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Abstract

Stochastic rainfall models are important tools both for practical issues and in studies
of weather- and climate-sensitive systems. We propose an event-based model, continu-
ous in space (two-dimensional) and time, that describes regional-scale, ground-observed
storms by a Boolean random field of rain patches. The model creates complex space-time
structures with a mathematically tractable framework. The estimation method relates
temporal observations at fixed sites to the movement of the model storm rain field, thereby
making historical rain gauge data suitable for model fitting. The model is estimated us-
ing hourly historical data at eight rain gauges in Alabama and tested for its capabilities
in capturing statistical characteristics of the historical data, including rainfall intensity,
rainfall intensity extremes, temporal correlation, effects of temporal aggregation, spatial
coverage, and spatial correlation.

Keywords: precipitation, regional modeling, mesoscale meteorology, stochastic hy-
drology, space-time structures, Boolean model, stereology, rain gauge data.

1 Introduction

Weather sequences generated by stochastic models are often used in process simulations
because historical weather data may be inadequate in terms of length, spatial coverage,
and completeness. Moreover, weather sequences generated from stochastic models provide a
mechanism for investigating the implications of weather uncertainty in process models.

Because of its important role in a broad range of land surface processes, rainfall has been
one of the most actively investigated elements in weather generator models. Over the past
four decades, stochastic rainfall models have evolved through several generations; see review
articles by, for example, Wilks and Wilby [1999], Onof et al. [2000], and Wheater et al.
[2005]. Among the more popular types are alternating renewal models [Green, 1964; Roldan
and Woolhiser, 1982], Markov chain models [Chin, 1977; Katz, 1977; Richardson, 1981;
Chandler and Wheater, 2002], clustered point process models [Kavvas and Delleur, 1981;
Smith and Karr, 1983; Waymire et al., 1984; Rodriguez-Iturbe et al., 1987; Cox and Isham,
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1988; Cowpertwait, 1995; Northrop, 1998], and downscaling models [Wilby et al., 1998;
Ferraris et al., 2003]. Many of the early models, such as those in the Markovian process
framework, are “observation-based” in the sense that they make statistical assumptions
on certain properties of rainfall, then construct the model and estimate parameters based
directly on statistical analysis of observed data. Some more recent approaches, exemplified
by clustered point process models, may be called “event-based” as they describe and simulate
rainfall starting from a simplified prescription of how the storm event actually occurs and
develops.

These two types of modeling approaches differ in two basic respects: discreteness and
spatial coverage. Observation-based models naturally arose from analysis of daily or hourly
rainfall records at a single station. When extended to spatial models, they concern rainfall at
multiple discrete locations as opposed to operating in a continuous spatial domain. In order
to express the inter-correlation of rainfall between locations, a complex covariance structure
and a large number of parameters are often needed [Smith, 1994; Wilks, 1998]. In contrast,
event-based models can be intuitively played out in a continuous spatial domain, evolving
seamlessly in time without artificial aggregation with regard to clock-time intervals. This
major advantage is possible because at the heart of these models is a quasi-physical picture
of the rainfall process. Prescription of this simplified rainfall mechanism is where much effort
is devoted in developing these models.

In this paper we propose an event-based regional model along the line of point process
models. At the center of the idea is a Boolean model [Matheron, 1975; Serra, 1982; Stoyan
et al., 1995; Molchanov, 1997], which consists of a spatial Poisson point process and addi-
tional properties attached to the points. The points are the center of rain patches, within
which rainfall intensity varies according to a prescribed profile. This model has a clear spa-
tiotemporal structure, works in continuous spatial and temporal scales, and can be estimated
with widely available long term historical data. To estimate the model parameters, stere-
ological relations of the Boolean field are used. The proposed estimation strategy is well
suited to the way rainfall is observed and recorded at rain gauges.

We first describe the formulation of the model, then give a full account of the model fitting
procedure. To validate the model against historical data, we use simulations and analytic
derivations to examine several statistical properties of rainfall that such stochastic models
are expected to capture. The presentation is illustrated throughout using a historical hourly
rainfall data set, which we introduce now, before turning to the model itself.

2 The Illustrative Data

Ground-based observational climate data are maintained by the National Climatic Data
Center (NCDC, www.ncdc.noaa.gov) in Asheville, NC. Precipitation data come in several
time resolutions such as daily, hourly, and quarter-hourly, with different time coverage at
different stations throughout the nation. We chose data from the hourly data set TD3240
at eight stations in Alabama (Figure 1) in the years from 1949–1961 for illustrations. These Fig 1
data were chosen because the region has a relatively simple topology and multiple stations
distributed in a balanced configuration. The record period, from 1949 to 1961, corresponds
to the period when all stations provided high-resolution data.
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Records in this data set are hourly precipitation amounts, accurate to 0.254 mm
(0.01 inch). These hourly aggregated data derive from the standard tipping-bucket rain
gauge, which consists of a bucket that collects rainfall and tips every time it fills. The
number of tips during each hour enters the historical record and reflects the rain amount
discretized as multiples of the bucket capacity, 0.254 mm.

Common dry periods across all eight stations exceeding 12 hours are taken to be intervals
between storms. By this empirical criterion, 918 storms are identified in the illustrative
data. The particular choice of 12-hour dry period as a storm separator precludes individual
storms with extended dry periods. The choice to model storms without extended dry periods
contrasts with rainfall models having clustering mechanisms.

