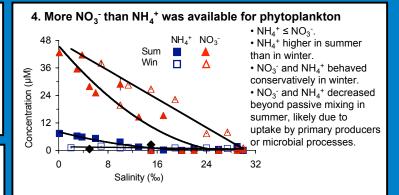
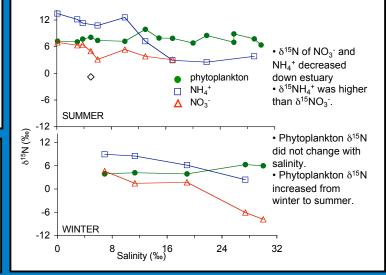
Do phytoplankton use more NH₄⁺ or NO₃⁻? Joanna K. York*¹, Ivan Valiela¹, Daniel J. Repeta²

¹ Boston University Marine Program ² Woods Hole Oceanographic Institution **2004 EPA STAR Graduate Fellowship Conference**Next Generation Scientists—Next Opportunities

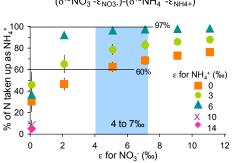
Eutrophication is increasing worldwide and usually begins with increased availability of N to primary producers, primarily as NO₃.


- Leads to algal & phytoplankton growth
- Causes eelgrass die-off which leads to loss of fin- and shellfish habitat.
- Decomposition of algae leads to hypoxia/ anoxia which may kill organisms that cannot escape.
- Phytoplankton require N as:
 - •nitrate (NO₃-)
- ammonium (NH₄+) PREFERRED
- •nitrite (NO₂-) dissolved organic nitrogen (DON)

2. Site


Childs River is a sub-estuary of the Waquoit Bay system, on Cape Cod. MA. Land-use on the watershed of Childs River includes a large proportion of residential area, as well as other landcover types, resulting in a land- derived Nload to the estuary more than 20 times the load to a comparable pristine system.

- **3. Methods** We measured concentrations and $\delta^{15}N$ of NH_4^+ , NO_3^- , and chlorophyll a. We compared the $\delta^{15}N$ of chlorophyll a, NH_4^+ and NO_3^- to determine which form of N was used. Stable Isotopes:
- Ratio of ¹⁴N and ¹⁵N varies in different materials
- δ^{15} N=[($R_{sample}/R_{standard}$)-1]X1000, R= 15 N/ 14 N (%)
- Fractionation (ϵ) is a change in $\delta^{15}N$ during biological reactions because ^{14}N reacts faster than ^{15}N .
- Phytoplankton take up 14 NO $_3^-$ or 14 NH $_4^+$ slightly faster than 15 NO $_3^-$ or 15 NH $_4^+$; ϵ ranges from 4 to 7 % for NO $_3^-$, 0 to 14% for NH $_4^+$


5. Phytoplankton acquired their $\delta^{15}N$ from NH_4^+ upstream, then maintain $\delta^{15}N$ downstream.

6. Phytoplankton in Childs River took up most of their N as NH_4^+ .

To determine % contribution of $\mathrm{NH_4}^+$ and $\mathrm{NO_3}^-$ to phytoplankton, we used the following equation:

$$\% N H_4^{+} = \frac{(\delta^{15} N O_3^{-} - \epsilon_{NO3-}) - \delta^{15} N_{phytoplankton}}{(\delta^{15} N O_3^{-} - \epsilon_{NO3-}) - (\delta^{15} N H_4^{+} - \epsilon_{NH4+})}$$

We varied ϵ_{NO3} - along the x-axis (0 to 12‰), and ϵ_{NH4+} by different symbols (0 to 14‰), and solved the equation using our data for $\delta^{15}N$ of chlorophyll a, NO_3^- and NH_4^+ . The blue shaded area shows solutions for values of ϵ for NO_3^- (4 to 7 ‰) and ϵ_{NH4+} (0 to 14‰), that are typical of estuarine phytoplankton.

Childs River phytoplankton derived 60 to 97% of their N from NH₄+.

7. Conclusions It appears that phytoplankton acquired a significant pool of NH₄⁺ upstream which provided an N source for growth and division downstream

Phytoplankton get most of their N from NH_4^+ , in spite of high NO_3^- in the estuary, so reducing NO_3^- may not solve eutrophication.

^{*} This fellow is sponsored by EPA's STAR or Greater Research Opportunities (GRO) Program.