of **chemical similarity**.
- 2. Compatible with multiple human-derived culture models.
- 3. Concentration-response screening mode.
- 4. Cost-effective.

To date, EPA has identified and implemented two HTP assays that meet these criteria.

- High-Throughput Phenotypic Profiling [HTPP]
- High-Throughput Transcriptomics [HTTr]

The NexGen Blueprint of CompTox at US EPA Thomas et al. (2019) DOI: 10.1093/toxsci/kfz058

Imaging-Based High-Throughput Phenotypic Profiling (HTPP)

Chandrasekaran et al. Nat Rev Drug Discov. 2020 Dec 22:1–15

- A high-throughput testing strategy where rich information present in biological images is reduced to multidimensional numeric profiles and mined for information characteristic to a chemical's biological activity.
- <u>Cell Painting</u> originated at the Broad Institute of Harvard & MIT as a non-targeted approach to characterize
 chemical- and disease-associated cell states and support future probe (i.e. drug) discovery.

FPA United States Environmental Protection Agency High Throughput Phenotypic Profiling with Cell Painting

- **Cell Painting** is a profiling method that measures a large variety of phenotypic features from fluoroprobe labeled organelles in cells cultured *in vitro*.
- Previous Uses:
 - Functional genomics
 - Drug discovery
 - Compound efficacy and toxicity screening
 - Mechanism-of-action identification
 - Chemical grouping
- Efficient and cost-effective method for evaluating the bioactivity of environmental chemicals.

Markar	Cellular	Labeling Chomistry	Labeling	Opera Phenix		
Warker	Component		Phase	Ex.	Em.	
Hoechst 33342	Nucleus	Bisbenzamide probe that binds to dsDNA		405	480	
Concanavalin A – AlexaFluor 488	Endoplasmic reticulum	Lectin that selectively binds to α-mannopyranosyl and α-glucopyranosyl residues enriched in rough endoplasmic reticulum		435	550	
SYTO 14 nucleic acid stain	Nucleoli	Cyanine probe that binds to ssRNA	Fixed	435	550	
Wheat germ agglutinin (WGA) – AlexaFluor 555	Golgi Apparatus and Plasma Membrane	Golgi Apparatus and Plasma Membrane Lectin that selectively binds to sialic acid and N-acetylglucosaminyl residues enriched in the trans-Golgi network and plasma membrane		570	630	
Phalloidin –AlexaFluor 568	F-actin (cytoskeleton)	Phallotoxin (bicyclic heptapeptide) that binds filamentous actin				
MitoTracker Deep Red	Mitochondria	Accumulates in active mitochondria	Live	650	760	

Mitochondria

Cell Painting Method & Implementation at EPA

Cell Painting, a high-content image-based assay for morphological profiling using multiplexed fluorescent dyes

Mark-Anthony Bray¹, Shantanu Singh¹, Han Han², Chadwick T Davis², Blake Borgeson², Cathy Hartland³, Maria Kost-Alimova³, Sigrun M Gustafsdottir³, Christopher C Gibson² & Anne E Carpenter¹

¹Imaging Platform, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. ²Recursion Pharmaceuticals, Salt Lake City, Utah, USA. ³Center for the Science of Therapeutics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. Correspondence should be addressed to C.C.G. (chris.gibson@recursionpharma.com) or A.E.C. (anne@broadinstitute.org).

NATURE PROTOCOLS | VOL.11 NO.9 | 2016 | 1757

The Cell Painting assay was implemented at EPA based on Bray et al. (2016) (PMID: 27560178), with modifications:

- Sample preparation using in house microfluidics / lab automation.
- Image acquisition on in house high content imaging platform.
- Image analysis on Harmony[®] analysis software.
- Experimental optimizations:
 - Chemical exposure duration (24 hr).
 - U-2 OS seeding density (600^a or 3,000^b cells / well)

Perkinelmer Opera Phenix									
Modality:	Confocal (single z)								
Objective:	20X Water								
Plate:	PhenoPlate 384								
Fields / well:	5								

^a Nyffeler et al. 2020 (PMID:<u>31899216</u>) ^b Nyffeler et al. 2023 (PMID:<u>37044265</u>)