For each year, data for the period between April 1 and October 31 were extracted for
model estimation and validation. Model parameters during this summer season were treated
as temporally homogeneous.

3 Formulation of the Regional Boolean Rainfall Model

We model the regional time-varying two-dimensional surface rainfall intensity field for a
single storm by “rain patches” moving across the region of interest (Figure 2). These model Fig 2
rain patches should be interpreted as elementary, possibly overlapping, rain areas as observed
on the ground rather than as cloud structures. The geographic scale of the model rain field,
consisting of rain patches, is taken to be large relative to the monitoring region of interest.
Storm size is the length along the direction of storm movement, i.e., storm size is the product
of storm speed and duration. A modeled storm has a fixed velocity (including speed and
direction).

The internal structure of the modeled rain field is described by an isotropic Boolean
model, which is commonly used in stereology and stochastic geometry. The Boolean model
is relatively simple, yet its general and flexible structure can accommodate specific variants
(see Matheron [1975], Serra [1982], Hall [1988], Stoyan et al. [1995], and Molchanov [1997]).
Realizations of the field may appear complex and irregular, but the model is mathematically
tractable in many respects and Boolean fields are straightforward to simulate (see Section 5).

In our context, circular rain patches are randomly located with centers forming a homoge-
neous spatial Poisson point process on the plane. Each rain patch has a random radius and
a random mean rainfall intensity, both assumed independent of the location of the patch.
Different rain patches are independent of each other. In particular, the patches are free to
overlap, thus allowing for complex shapes of connected rain areas on the ground. The rainfall
intensity at a location covered by overlapping patches is the sum of the intensities at the
corresponding location within each participating patch.

The rainfall intensity within a rain patch is assigned a time-invariant profile which peaks
at the patch center and decreases linearly towards zero on the edge of the patch. This is more
realistic [Konrad, 1978; Goldhirsh, 1983] than assuming a constant intensity over the entire
patch [Goldhirsh, 1986; Cox and Isham, 1988]. We make no assumption of independence
between the size and rainfall intensity of a patch. The model uses an empirically derived
joint distribution of patch size and intensity.
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This simple model of a storm, that is, a spatial Boolean field of rain patches moving at a
constant velocity, introduces complex space-time structures. A fixed location on the ground,
such as a rain gauge, experiences an alternation of dry and wet periods corresponding to
a linear transect of the planar field. We define the following geometric attributes on the
transect:

Chord: intersection of the transect with a rain patch.
Clump: a contiguous wet interval on the transect.
Gap: a dry interval on the transect.

Figure 2 contains examples of these attributes along two transects AB and CD through
the rain field. A clump consists of a single rain patch chord or overlapping chords. Gaps
are dry segments between consecutive clumps. The relations between patches, chords, gaps,
and clumps form the basis of inferring properties of rain patches from dry and wet intervals
observed at rain gauges.

4 Estimation of the Model

The regional event-based model is characterized by

1. The joint distribution of storm velocities and storm sizes.

2. The Poisson density of patch centers in the model rain field for a storm.

3. The joint distribution of patch radii and average patch rainfall intensities.

Each storm is a random realization of a moving Boolean field. The available historical
data used for model estimation consist of the start and stop times of continuous rain periods
(clumps) at each of the monitoring stations, together with the rainfall total in each rain
period.

The size and velocity will be estimated for each storm in the historical data, therefore
we will have empirical distributions of storm size and storm velocity. Estimating storm
velocity entails comparing time-series observations at multiple rain gauges that are in a fixed
geographic configuration. The estimated velocity is used to convert dry and wet durations
in the historical time series data to lengths of gaps and clumps in the modeled Boolean field.
Storm size is derived from storm velocity and duration.

Since the model is regionally homogeneous, we pool the gaps and clumps from all the
monitoring stations in the region, and over all storms, to form combined samples. Statistics
of gaps and clumps of the Boolean field are related stereologically to the density and size of
the patches, and these relations are used to estimate the Poisson patch density and patch size
distribution. Estimation of the patch rainfall intensity distribution is based on simulations
using the estimated patch density and patch size distribution, together with the observed
rainfall amounts in wet periods.

Below we discuss issues in the order they occur in the estimation process. Notation used
in the model is listed in Table 1.
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Table 1: Notation used in the model, especially in Section 4. The symbols are grouped by
the geometric object they are used for.

symbol source meaning

D observed (dry) gap size, km
µD estimated mean D, km
W observed (wet) clump size, km
FW empirical distribution function of W

u estimated storm speed, km/hr
θ estimated storm direction

R estimated patch radius, km
λR estimated Poisson density of patch centers, km−2

FR estimated distribution function of R
µR derived mean R, km
r0 specified minimum R, km
q (multiple) rainfall intensity

C estimated chord length, km
λC estimated Poisson density of chord centers

on linear transects, km−1

FC derived distribution function of C
fC derived probability density function of C

4.1 Estimating Storm Velocity

The storm velocity here refers to the velocity of the modeled spatial rain field. The storm
velocity is estimated from the rainfall data by analyzing relations between observations of
the same storm at multiple stations. Several commonly used methods dealing with this
problem are reviewed in Niemczynowicz [1987]. The reviewed methods all rely on comparing
detailed rainfall intensity processes at the rain gauges. This imposes some requirements that
the data used in this study do not satisfy, including “the time resolution must be of the
order of one or two minutes,” and “distance between gauges must be of the order of one
km” [Niemczynowicz, 1987, p. 137]. Another requirement is on the model. According to
Niemczynowicz [1987, p. 138], “most of the known methods ... often fail when more than
one rain cell is present over the gauge network at the same time.” Since our model does not
require that different locations experience the same set of rain patches, these methods for
estimation of storm velocity, based on detailed comparisons of rainfall intensities, are not
applicable even with data of higher spatial or temporal resolution.

