Skip common site navigation and headers
United States Environmental Protection Agency
Exposure Research
Begin Hierarchical Links EPA Home > Research & Development > Exposure Research > Publications/Presentations > End Hierarchical Links

 

The Determination of Non-Pesticidal and Pesticidal Organotin Compounds in Water By Gas Chromatography With [pulsed] Flame Photometric Detection (Gs/Pfpd): the Effects of "MASS" Discrimination

spacer
spacer
Abstract:Capillary gas chromatography with GC/PFPD was used in the development of analytical methodology for determining both non-pesticidal and pesticidal organotin compounds in drinking water and other aqueous matrices. The method involves aqueous ethylation of organotin analytes with sodium tetraethylborate, extraction into hexane and analysis by GC/PFPD. A PFPD is an equimolar response detector, i.e., the same quantity of tin reaching the detector should produce the same response for all organotin compounds. In general, the lower boiling and lower molecular weight non-pesticidal organotin compounds give analytical signal responses that are linearly related to the concentration of the analytes over the range studied. The higher boiling and higher molecular weight pesticidal organotin analytes, on the other hand, can give erratic peak area and peak height responses that are too small, and may result in non-linear signals, and lower slopes, as compared to their more volatile counterparts over the same concentration range. The fully alkylated, non-derivatized, quantitative internal standards, tetrabutyltin and tetrapentyltin, added to the extract in the same relative amount, may yield divergent peak area and peak height responses. An investigation of the needle handling techniques, i.e., "cold needle" injection vs. "hot needle" injection and injection speed, reveal the problem may be, in part, attributable to "needle" or "mass" discrimination between the [more volatile] lower boiling and lower molecular weight non-pesticidal organotins and some of the higher boiling and higher molecular weight pesticidal organotin compounds. Additionally, data will be presented to show: a) a minimum reaction time of 5 minutes for sodium tetraethylborate alkylation, b) derivatization yields greater than 50%, subsequent to alkylation, for most of the organotins, c) multiple internal standard calibration and calibration checks over a 21 day period, d) results of the analysis of very hard water [hardness: 325 to 350 mg/L], fortified with organotin analytes from 2.5 to10 parts-per-trillion, yielding recoveries ranging from to 71 to121% for 9 out of 10 compounds, e) method detection limits for organotins, ranging from 0.01 to 0.18 parts-per trillion, using the EPA single concentration procedure vs. the alternative Hubaux-Vos calibration based graphical approach, and f) the analytical response and correlation coefficient data for each analyte over the desired concentration range of 0.2 to 10.0 parts-per-billion, subsequent to extraction and concentration.
spacer
Citation:Evans, O. M., P. Kauffman, and J. N. Morgan. The Determination of Non-Pesticidal and Pesticidal Organotin Compounds in Water By Gas Chromatography With [pulsed] Flame Photometric Detection (Gs/Pfpd): the Effects of "MASS" Discrimination. Presented at American Chemical Society 36th Central Regional Meeting, Indianapolis, IN, June 2-4, 2004.
spacer
spacer
Contact: Mary P. O'Bryant - (919)-541-4871 or obriant.mary@epa.gov
spacer
Division: Microbiological & Chemical Exposure Assessment Division
spacer
Branch: Chemical Exposure Research Branch
spacer
Product Type: Abstrct/Oral
spacer
Presented: 06/02/2004
spacer
Related Entries:
spacer
Bullet Item Methods Development for the Determination of Selected Organotins in Drinking Water
spacer Relationship Reason:   A Project of the Product
spacer
spacer
spacer

 

ORD Home | Search EPA | Search NERL | Search EIMS | Contacts | Help

 
Begin Site Footer

EPA Home | Privacy and Security Notice | Contact Us

Last Updated on Monday, October 22, 2007
URL: http://cfpub.epa.gov