Image Analysis Workflow → Image Segmentation

1. find nuclei

2. find cell outline

3. reject border objects

Sepa Image Analysis Workflow → Define Cellular Compartments Agency

nuclei

cytoplasm

membrane

Phenotypic Feature Extraction

5 Channels (organelles) RNA ER AGP MITO	NUCLEUS RING INUCLEUS RING INUCLEU	Compartments CYTOPLASM MEMBRANE CELL	Position	0 2 0	49 Feature Categories (ex. MITO_Texture_Cytoplasm) 1300 features / cell								
				Profile	Decitien	Basic	Basic SCAR			Module RP morphology			Touture
DNA	Compactness	Shape			[7]	morph- ology [5]	Symmetry [80]	Compactness [40]	Axial [20]	Radial [28]	Profile [20-30]	[9]	[14]
	\wedge			DNA			Nuclei	Nuclei	Nuclei	Nuclei Cell	Nuclei Cytoplasm	Nuclei	Nuclei
				RNA			Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei	Nuclei
							Cell	Cell	Cell	Cell	Cytoplasm	Ring Cytoplasm	Ring Cytoplasm
PerkinElmer		Chann	AGP			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm Membrane	Ring Cytoplasm Membrane	
												Wielinbrutte	1
				Mito			Cell	Cell	Cell	Cell	Nuclei Cytoplasm	Ring Cytoplasm	Ring Cytoplasm

With illustrations from Perkin Elmer

Phenotypic Changes Measured Quantitatively with HTPP

Cell Count				CP Effect Size						Cytotoxicity					-					
0%	20%	40%	60%	80%	100%	-20	-15	-10	, сл		cn	10	15	20	0%	20%	40%	60%	80%	100%

Different phenotypic profiles for chemicals with different molecular targets!

Adapted from Nyffeler et al. 2020 (PMID: 31899216)

Data Analysis Pipeline

Phenotype Altering Concentrations (PACs)

Mahalanobis Distance (D_M):

- A multivariate metric that measures the distance between a treatment and a distribution of controls in feature space.
- Accounts for unpredictable changes in cell states across test concentrations and inherent correlations in profiling data.

- Chemicals where a BMC can be determined using either the global or category D_M approach are considered active.
- The minimum of the global or most sensitive category BMC is the Phenotype Altering Concentration (PAC).
- The PAC is the molecular point-of-departure (mPOD) used for downstream NGRA applications.

Data Management Using Open Source Tools

- MongoDB used to house, access and selectively query analysis results stored in collections.
- Working to establish public-facing GitHub repository with pipelining scripts.

Data Visualization

- Potency magnitude plots aid in visualization of phenotypic effects that are observed below threshold for cytotoxicity.
- Nucleus most profoundly affected by 4-Pentylaniline, followed by nucleolus an mitochondria.

Preliminary results. Do not cite or quote.

Public Data Accessibility

- Feature (and category) conc-response modeling results displayed as potency-magnitude plots.
- Features categorized according fluorescent channels / organelles.
- Filter according to multiple parameters.
- Data summarized and searchable in interactive table.

https://comptox.epa.gov/dashboard/

HTPP Bioactivity Screening Results

Plate

Dose

Experimental Design

Dose Plate Configuration

8 Concentrations (1/2 log₁₀ Spacing):

1 Concentration in Triplicate

Staurosporine (1 μM) (Viability Control) Trichostatin A (1 μM) (HTTr Control)

Test Chemicals

Reference Chemicals

DMSO (Vehicle Control)

Screening Study Design

• Reference chemicals for tracking assay performance

Reproducibility of PACs

- Reference chemicals tested over many plate groups (weeks / months) yield reproducible potency values.
- PACs vary by < 1/2 order of magnitude.

Preliminary results. Do not cite or quote.

