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Abstract

Various methods, such as the moving block bootstrap, have been developed to resample dependent data.

These contain features that attempt to retain the dependence structure in the data. Asymptotic results for

these methods have been based on increasing the number of observations as the observation region increases

combined with restrictions on the range of dependence of the data. In this work, we consider resampling a

one-dimensional Gaussian random field observed on a regular lattice, with increasing number of observa-

tions within a fixed observation region. We show a consistency result for resampling the variogram when

the underlying process has variogram of the form γ(t) = θt + S(t), |S(t)| ≤ Dt2. For a class of smoother

processes, specifically, for a process with variogram of the form γ(t) = βt2 + θt3 + R(t), |R(t)| ≤ Dt4, we

provide a similar result when resampling the second-order variogram. We performed a simulation study

in one and two dimensions. We used the Matérn model for the covariance function with varying values of

the smoothness parameter ν. We find that the empirical coverage of confidence intervals of the variogram

approaches the nominal 95% level as the number of observations increases for models with small ν but

as ν is increased, the empirical coverage decreases, with the coverage becoming significantly lower than

the nominal level when ν ≥ 1. When we consider the second-order variogram, we find that the empirical

coverage approaches the nominal level for larger values of ν than for the first-order variogram, with the

empirical coverage noticeably lower than the nominal level only when ν is about 2.

Keywords: fixed domain asymptotics, Gaussian processes, spatial bootstrap, variogram



1 Introduction

Spatial bootstrap has been studied by a number of researchers. Davison and Hinkley (1997) give a brief

overview of methods for spatial bootstrap. Hall (1985) appears to have been the first to use some kind of

a block resampling procedure to bootstrap spatial data. Künsch (1989) introduced the block-resampling

bootstrap to resample one-dimensional processes for finding the sample mean of weakly stationary ob-

servations. With N observations in a line, he suggested forming N − n + 1 blocks, each consisting of n

consecutive observations, and sampling from these blocks with replacement. Lahiri (1992) considered the

second order properties of the moving block bootstrap procedure of Künsch (1989) and showed that it

was second-order correct under appropriate conditions. Liu and Singh (1992) independently proposed a

similar method in a paper on bootstrapping m-dependent data, showing consistency of estimates under

m-dependence if the size of the blocks b → ∞ as the sample size N → ∞, with b/N → 0. Politis and

Romano (1992a) developed the method further and suggested wrapping the data, which we call toroidal

wrapping, before performing block resampling. Shi and Shao (1988) and others also proposed various

versions of spatial bootstrap. Politis and Romano (1994) studied subsampling, which involves calculating

estimates using regions that are smaller than the observation window and then rescaling the estimates. In

his presentation of the block bootstrap, Künsch (1989) provided a way to extend the method to a block of

blocks bootstrap method. See also Politis and Romano (1992b) and Bühlmann and Künsch (1995). Loh

and Stein (2004) introduced a very similar method, called the marked point bootstrap, for resampling

point processes where marks are computed and assigned to observed points before performing bootstrap.

The marks record the contributions made by neighboring points to the estimate of interest. By using the

marks in the calculation of bootstrap estimates, the method aims to retain some of the structure inherent

in the observations, which may be partially destroyed by the regular block resampling methods.

Theoretical results that have been obtained are dependent on the underlying process exhibiting only

short range dependence. Lahiri (1993) showed that with longer range dependence present, the block

resampling method begins to fail, since putting independent blocks together to generate the bootstrapped

estimate destroys the long-range dependence present in the original observations. Furthermore, these
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results consider increasing domain asymptotics, where the observation region or domain increases as the

number of observations increases.

In this work, we focus on fixed domain asymptotics and derive consistency results for the block-of-blocks

boostrap in two specific cases. This bootstrap method was introduced by Künsch (1989) and is briefly

described in Section 2. It is well known that estimates for dependent data need not be consistent when the

domain is fixed (Stein (1999)). We cannot expect resampling methods to work well for estimates that are

not consistent. Thus our results are necessarily restricted to certain models and estimated quantities. We

consider only Gaussian processes, and for simplicity restrict theoretical results to one dimension.

In Section 3, we work with the variogram γ defined by

γ(t) = Var[Z(si + t) − Z(si)]

for distance t ≥ 0, where Z(s) represents a Gaussian process observed at point s. In particular we consider

t = hL/N where h is a fixed positive integer, L the length of the observation region and N the number of

observations. We show a consistency result for resampling the variogram γ of a process that has variogram

γ(t) = θt+S(t), where |S(t)| ≤ Dt2, and has a bounded second derivative on (0, L]. For a smoother process,

higher order differences can remove the long range dependence inherent in the process (Kent and Wood

(1997); Istas and Lang (1997)). In Section 4, we consider a model with variogram γ(t) = βt2 + θt3 +R(t),

where |R(t)| ≤ Dt4 and has a bounded fourth derivative on (0, L]. This variogram is proportional to t2

near the origin and the process is exactly once mean square differentiable. We show a consistency result

for the block-of-blocks bootstrap when we consider the second-order variogram, defined as

φ(t) = Var[Z(si + t) − 2Z(si) + Z(si − t)]. (1)

General asymptotic results for bootstrap of dependent data require the observation domain to increase

as the number of observations increase, together with some mixing condition for the process. This ensures

that the resampling scheme produces replicates that are asymptotically independent, identically distributed.

For the case of increasing observations in a fixed observation domain, there is no general analogue to mixing

conditions. Furthermore, it is well known (e.g. Stein (1999)) that quantities associated with the process
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often cannot be consistently estimated. Since randomly selected blocks remain close to each other if the

domain has fixed size, it cannot be expected that a general asymptotic result can be proven in the fixed

domain setting.