The key to the method we propose below is that observations of the storm at a pair of
stations have a time difference that, under the model, is determined by the location relation
of the two stations and the velocity of the storm. This method uses the geometry of the rain
gauge network together with starting and stopping times of the storm at each rain gauge.
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Suppose a storm is recorded by k stations Pi : (xi, yi), i = 1, · · · , k. For each station there
is an observed reference time ti, taken as the average of the beginning and end of the storm
at that station. For each of the k(k − 1)/2 station pairs, the difference of the two observed
reference times is related to the storm speed u and direction θ via

ti − tj =
dj,i cos(θ − αj,i)

u
+ δj,i

= (xi − xj)
cos θ

u
+ (yi − yj)

sin θ

u
+ δj,i,

(1)

were 1 ≤ i < j ≤ k, αj,i denotes the direction of the line from Pj to Pi, and dj,i is the
distance between the two stations (see Figure 3). The error term δj,i exists because the Fig 3
reference times observed at different stations are, although conceptually equivalent, subject
to random disagreement.

From system (1) we derive the least squares estimates of (cos θ)/u and (sin θ)/u:[
(cos θ)/u
(sin θ)/u

]
=

[ ∑
(xi − xj)

2
∑

(xi − xj)(yi − yj)∑
(xi − xj)(yi − yj)

∑
(yi − yj)

2

]−1

·
[∑

(ti − tj)(xi − xj)∑
(ti − tj)(yi − yj)

]
,

(2)

where all the sums are for all the station pairs. Estimates of the storm speed u and direction
θ follow. The storm size is then estimated by the product of the estimated storm speed and
the longest storm duration across all stations.

The nonlinear relation u =
(√

(cos θ/u)2 + (sin θ/u)2
)−1

causes an under-estimation of u.

We have obtained a correction factor of 1.3 through simulations and applied it to the speed
estimates.

System (1) requires observations at three or more stations in order for the velocity of a
storm to be estimated. Of the 918 storms identified in the illustrative Alabama data, the
velocity and size of 535 were estimated, shown in Figures 4–5. Fig 4–5

4.2 Estimating the Mean Gap Size

Using the estimated storm speed, we convert within-storm dry periods in the time series
data to gap lengths in the Boolean field. Each station with no record for a particular storm
contributes a gap equivalent to the size of the storm. We similarly account for gaps from the
beginning of a storm to the first rainfall clump and from the last rainfall clump to the end of
the storm. Gaps in the Boolean field have an exponential distribution [Stoyan et al., 1995,
p. 82]. The distribution of gaps derived from the data is compared with the exponential
distribution in Figure 6. Fig 6

Because large gaps are under-represented in the empirical gap size data, we used a trimmed
mean of these data to estimate the model mean gap size, µD, trimming the data at the 5th
and 95th percentiles, which are denoted by d5 and d95, respectively. The expected value of
the trimmed mean is related to µD by

E

[
1

n

n∑
i=1

di

]
=

d5 · exp{−d5/µD} − d95 · exp{−d95/µD}
exp{−d5/µD} − exp{−d95/µD}

. (3)
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Solving the nonlinear equation above provides an estimate of µD. This estimate from the
Alabama data is 153 km.

4.3 Estimating the Density and Size Distribution of Rain Patches

The spatial Boolean model undergoes two reductions to yield data at the monitoring network.
First, the 2-D Boolean model of patches reduces to a 1-D model of patch chords on a linear
transect corresponding to a monitoring location. Then contiguous wet segments on the
transect are observed as clumps, whereas dry segments are gaps. (See Section 3.) Each
clump is either a single isolated wet chord or the union of overlapping wet chords.

We infer the 1-D transect model of patch chords from the observed clumps and gaps in the
historical data, then infer the 2-D Boolean model of patches from the 1-D transect model
of patch chords. The relation between the 1-D model and clumps and gaps is somewhat
involved, but practical approximations are available.

4.3.1 Estimating the 1-D patch chord model from clumps and gaps

On a linear transect through the 2-D Boolean field, wet patch chords (locations represented
by their mid-points) form a 1-D Boolean field [Matheron, 1975, p. 140; Stoyan et al., 1995,
p. 81] with density λC (number of chords per unit length of transect) and chord length
distribution FC . These are the two parameters for the 1-D patch chord model that we need
to estimate.