Willis

Ranked List of Biologically Diverse Cell Lines Determined by Data Driven Cell Line Selection (hTERT Immortalized Cells & Seeds)

Agency

Cell_Type	Tissue_Origin	Derivation	Growth_Mode		
MCF-7	Breast	Cancer	Adherent		
U-2 OS	Bone	Cancer	Adherent		
HBEC3-KT	Lung	Immortalized	Adherent		
TeloHAEC	Vascular	Immortalized	Adherent		
RPTEC	Kidney	Immortalized	Adherent		
Ker-CT	Skin	Immortalized	Adherent		
hNP1	CNS	Immortalized	Adherent		
CHON-001	Fibroblast	Immortalized	Adherent		
ARPE-19	Retina	Immortalized	Adherent		
CCD-18Co	Fibroblast	Immortalized	Adherent		
ASC52telo	Mesenchymal Stem Cell	Immortalized	Adherent		
BJ-5ta	Fibroblast	Immortalized	Adherent		
HME-1	Breast	Immortalized	Adherent		
HPNE	Pancreas	Immortalized	Adherent		
TIME	Vascular	Immortalized	Adherent		
RPE-1	Retina	Immortalized	Adherent		
HUVEC	Vascular	Immortalized	Adherent		
HSAEC-1	Lung	Immortalized	Adherent		

Morphological Heterogeneity Across Diverse Cell Lines

Variation in Molecular Target Expression Across Diverse Cell Lines

Preliminary results. Do not cite or quote.

EPA Comparison of HTPP Bioactivity Hits Across Cell Lines (1)

Overlap of Active Chemicals Across Cell Types

PRELIMINARY RESULTS – DO NOT CITE OR QUOTE

EPA Comparison of HTPP Bioactivity Hits Across Cell Lines (2)

HBEC3-KT Cells

680 Active Chemicals / 20 Active In This Cell Type Only

Ker-CT Cells

MCF-7 Cells 576 Active Chemicals / 14 Active In This Cell Type Only

PRELIMINARY RESULTS – DO NOT CITE OR QUOTE

Comparison of HTPP PACs Across Cell Lines

• PACs can vary by several orders of magnitude across biologically diverse cell lines.

Chemical Prioritization Using Bioactivity Exposure Ratio (BER)

Chemical Prioritization Using Bioactivity Exposure Ratio (BER) Analysis

Approach Adapted from Paul Friedman et al. (2020) Tox Sci (PMID: <u>31532525</u>)

BER with Cell Painting

- Bioactivity exposure ratio (BER) analysis is a potential method for prioritization of chemicals for more in depth hazard assessment.
- Negative BER indicates that the predicted human exposure overlaps with the administered equivalent dose (AED) predicted from *in vitro*.
- When cell lines are considered in combination, ~10% of chemicals had negative ratios.
- Most extreme negative ratios associated with drugs and chemicals found in consumer products.
- Most extreme negative ratios associated with pesticides and herbicides.

PRELIMINARY RESULTS – DO NOT CITE OR QUOTE

Comparison of AEDs to "Traditional" In Vivo PODs

In vitro-to-*in vivo* extrapolation (IVIVE)

high-throughput toxicokinetics (*httk*)

in vivo point-of-departure

Database of *in vivo* effect values (EPA – ToxValDB)

- Mammalian species
- oral exposures
- Various study types
- NOEL, LOEL, NOAEL, LOAEL
- mg/kg/day

 Is the administered equivalent dose from an in vitro assay a conservative surrogate for a "traditional" *in vivo* POD?

ToxValDB: Compiling Publicly Available In Vivo Toxicity Data

Richard Judson U.S. EPA, National Center for Computational Toxicology Office of Research and Development

https://www.epa.gov/sites/default/files/2018-12/documents/comptox cop dec 20 2018 final.pdf

•

Bioactivity / In Vivo Effect Value Ratio Analysis

- Negative ratios indicate that AEDs derived from HTPP are conservative surrogates for traditional *in vivo* PODs.
- When cell lines are considered individually, ~77-81% of chemicals had negative ratios.
- When considered in combination, the number and percentage of chemicals with negative ratios increased (83.8 %).
- Paul-Friedman et al. (2020)^a:
 - Using ToxCast, **89** % of APCRA chemicals had negative ratios.
- Positive ratios observed for several organophosphate and carbamate pesticides.

