Skip common site navigation and headers
United States Environmental Protection Agency
Exposure Research
Begin Hierarchical Links EPA Home > Research & Development > Exposure Research > Publications/Presentations > End Hierarchical Links

 

Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic and/or Hydroxyl Groups. 1. Method Development

spacer
spacer
Abstract:In this study, a new analytical technique was developed for the identification and quantification of multi-functional compounds containing simultaneously at least one hydroxyl or one carboxylic group, or both. This technique is based on derivatizing first the carboxylic group(s) of the multi-functional compound using an alcohol (e.g., methanol, 1-butanol) in the presence of a relatively strong Lewis acid (BF3) as a catalyst. This esterification reaction quickly and quantitatively converts carboxylic acids to their ester forms. The second step is based on silylation of the ester compounds using bis(trimethylsilyl) trifluoroacetamide (BSTFA) as the derivatizing agent. For compounds bearing ketone groups in addition to carboxylic and hydroxyl groups, a third step was used based on PFBHA derivatization of the carbonyls. Different parameters including temperature, reaction time, and effect due to artifacts were optimized. A GC/MS in EI and in methane-CI mode was used for the analysis of these compounds.

The new approach was tested on a number of multifunctional compounds. The interpretation of their EI (70 eV) and CI mass spectra shows that critical information is gained leading to unambiguous identification of unknown compounds. For example, when derivatized only with BF3-methanol, their mass spectra comprise primary ions at m/z M + 1, M + 29, and M+. - 31 for compounds bearing only carboxylic groups and M+. + 1, M+. + 29, M - 31, and M - 17 for those bearing hydroxyl and carboxylic groups. However, when a second derivatization (BSTFA) was used, compounds bearing hydroxyl and carboxylic groups simultaneously show, in addition to the ions observed before, ions at m/z M+. + 73, M+. - 15, M+. - 59, M+. - 75, M+. - 89, and 73. To the best of our knowledge, this technique describes systematically for the first time a method for identifying multi-functional oxygenated compounds containing simultaneously one or more hydroxyl and carboxylic acid groups.

The U.S. Environmental Protection Agency through its Office of Research and Development funded and collaborated in the research described here under Contract 68-D-00-206 to ManTech Environmental Technology, Inc. It has been subjected to Agency review and approved for publication. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use.
spacer
Citation:Jaoui, M., T. E. Kleindienst, M. Lewandowski, and E. O. Edney. Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic and/or Hydroxyl Groups. 1. Method Development. Analytical Chemistry 76(16):4765-4778, (2004).
spacer
spacer
Contact: Liz Hope - (919) 541-2785 or hope.elizabeth@epa.gov
spacer
Division: Human Exposure & Atmospheric Sciences Division
spacer
Branch: Process Modeling Research Branch
spacer
Product Type: Journal
spacer
Published: 08/15/2004
spacer
Downloads:
spacer
Bullet Item Identification and Quantification of Aerosol Polar Oxygenated Compounds Bearing Carboxylic and/or Hydroxyl Groups. 1. Method Development
spacer
spacer
Related Entries:
spacer
Bullet Item Science Version of PM Chemistry Model
spacer Relationship Reason:   A Project of the Product
spacer
spacer
spacer

 

ORD Home | Search EPA | Search NERL | Search EIMS | Contacts | Help

 
Begin Site Footer

EPA Home | Privacy and Security Notice | Contact Us

Last Updated on Monday, October 22, 2007
URL: http://cfpub.epa.gov