The chord density in the 1-D model is determined by the 2-D model as [Mecke and Stoyan,
1980; Stoyan et al., 1995, p. 81, 354]

λC = 2λRµR. (4)

(See Table 1 for notation.) This is connected to statistics of gaps, which have an exponential
distribution with expected value [Lu and Torquato, 1993; Stoyan et al., 1995, p. 82]

µD =
1

2λRµR

. (5)

Therefore

λC =
1

µD

, (6)

where mean gap size µD has been estimated in Section 4.2.
The distribution of clumps, FW , is a known function of the chord properties λC and FC

[Hall, 1988, p. 91; Quintanilla and Torquato, 1996]. Handley [1999] describes a convenient
discrete recursive approximation to this relation. Let

P (x) = FW (x + δ/2)− FW (x− δ/2), (7)

where δ is a properly chosen small value, and

G(x) =
P (x) +

∑[x/δ]
i=1 G((i− 1)δ)Q(x)∑[x/δ]

i=1 Q(x)
, (8)
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where Q(x) = P (x − iδ)
∏i−1

j=1 G((j − 1)δ), and G(0) = 1 − δλC . The distribution of chord
lengths is calculated from G as

FC(x) = 1− 1−G(x)

δλC

. (9)

We use the empirical distribution of data-derived clumps as an estimate of FW .

4.3.2 Estimating the 2-D patch model from the 1-D patch chord model

The distributions of patch radii and chord lengths are related stereologically [Mecke and
Stoyan, 1980; Stoyan et al., 1995, p. 354] by

FR(x) = 1− 4µR

π

∫ ∞

2x

fC(t)√
t2 − 4x2

dt, x > 0, (10)

where fC is the probability density function of chord lengths.
The mean patch radius µR can be derived from the expression above. If r0 is a specified

minimum patch radius, then FR(r0) = 0 by definition. Substituting FR(r0) and r0 into
relation (10) yields the mean patch radius expressed in terms of chord lengths:

µR =
π

4

(∫ ∞

2r0

fC(t)√
t2 − 4r2

0

dt

)−1

. (11)

With µR obtained by (11), the patch radius distribution FR(x) can be obtained via (10).
(The distribution of patch radii estimated from the Alabama data is shown as part of Fig-
ure 13, which will be introduced and discussed in Section 5.1.) According to the estimated
distribution, the median patch radius is 3.3 km. The patch density λR is estimated via rela-
tion (5). Its estimate from the Alabama data is 0.00043 rain patches per square kilometer.

Setting r0 to a positive value prevents instability in the estimates of FR and λR. The value
of 0.25 km was used in this study.

4.4 Estimating the Distribution of Patch Rainfall Intensities

Historical data contain wet clumps, each with an observed average rainfall intensity and an
estimated length. Each clump is implicitly composed of one or more chords, each corre-
sponding to a rain patch. We use a simulation method to estimate the spatially-averaged
patch rainfall intensity distribution from these rain clump statistics: the estimated Boolean
model is used to generate rain patch fields and their derived clumps; simulated clumps are
assigned average intensities, based on their length, from the observed joint distribution of
clump lengths and intensities.

Suppose that a simulated clump is assigned an average intensity q according to its length
w using the empirical joint distribution. The simulated clump consists of n chords, say, of
length ci and average rainfall intensity qi, i = 1, . . . , n. Then

n∑
i=1

ciqi = wq. (12)
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We assign a common average intensity x to all the n patches corresponding to the chords
contributing to this clump. Let ri, i = 1, . . . , n, be the radii of the patches. Because a
modeled rain patch has a conic intensity profile, the average intensity on the ith chord is

qi =
3x

2

(
1− 4r2

i − c2
i

4rici

log
2ri + ci

2ri − ci

)
. (13)

Combining relations (13) and (12), we get the common average rainfall intensity for the
n patches:

x =
2wq

3

(
n∑

i=1

(
ci −

4r2
i − c2

i

4ri

log
2ri + ci

2ri − ci

))−1

. (14)

This procedure generates a sample of n (identical) patch rainfall intensities with their
corresponding radii. By repeating this procedure for multiple clumps in a simulated rain
patch field, we generate a joint distribution for rain patch radius and intensity.

This method does not assume an a priori relation between the size and rainfall intensity
of a patch. In the simulated sample of patch (radius, intensity) pairs, the two properties
of the patch may be correlated or uncorrelated. The derived patch (radius, intensity)
distribution for the Alabama data is shown in Figure 7, which exhibits the quartiles of patch Fig 7
rainfall intensities as the size of the patch varies. This joint distribution corresponds to 10
000 simulated patches based on parameter estimates derived from the Alabama data.

4.5 Summary of Model Estimation

In summary, we estimate the regional rainfall model in three steps.
First, storm velocity and size are estimated using rainfall time series at multiple stations.

The estimated storm speed converts observed wet and dry durations to clump and gap
lengths in the Boolean rain field. Mean gap size is estimated with the derived gap lengths.

Second, the Poisson density of patch centers and the distribution of patch radii are esti-
mated using stereological relations between statistics of rainfall clumps and gaps and those
of the underlying rain patches.

Third, the distribution of patch average rainfall intensity across patches is estimated us-
ing clump rainfall intensities in the data together with Boolean model simulations using
parameters estimated in the previous step.

This procedure non-parametrically estimates the distributions of patch sizes and patch
rainfall intensities. Relations in the first two steps are summarized in Figure 8. Fig 8

The components of this abstracted model interact to produce complex spatiotemporal
rainfall patterns on the ground. For example, the Poisson density and the size distribution
of rain patches together determine the degree of patch overlapping. By allowing elementary
rain patches to overlap, the model presents surface rain areas of complex shapes. The
movement of this rain field then translates into dry and wet durations in the time series
observations at the monitoring network.

