Skip common site navigation and headers
United States Environmental Protection Agency
Exposure Research
Begin Hierarchical Links EPA Home > Research & Development > Exposure Research > Publications/Presentations > End Hierarchical Links

 

USEPA Sheds Model: Methodology for Exposure Assessment for Wood Preservatives

spacer
spacer
Abstract: A physically-based, Monte Carlo probabilistic model (SHEDS-Wood: Stochastic Human Exposure and Dose Simulation model for wood preservatives) has been applied to assess the exposure and dose of children to arsenic (As) and chromium (Cr) from contact with chromated copper arsenate (CCA)-treated playsets and residential decks. Short-term (for As and Cr), intermediate-term (for As and Cr), and lifetime (for As only) absorbed doses are estimated for: dermal contact with playset or deck residues; dermal contact with soil concentrations around treated playsets or decks; ingestion of CCA-containing soil near treated playsets or decks; and ingestion of wood residues via the hand-to-mouth pathway.

SHEDS-Wood calculates the predicted exposure and dose to As and Cr using age and gender representative time-location-activity diaries from EPA's Consolidated Human Activity Database (CHAD). Based on user-specified inputs, exposure days and exposure events within a day are simulated. The time series of exposure and dose are computed using pathway-specific exposure equations and the real-time diary activities for which a contact event is possible. Model inputs, represented as analytical distributions (e.g., lognormal, beta) include: fraction of outdoor time and days per year a child plays on/around playsets and decks; As and Cr residue and soil concentrations on or near CCA treated playsets or decks; and various exposure factors such as residue-to-skin transfer efficiencies, soil-to-skin adherence factor, saliva and bathing removal efficiency, daily incidental soil ingestion rate, fraction of hand skin surface area contacting soil, frequency of hand to mouth activity, maximum dermal loading, and dermal and GI absorption rates. Model results for the simulated population are analyzed to determine the dominant pathways influencing predicted exposures and dose. Both deterministic and statistical methods are used to assess the sensitivity of results to key input variables. Uncertainty analyses are performed using the 2nd Stage Monte-Carlo simulation results and a nonparametric bootstrap methodology.

This work has been funded wholly by the United States Environmental Protection Agency.
It has been subjected to Agency review and approved for publication.
spacer
Citation:Ozkaynak, A. H., V. Zartarian, J. Xue, and W. Dang. USEPA Sheds Model: Methodology for Exposure Assessment for Wood Preservatives. Presented at Annual Conference on Soils, Sediments and Water, Amherst, MA, October 20-23, 2003.
spacer
spacer
Contact: Liz Hope - (919) 541-2785 or hope.elizabeth@epa.gov
spacer
Division: Human Exposure & Atmospheric Sciences Division
spacer
Branch: Exposure Modeling Research Branch
spacer
Product Type: Abstrct/Oral
spacer
Presented: 10/22/2003
spacer
Related Entries:
spacer
Bullet Item Next Generation Multimedia/Multipathway Exposure Modeling
spacer Relationship Reason:   A Project of the Product
spacer
spacer
spacer

 

ORD Home | Search EPA | Search NERL | Search EIMS | Contacts | Help

 
Begin Site Footer

EPA Home | Privacy and Security Notice | Contact Us

Last Updated on Monday, October 22, 2007
URL: http://cfpub.epa.gov