PRELIMINARY RESULTS – DO NOT CITE OR QUOTE

CCTE / Unilever CRADA

- Jointly explore the utility of a battery of NAMs, which are nonanimal based, for evaluating the safety and hazard of chemicals using an exposure-led, hypothesis-driven approach.
- Toolbox approach inclusive of Cell Painting and HTTr.
- Bioactivity to exposure (BER) ratio the key value of interest.

From Middleton et al., 2022. Tox Sci (PMID:35822611)

Molecular Initiating Event (MIE) Prediction / Mechanistic Inference

Feature Selection & Profile Comparison for Mechanistic Inference

Hypothesis: Chemicals acting through similar mechanisms will display similar profiles.

Slide courtesy of Jo Nyffeler

Reproducibility of Phenotypic Profiles

Profile Visualization

- Phenotypic profiles are highly reproducible across many plate groups (weeks / months)
 - ³⁴ Preliminary results from Nyffeler et al. (submitted). Do not cite or quote.

Profile Correlation

Jo Nyffeler

Profile Comparison: Nuclear Receptor Modulators

- Agonists of glucocorticoid receptor (GR) and retinoic acid receptor (RAR) yield characteristic profiles.
- Expression of a target does not guarantee a characteristic profile will be observed (e.g., PPAR).

Preliminary results from Nyffeler et al. (submitted). Do not cite or quote.

Profile Similarity & Targeted Follow-Up **Reveal Novel Bioactivity**

Jo Nyffeler

0.31

0.21

Primary screen

Betamethasone -		0.653	0.638	0.645	0.627	0.709	0.616
Budesonide -	0.653		0.638	0.508	0.557	0.664	0.663
Dexamethasone -	0.638	0.638		0.556	0.578	0.665	0.573
Fluorometholone -	0.645	0.508	0.556		0.552	0.57	0.475
Methylprednisolone -	0.627	0.557	0.578	0.552		0.615	0.615
Prednisolone -	0.709	0.664	0.665	0.57	0.615		0.672
Triamcinolone -	0.616	0.663	0.573	0.475	0.615	0.672	
2-Aminoanthraquinone -		0.454			0.518	0.439	0.465
2-Ethylhexyl 4-(dimethylamino)benzoate -			0.481				
3-(4-tert-Butylphenyl)propanal -				0.403		0.408	0.42
Benfluralin -	0.406	0.428	0.431			0.411	
Carbosulfan -	0.489	0.45		0.415	0.451	0.49	0.426
Ethoxyquin -							
Hydramethylnon -			0.412			0.407	
Linoleic acid -	0.471	0.479	0.404		0.45	0.441	0.402
N-Hydroxybenzamide -	0.442		0.517	0.438	0.445	0.515	
N-Phenyl-1-naphthylamine -	0.416	0.454	0.455		0.47	0.452	0.413
Pyrene -	0.511	0.469	0.465		0.503	0.494	0.43
Tetramethylthiuram monosulfide -							0.423
Thiram -	0.405	0.459					
	- Betan	- Budes	- Dexar	- Fluoro	- Methy	- Predn	- Triam

Secondary screen

	0.653	0.638	0.645	0.627	0.709	0.616		0.63	0.619	0.652	0.702	0.675	0.644
0.653		0.638	0.508	0.557	0.664	0.663	0.63		0.552	0.624	0.69	0.593	0.553
0.638	0.638		0.556	0.578	0.665	0.573	0.619	0.552		0.645	0.655	0.685	0.617
0.645	0.508	0.556		0.552	0.57	0.475	0.652	0.624	0.645		0.634	0.664	0.577
0.627	0.557	0.578	0.552		0.615	0.615	0.702	0.69	0.655	0.634		0.684	0.617
0.709	0.664	0.665	0.57	0.615		0.672	0.675	0.593	0.685	0.664	0.684		0.611
0.616	0.663	0.573	0.475	0.615	0.672		0.644	0.553	0.617	0.577	0.617	0.611	
	0.454			0.518	0.439	0.465			no	t test	ed		
		0.481						0.574		0.478			0.491
			0.403		0.408	0.42		0.434			0.487		
0.406	0.428	0.431			0.411			0.439	0.535	0.454	0.542	0.409	0.441
0.489	0.45		0.415	0.451	0.49	0.426					0.486		
													0.421
		0.412			0.407		0.463			0.43		0.441	0.532
0.471	0.479	0.404		0.45	0.441	0.402			ir	nactiv	е		
0.442		0.517	0.438	0.445	0.515		0.426		0.503	0.569	0.401		0.477
0.416	0.454	0.455		0.47	0.452	0.413			0.413			0.434	
0.511	0.469	0.465		0.503	0.494	0.43	0.503	0.533	0.523	0.509	0.474	0.505	0.495
						0.423			no	t test	ed		
0.405	0.459												
- Betamethasone	- Budesonide	- Dexamethasone	- Fluorometholone	- Methylprednisolo	- Prednisolone	- Triamcinolone	 - Betamethasone	- Budesonide	- Dexamethasone	- Fluorometholone	- Methylprednisolo	- Prednisolone	- Triamcinolone