In time-aggregated data such as the hourly records used in the Alabama illustration, the
time-averaged rainfall intensities in wet periods will under-represent extreme rainfall intensi-
ties. Therefore, patch rainfall intensity parameters estimated directly from wet periods (see
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Section 4.4) may not appropriately capture peak intensities. As a solution, we reconstructed
continuous-time rainfall series from the aggregated historical data using the procedure de-
scribed in Zhang [2004], and used the reconstructed data in estimating the mean gap size,
Poisson patch density, patch size distribution, and patch rainfall intensity distribution. With
data of higher time resolution, this reconstruction will be less consequential. We used the
original data to estimate storm speeds, because this continuous reconstruction does not affect
the storm speed estimation.

5 Assessment of the Model

Simulations provide a platform for investigation of rainfall characteristics and for model
validation. We conducted 100 simulations, each consisting of 535 storms with velocity and
size taken from each of the 535 storms in the Alabama data that had their velocities and
sizes estimated. The procedure for simulating a storm with the estimated model is outlined
in Figure 9. The patch centers of each simulated storm are distributed in a rectangular Fig 9
field of desired length (i.e., storm size) and sufficient width. Since storm frequency is not
a subject of this study, we inserted long dry periods between simulated storms. Figure 10
shows the spatial rain field of one storm thus simulated. Fig 10

Using the Boolean model with parameters estimated from the Alabama data, the simulated
storms result in continuous rainfall time series at the eight Alabama rain stations. By
imitating the aggregating mechanism of the tipping-bucket rain gauge, we converted the
simulated continuous data to aggregated hourly data comparable to real historical data.
Simulated time-aggregated hourly series at the eight monitoring sites are referred to as the
“historical-like” data.

Historical-like data from repeated simulations are used to assess the statistical variability
of the model estimation procedure described above. We also used historical-like data to
compare model output rainfall with the historical data for selected statistics that were not
directly used in model fitting.

5.1 Statistical Properties of Parameter Estimators

The 100 runs of simulated historical-like rainfall data were used to repeatedly estimate storm
speed and size as discussed in Section 4. The simulated continuous data records at the eight
monitoring sites were used to estimate the remaining components of the model, in lieu of
the continuous reconstruction device used for the original parameter estimation. Thus 100
sets of models were re-estimated from simulated data. Examinations of these re-estimated
models reveal how much the estimates would fluctuate based on data of 535 storms at these
8 monitoring stations, assuming the model to be correct.

Storms were identified in the simulated data, using the 12-hour storm separator and ig-
noring knowledge of the storm simulations. Most of the simulated storms were identified
as individual storms by this criterion. Each of these storms has an assigned velocity for
the simulation and a re-estimated velocity from the simulated data. The assigned and re-
estimated speeds and directions of each storm are compared in Figures 11 and 12. One can Fig 11, 12
see that the bias of the estimated storm direction can be as big as 180 degrees. This may
happen when, for example, the storm is recorded by few stations and the temporal sequence
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of the records for this storm at the stations happen to contradict with the actual movement
of the storm. This scenario is more likely if the storm’s movement is perpendicular to the
configuration of its covered stations. Furthermore, the tipping bucket aggregation also plays
a role in distorting the data. It should be noted that once the direction estimate is seriously
biased, the velocity estimate can not be trusted. Estimates of storm-specific velocities ex-
hibit substantial variability at the individual-storm level because of the limited data that
are available for estimation from single storms.

Compared with their original values in the model, the patch density λ is over-estimated
by about 59% whereas the mean gap size is under-estimated by about 14%. These two
quantities are connected through relation (5). Their estimation biases are caused mainly by
the fact that low-coverage storms that deposit rain at fewer than 3 of the 8 monitoring sites
are not used in model estimation. We are investigating ways to correct these estimation
biases.

Frequency distributions of patch radius estimates, based on the repeated simulations, are
shown in Figure 13 and compared to the patch size distribution calculated from the historical Fig 13
data. The box plot for each patch size interval indicates the range of statistical variation
across the 100 simulations. Similarly, frequency distributions of patch rainfall intensities,
based on simulations, are shown in Figure 14 and compared to their counterparts based on Fig 14
the Alabama data. Both patch size and patch rainfall intensity in the re-estimated models
have some negative bias compared to the original model. The statistical variation of the
re-estimates is small.

5.2 Distribution and Extremes of Rainfall Intensities

The fitted Boolean patch model, which simulates spatial-temporal storm fields, thus gener-
ates simulated rainfall time series at the monitoring sites and thus indirectly generates rainfall
intensity data. The degree of statistical agreement between measured rainfall intensities in
the historical data and those indirectly obtained from Boolean patch model simulations is
an important indicator of model performance.

For model-simulated historical-like data, we obtained the distribution of rainfall intensities
in individual wet hours and compared it with its counterpart in the historical data, as
shown in the quantile-quantile plot of Figure 15. This distribution in its entire range is Fig 15
reasonably reproduced. In particular, the reproduction of the long tail of extreme hourly
intensities is important for examining rarity of extreme rainfall events using simulations.
Similar agreement was seen in the comparison of distributions of wet spell rainfall intensities,
i.e., intensities in consecutive wet hours.

In the historical and simulated aggregated data, we found the maximum single-hour rainfall
intensity among all eight stations in n storms, where n is 10, 50, 100, or 200. The n storms
were sampled at random; this sampling was repeated 100 times. Figure 16 is a summary of Fig 16
these extreme values. Each box on this plot summarizes the 100 rainfall intensity maxima
corresponding to 100 random sampling of the group of n storms.
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5.3 Temporal Persistence of Rain at a Fixed Location

The rainfall process observed at any location demonstrates strong continuity along time.
We consider two measures of temporal persistence to check the model’s performance in this
regard—a lagged conditional probability of rain and a lagged covariance between rainfall
intensities.

The time-lagged conditional probability of rain, given rain at the same site at the earlier
time separated by time lag x, is defined as

f(x) = Pr[q(t + x) > 0 | q(t) > 0], (15)

where q(t) is rainfall intensity at time t. Comparison of this persistence function between
historical and historical-like model-simulated data is shown in Figure 17. The comparison Fig 17
demonstrates reasonable agreement.

We could have worked on the correlation of rain status at two moments separated by
time lag x instead of the “persistence of rain” defined above. However, to determine the
correlation we need the marginal probability of rain. Because we are only interested in times
within a raining period (the “rain/dry” status in inter-storm periods would have a strong
auto-correlation), this raises the question of how to determine the time boundaries of a rain
event.

The type of lagged covariance used here is the expected product of individual wet-hour
rainfall intensities at a monitoring site, lagged by x hours, conditional on rain at the earlier
time:

g(x) = E[q(t)q(t + x) | q(t) > 0]. (16)

The plot of this lagged covariance for the historical Alabama data and model-simulated
historical-like data is shown in Figure 18. It is seen that for short time lags the temporal Fig 18
persistence of rainfall intensity in the model-simulated data is stronger than in the historical
data. A main reason for this disagreement is likely to be the model assumption that rain
is deposited by a time-invariant structure of rain patches moving over the monitoring sites.
Possible extensions of the patch model with limited rain patch life-time might bring the
model temporal persistence more into line with what was observed. (See Cox and Isham
[1988] for discussions about the relative influences of the speed of storm movement and the
speed of rain patch death on spatial and temporal covariances of rainfall intensity.) In both
Figures 17 and 18, the comparison at large time lags should be taken with caution, because
the between-storm dry durations were not generated based on any model.

5.4 Spatial Coverage and Correlation of Rain at a Fixed Time

In this section, we discuss two observable spatial properties of the rain field that can be
calculated analytically from the Boolean model. The model-calculated spatial properties are
compared with their empirical values estimated from the historical Alabama data.

The first property concerns the spatial coverage of rain patches. Let p denote the expected
fraction of the ground covered by (possibly overlapping) rain patches at a moment in time
during a storm. Then [Stoyan et al., 1995, p. 67]

p = 1− exp
(
−λRπE[R2]

)
, (17)
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where πE[R2] is the expected area of a circular rain patch. This spatial coverage calculated
according to the Boolean model estimated from the Alabama data is 22%.

Since this spatial coverage is equal to the linear coverage on random transects [Baddeley
and Vedel Jensen, 2005, p. 11], we can estimate p from historical time series data at fixed
monitoring sites, which are the equivalent of linear transects of the spatial rain fields. In
estimating p from the historical data, we used the durations of dry and wet periods in each
storm at each station as a substitute for clump and gaps sizes, therefore partly avoided relying
on the estimated storm speeds. The storm- and station-wise empirical values demonstrate
considerable variation, with a median value of 24%. Part of the observed variability derives
from the small number of recorded dry and wet periods during each storm.

The second spatial property concerns contemporaneous rain-status correlations between
two locations in the rain field. Let Cs(r) be the probability that two locations separated
by distance r are simultaneously raining during a storm. This probability can be calculated
from the Boolean patch model as a function of the spatial separation of the two locations
[Stoyan et al., 1995, p. 83]:

Cs(r) = 2p− 1 + (1− p)2

· exp

(
λR

∫ ∞

r/2

(
2x2arccos

r

2x
− r

2

√
4x2 − r2

)
dFR(x)

)
,

r ≥ 0,

where FR(x) is the distribution function of patch radii, λR is the Poisson patch density, and
p is the spatial coverage of rain patches. At the two extremes, Cs(0) = p and Cs(∞) = p2.
Using the fact that the mean and variance of the point rain status (0 or 1) are p and p(1−p),
respectively, we easily derive the rain-status correlation from Cs(r):

C(r) =
Cs(r)− p2

p(1− p)
. (18)

We obtained empirical values of C(r) for 28 spatial lags between the 8 rain stations in
the Alabama data. The fraction of common rainy time for each pair of stations during
each storm was calculated. Part of the results of storm velocity estimation was used in
this calculation to determine the period in which both stations of the pair were within the
storm field. The empirical, storm-wise value of p was used in estimating empirical values of
C(r). The empirical values, averaged across storms for each spatial lag, and model-theoretic
values of C(r) are compared in Figure 19. The comparison is limited by the small number Fig 19
of empirical values; a few pairs of stations that are closer to each other would provide more
revealing comparisons in the steeper section of the curve. The figure shows generally good
agreement between the model and the data. However, the empirical values are affected
by the storm velocity estimation, and Section 5.1 has only established that storm velocity
estimation works if the storms satisfy the model assumptions.

5.5 Effect of Temporal Data Aggregation

It is useful for the storm rainfall model to be able to capture statistical properties of rainfall
at different time aggregation levels such as multi-minute or multi-hour levels. Since storm
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frequency is not part of this study, we do not examine aggregations for longer periods such
as days or months. As an exercise, we aggregated the hourly historical data and simulated
historical-like data to the 4-hour aggregation level in order to compare selected properties
of model simulations against the data.