Orthogonal qRT-PCR Assay

-	2.39	1.56	2.27	1.33	-0.83	-0.12	0.21
-	2.47	1.45	2.22	1.34	-1.12	-0.5	0.07
-	2.48	1.93	2.28	1.36	-0.77	0.07	0.12
-	2.16	2.27	2.35	1.69	-0.98	0.25	0.18
-	1.82	1.84	2.09	1.57	-0.85	0.06	-0.03
-	_		n	ot teste	d		
-	0.28	-0.91	0.09	-0.38	0.12	0.26	0.21
-	-0.48	0.02	0.33	0.15	0	0.54	0.38
-	0.2	-0.11	0.22	0.04	0.16	0.23	0.18
-	-1.21	-0.39	-0.06	-0.36	-0.44	-0.33	0.05
-	-0.01	-0.3	-0.04	-0.18	0.38	0.34	0.15
-	-0.26	-0.06	0.07	0.03	0.18	-0.3	0
-	1.25	-0.72	0.25	0.11	-0.2	0.39	0.33
-	-0.33	-0.18	0.38	0.39	-0.22	0.09	0.27
-	-1.13	-0.76	0.19	-0.3	0.16	-0.14	0.24
-	1.57	1.29	1.6	1.31	-0.16	0.3	0.33
-			n	ot teste	d		
-	-0.96	-0.48	0.16	-0.34	-0.04	0.58	0.3

PER1

ARL4C

CTNNB

1.62

1.85

-0.92

-0.9

-0.1

0.11

<u>**GR**</u> identified as a novel molecular target for <u>**pyrene**</u>, a polycyclic aromatic hydrocarbon (PAH) •

Biological similarity

Preliminary results from Nyffeler et al. (submitted). Do not cite or quote.

CRACDL

FKBP5

Profile Comparison & Stress Response Agency

Preliminary results from Nyffeler et al. (submitted). Do not cite or quote.

Cluster 2 Cluster 3

Cluster 10 Cluster 13

Profile Comparison & ToxCast Assays Agency

Nyffeler

Gene

4.5

3.5

2.5

CYP7A1

CYP4A11

CYP4A22

CYP2E1

CYP19A1

CYP2C9

CYP2B6

CYP3A4

CYP2C18

CYP2A6

CYP1A1

CYP1A2

CYP2C19 CYP2C8

CYP3A7

Cluster

Cluster:

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster 1

Cluster

Preliminary results from Nyffeler et al. (submitted). Do not cite or quote.

Chemical Grouping for Risk Assessment Applications

Chemical Grouping & CBRA with Cell Painting

 In Chemical-Biological Read-Across (CBRA) toxicity is inferred from both chemical structural similarity and comparisons of biological responses to chemicals measured in multiple short term assays ("biological similarity) (Low et al. (2013) Chem. Res. Toxicol. (PMID: 23848138))

• We propose that Cell Painting may also be useful for CBRA, but need to dive deeper.

Preliminary results from Nyffeler et al. (submitted). Do not cite or quote.

Chemical Grouping & CBRA with Cell Painting

Nvffeler

Secondary Cell Painting Screen

Tested several independent samples of diniconazole. Profiles all similar to one another & dissimilar from other conazoles.