Figure 20 is a quantile-quantile plot comparing the distributions of wet spell (i.e., consec- Fig 20
utive wet aggregation units) lengths in historical and simulated historical-like data. Due to
the limited number of quantile values, which are all integer multiples of four hours, multiple
data symbols on this plot could overlap and appear as only one. Subsequently, a genuine
single symbol and an apparent single symbol would carry the same weight to the viewer and
convey misleading messages. To mitigate this problem, we added small random noises to the
spell lengths before retrieving their quantiles. One can see that the simulated wet spells are
slightly more concentrated on intermediate values. Figure 21 shows the comparison of rain Fig 21
status time-lagged persistence defined in (15). There is good agreement between the results
from the model-simulated historical-like data and the historical Alabama data up to time
lags comparable to storm durations.

6 Concluding Remarks

We have introduced a regional stochastic spatiotemporal model for surface rain patterns
during a storm. The storm model is built from a moving Boolean field of rain-generating
patches, each of a random size, location, and rainfall intensity. A storm moves at a constant
speed in a fixed direction. Storms differ because of differences in the realized randomness of
their size, motion, component patches, and patch rainfall intensities.

We emphasize simplicity of the model structure and intuitive connections between the
modeled spatial process and temporal observations at individual rain gauges. Compared with
previously published models, the proposed model does not explicitly incorporate clustering
mechanisms or time-dependent rain patch characteristics. A two-layer clustered point process
has been used elsewhere to reproduce rainfall characteristics at a range of time scales and
aggregation levels [Rodriguez-Iturbe et al., 1987]. Our limited tests of the model described
here support scalability of the model (Section 5.5), at least in the context in which it was
applied.

Model assessment has indicated that a potential generalization of the model would allow
for time-dependent evolution of rain patches. The first step in this direction could allow
a rain patch to have time-invariant properties during a limited, random patch life. This is
similar to Cox and Isham [1988]. Another extention involves a richer parameterization of the
intensity profile for rain patches. As a generalization of the conic shape adopted here, we
may take the intensity to be linearly decreasing from the patch center, reaching at the patch
border a fixed fraction of the peak value. Such a parameterization will include conic patches
and cylindrical patches as special cases, and will require only small changes to relations (13)
and (14). Since the intensity profile enters the model estimation only through the numerical
construction of patch rainfall intensities (Section 4.4), it is possible to incorporate more
complex profiles [Capsoni et al., 1987; Kawamura et al., 1997; Luyckx et al., 1998; Willems,
2001; von Hardenberg et al., 2003].
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A main part of this work is model estimation, which has been integral to the model
design. Our bottom line is to use conventional historical rain gauge data to estimate model
parameters. The estimation procedure we proposed consists of three components: storm
velocity and size, geometric aspects of the storm rain field (patch size distribution and patch
density), and rainfall intensities (distribution of patch rainfall intensity). The latter two
are encompassed in the Boolean model framework. The procedure for estimating geometric
aspects of the model is tightly integrated mathematically. Variations or extensions of the
basic Boolean framework will affect strategies for estimation of model parameters.

We use calculated velocities for individual storms based on the available rain gauge network
data. The method involves certain approximations that may be reasonable only where the
spatial extent of the gauge network does not exceed the typical storm size. The bias in the
storm speed estimation, caused mainly by a nonlinear expression used in the least square
estimator, needs further investigations. However, estimation of patch characteristics in the
Boolean model is separated from the estimation of storm size and velocity.

We made minimal assumptions regarding distributional shapes for random components of
the model that are not directly observable, allowing the historical data to nonparametrically
contain these distributions, such as the joint patch size and patch intensity distribution. On
the other hand, the basic Boolean model does imply some distributional properties that are
calculable, such as those considered by Cox and Isham [1988], for example, the exponential
distribution of gaps.

The model estimation strategy contains some necessary or convenient heuristics such as the
minimum patch radius, r0, which is introduced for numerical stability. However, we did see
encouraging results in the model validation probes described in Section 5. Simulations further
indicate that the model fitting strategy appears reliable in the context of the underlying
Boolean patch model for regional historical data sets of the size and scope of the illustrative
Alabama regional monitoring network. There is reasonable agreement between simulated
and historical data on rainfall intensity distributions and extremes. The degree of temporal
persistence in single-site rainfall observations is reproduced and, to a lesser extent, so is the
spatial persistence at a fixed point in time.

Our storm event model needs to be combined with a storm frequency model in order
to simulate long-term rainfall series. In such simulations seasonal variations of rain storm
characteristics need to be considered. We may incorporate seasonality by fitting the model
separately for different seasons and smoothly varying the model parameters in an annual
cycle [Stern and Coe, 1984]. In a related treatment, the model parameters can be made
specific to storm types.