Primary Cell Painting Screen

Diniconazole identified as dissimilar biological activity compared to other conazoles.

Preliminary results from Nyffeler et al. (submitted). Do not cite or quote.

New Chemicals Collaborative Research Program (NCCRP)

Joint project within US EPA:

- Office of Research and Development (ORD)
- Office of Chemical Safety and Pollution Prevention (OCSPP)

Aim is to bring **innovative approaches** to address the requirements of the Toxic Substances Control Act (TSCA) for the review of new chemicals.

Modernizing the new chemicals review process will help overcome information gaps and help the Agency meet its statutory requirements in a timely, effective and efficient manner.

Five components:

- Refinement of chemical category approaches
- Expansion of databases containing TSCA chemical info 2.
- Develop and refine predictive models for phys-chem, 3. environmental fate/transport, hazard, exposure and toxicokinetics.
- Integration and application of *in vitro* NAMs. 4.
- 5. Decision support tool.

CBRA with Cell Painting Data

Chemical biological read-across (CBRA)						
Generalized Read-Across	(GenRA) (i) More Info	C Ket	cher Dieldrin	DTXSID9020453		
					Imrar Shah	Grace Patlewicz
	Step Three: Data Gap Analysi	is & Generate	Data Matrix			
Neighbors by: Filter by: Biology: HTPP_U2OS ToxRef data	Summary Data Gap Analysis	0	Group: ToxRef 🗢	By: Tox Fingerprint	HidePagination	Generate Data Matrix
Fluthiace	chm_ct bio_txct	tox_txrf chm_mrgr	Dieldrin III Assay endpo	Heptachlor Endrin Fluthiacet-m	Triflumizole Aldrin Endosulfan Tri-allate	Oxadiazon S-Bioallethrir Bronopol
Cxadiazon	Dieldrin18327Fluthiacet-methyl9022	62 32 120 48 69 166	፰ CHR:[other]			
Heptachlo	Endrin13927Heptachlor22319	62 32 114 52 33 120	CHR:adrenal CHR:alanine			
S-Bioalle	Tri-allate16915Endosulfan24718Control17	19 30 125 57 32 136	CHR:albumin CHR:alkaline			
	Aldrin 201 17 Triflumizole 348 18	60 29 120 36 64 229 12 17 195	CHR:anemia CHR:appear			
Triflumiz Aldrin	S-Bioallethrin 211 15 Oxadiazon 250 16	12 17 185 44 57 161 38 51 154	CHR:asparta CHR:beta gl			
10 Physchem Data Neighborhood Exploration	Rows: 11 Total Rows: 11		Rows: 328		Total Rows: 328 1 to 9 of 328	I < Page 1 of 37 > >I

Summary and Future Directions

- Cell Painting is a robust, reproducible and cost-effective method for bioactivity screening of environmental chemicals across diverse human-derived cell lines.
- Data can be leveraged to inform NGRA:
 - Prioritization with BER
 - MIE Prediction / mechanistic inference
 - Chemical grouping for chemical biological read-across.

• Future directions include:

- Screening chemical sets of interest to EPA across additional, diverse cell lines.
- Methods development for screening of defined and uncharacterized chemical mixtures.
- Implementing CellProfiler at scale to promote interoperability with other Cell Painting datasets.
- Surfacing of additional Cell Painting data on the CompTox Chemicals Dashboard.

Acknowledgements

Office of Research and Development (ORD) Center for Computational Toxicology and Exposure (CCTE)

- Johanna Nyffeler
- Clinton Willis
- Felix Harris
- Gabrielle Byrd
- Megan Culbreth
- Amanda Jurgelewicz
- Dan Hallinger
- Ann Richard
- Kathy Coutros
- Russell Thomas

- Derik Haggard
- Katie Paul Friedman
- John Wambaugh
- Logan Everett
- Imran Shah
- Richard Judson
- Joseph Bundy
- Bryant Chambers
- Joshua Witten

- Joe Trask
- Dana Hanes
- Colin Wakeham
- Jim Hostetter
- Thank You & Questions ?