This model is relevant for applications because of its mathematically tractable structure
and the ease with which continuous spatiotemporal rainfall scenarios can be simulated. Sim-
ulated scenarios may be used to drive rainfall-sensitive process simulations in studies of
environmental problems, ecological dynamics and hydrology. In other applications, simu-
lations allow quantitative inquiries into space-time statistical properties of rainfall that are
not readily obtainable from relatively short records, such as temporal and spatial structures,
and frequency of extreme events. Of fundamental relevance to both types of applications is
the ability of the stochastic model of the kind considered here to generate multiple realistic
rainfall scenarios that imitate the statistics of historical network monitoring data. In its
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current, quite basic form our regional rain storm modeling approach is likely to be most
useful in situations comparable to the illustration that we used, i.e., where

1. The region of interest is small relative to the spatial extent of a typical storm, and
statistical rainfall characteristics are approximately homogeneous across the region.

2. Storms are relatively stable structures seen on the regional scale of the monitoring
network, moving across the region without large change in direction or speed.

3. The time resolution of the historical data used for model estimation is not much coarser
than the typical duration of continuous rain periods.
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Figure 1: The state of Alabama and loca-
tions of the 8 rain gauges for the illustrative
data set. The smallest inter-station distance
is 44.6 km between New Brockton and Troy.
The largest is 168 km between Auburn and
River Falls.
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Figure 2: Schematic of the Boolean model
rain field of a storm. Top: The rain patches
moving horizontally, as a model of the ground
observation of a storm. The gray-scale color
of each patch indicates the average intensity
of rainfall being deposited by the patch. On
the transects AB and CD along the storm’s
movement, X1Y1, X2Y2, X3Y3, X4Y4, X5Y5,
and X6Y6 are rain patch chords; X1Y1, X2Y2,
X3Y4, X5Y5, and X6Y6 are clumps; Y1X2,
Y2X3, and Y5X6 are gaps. Middle and bot-
tom: The rainfall time series observed at lo-
cations A and C, assuming constant rainfall
intensity within a rain patch. Wet and dry
durations observed are proportional to the
lengths of clumps and gaps on the linear tran-
sects AB and CD.
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Figure 3: Relations between the locations of
two sites, P1 and P2, the movement of the
storm, and the travel distance of the storm
between the two sites. See equation (1).
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scissa to help show the full range of the dis-
tribution as well as details around where the
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derived from the Alabama data, compared to
the histogram polygon of the exponential dis-
tribution whose mean equals the estimated
mean gap size, µD. (Log scale on abscissa.)
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Figure 7: Quartiles of patch rainfall intensity
as patch size increases, estimated from the
Alabama data. Each patch size interval con-
tains 500 simulated patches, as described in
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22



ZHANG ET AL.: STOCHASTIC SPACE-TIME RAINFALL MODELING

Generate velocity and size of the storm.
(Use those of a randomly picked storm in the historical data.)y

Determine the number of patches in the storm.
(Drawn from Poisson distribution, using density λR and storm size.)y

Generate the location of each patch.
(Uniformly distributed over the spatial extent of the storm.)y

Generate the size of each patch.
(Drawn from the estimated patch radius distribution.)y

Generate the rainfall intensity of each patch.
(From patch (radius, intensity) joint distribution.)y
Move the storm rain field across the monitoring region

and extract spatiotemporal rainfall patterns.

Figure 9: The procedure for simulating a storm with the Boolean storm model.
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Figure 11: The actual (for simulations) mov-
ing directions of 5000 simulated storms and
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lated data (estimated minus actual). Each
dot represents one storm.
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data) speeds of 5000 simulated storms. Each
dot represents one storm.
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100 simulation estimates of the same quan-
tities. Each box plot indicates the median,
quartiles, and extremes of the distribution
(same in subsequent box plots). (Log scale
on abscissa.)

Patch rainfall intensity (mm/h)

R
el

at
iv

e 
fr

eq
ue

nc
y

0.01 0.1 1 10 100

0.
00

0.
04

0.
08

0.
12
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from the Alabama data, overlaid with box
plots of the 100 simulation estimates of the
same quantities. (Log scale on abscissa.)
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Figure 15: Quantile-quantile plot of individ-
ual wet-hour rainfall intensities in the sim-
ulated historical-like data versus historical
data. (Log scales on both axis.)
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Figure 16: Comparisons of the maximum in-
dividual wet-hour rainfall intensities across
all the 8 monitoring sites in n (n = 10, 50,
100, 200) storms in simulated historical-like
data versus historical data. Each box plot
summarizes 100 such intensity maxima cor-
responding to 100 random re-sampling of the
n storms. For each n, the box on the left is
for historical data, the box on the right is for
simulated data.
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Figure 17: Time-lagged persistence of rain
status at a monitoring site for the histori-
cal Alabama data (solid curve) and simulated
historical-like data (circled curve). See defi-
nition in equation (15).
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Figure 18: Time-lagged covariance of individ-
ual wet-hour rainfall intensities at a monitor-
ing site for the historical Alabama data (solid
curve) and simulated historical-like data (cir-
cled curve). See definition in equation (16).
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Figure 19: Correlation of contemporaneous
rain status as a function of spatial distance.
The solid curve is the theoretical value, by
equation (18), for the model estimated from
the Alabama data. The circles are empirical
values estimated from the Alabama data.
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Figure 20: Quantile-quantile plot of the du-
rations of wet periods in historical and simu-
lated historical-like data, both aggregated to
the 4-hour aggregation level. (Log scales on
both axis.)
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Figure 21: Time-lagged persistence of rain
status at a monitoring site for the histori-
cal Alabama data (solid curve) and simulated
historical-like data (circled curve). Both data
sets have been converted to 4-hour aggre-
gated level. See definition in equation (15).
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