However, there are some quantities related to the random process that can be consistently estimated.

For example, Ying (1991) showed that for the process with variogram γ(t) = a[1− exp(−θt)], the quantity

aθ can be consistently estimated. A quantity that can be recovered with probability one from observations

in a bounded region is called microergodic (Matheron (1971, 1989); Stein (1999)). For microergodic

quantities, it may be possible that bootstrap estimates of standard errors are consistent under the fixed

domain setting.

We are not aware of any previous results demonstrating the validity of bootstrapping under fixed domain

asymptotics. The results here exploit the fact that first-order and non-overlapping second-order differences

of the respective processes we consider are nearly independent. Whether some version of the bootstrap

will work for more general microergodic quantities is unknown.

To investigate how well these various bootstrap procedures work in practice and to investigate their

potential validity for processes in two dimensions, we simulated Gaussian processes on the unit interval

and the unit square and examined the empirical coverage of nominal 95% confidence intervals for the first-

and second-order variograms. We used the Matérn model with covariance function given by

C(t) =
σ

2ν−1Γ(ν)

(

2ν1/2t

ρ

)ν

Kν

(

2ν1/2t

ρ

)

, (2)

where Γ is the Gamma function and Kν is a modified Bessel function. The parameter ρ is related to the

range of the correlation in the process while ν is a smoothness parameter, so that the process is exactly

m times mean square differentiable is m < ν < m + 1. We considered values of ν = 0.25, 0.5, . . . , 2.0 and

ρ = 0.01 and 0.15.

We found that, for the first-order variogram, the empirical coverage of confidence intervals approaches

the nominal level as the number of observations increases for models with small ν. We see a gradual drop

in empirical coverage as ν is increased, with the coverage becoming substantially lower than the nominal

level when ν ≥ 1. With the second-order variogram, we find that the empirical coverage of confidence
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intervals approaches the nominal level with increasing number of observations for larger values of ν, with

the empirical coverage becoming noticeably lower than the nominal level only when ν is about 2. Section

5 gives details of our simulation procedure and findings.

2 The Block-of-Blocks Bootstrap Method

As an extension to the block bootstrap method for resampling one-dimensional processes, Künsch (1989)

introduced the block-of-blocks bootstrap in order to reduce the effect of joining independent blocks. We

describe the procedure below, using a slightly different formulation from that in Künsch (1989).

Suppose Z is a random field with N observed values Z(si) at points si, i = 1, . . . , N on a regular lattice

of length L. Suppose further that a quantity of interest θ can be estimated via a statistic that can be

expressed in the form

θ̂ =
∑

i

Yi(Z).

The quantity Yi(Z) can include observations of Z other than at si, but generally only observations that

are near to si. Thus each point si has a quantity Yi(Z) associated with it that is a function of values of

the process Z near si.

The bootstrap procedure consists of first assigning marks Yi(Z) to each point si. The points are then

resampled, for example, by deciding in advance the length and number of sampling intervals to use, then

picking randomly starting positions for these intervals. The observation points covered by these randomly

placed intervals form the bootstrap sample. Often the total length of the sampling intervals is chosen to

be equal to the actual length of the observation region, although this does not necessarily have to be the

case. With the resampled points s∗1, . . . , s
∗
N , the bootstrap estimate of θ is given by

θ̂∗ =
∑

i

Y ∗
i (Z). (3)

Note that Y ∗
i (Z) is the mark computed from the original observations of Z. This is not equal to Y ∗

i (Z∗),

which would be what is used if the resampled points s
∗
i were put back on to a lattice and a new estimate

computed directly from the new sample.
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3 Resampling the variogram in a fixed domain

Here, we provide a consistency result for the block-of-blocks bootstrap when we resample for the variogram

of a process Z with variogram γ(t) = θt + S(t), where |S(t)| ≤ Dt2 and has a bounded second derivative

on (0, L]. Specifically, suppose Z is observed at N equally spaced points in the interval (0, L], h fixed. The

observation points are denoted by s1 = L/N, s2 = 2L/N, . . . , sN = L.

For fixed integer h > 0, we consider estimating the quantity γ(hL/N) = Var[Z(si+h)−Z(si)]. We will

write Z(si+h) as Zi+h for short. Note that as N increases, we are estimating the variogram at smaller and

smaller distances, specifically the distance between points that are h number of neighbors away.

An unbiased estimate of γ(hL/N) is given by

γ̂(hL/N) =
1

(N − h)

N−h
∑

i=1

(Zi+h − Zi)
2

=
1

N − h

N−h
∑

i=1

Yi (4)

where Yi = (Zi+h − Zi)
2. Each point si, i = 1, . . . , N − h is assigned the mark Yi. Set M = N − h.

We will consider breaking the interval (0, L−h] into B blocks, where M/B is an integer, and resampling

the points by sampling these B blocks with replacement. In block bootstrap terminology, we are using

fixed rather than moving blocks. It is conceptually straightforward to extend this to the moving block

case. Note that the use of blocks here is only to select the points that will be included in the new sample.

In computing the bootstrap estimate, the marks Yi computed from the real sample are used. In the usual

block bootstrap, the Z’s corresponding to the resampled points are used to compute new values of Yi to give

the bootstrap estimate. It is this new computation of the Yi’s that affects the dependence structure. Note

also that we will not resample points N − h + 1 to N , since these points have no marks. The observations

at these points are used in the estimate, however, since they are part of the marks assigned to other points.

For the k-th block, k = 1, . . . , B, let

γ̂k =
B

M

M/B
∑

i=1

Yk,i,

where Yk,i is the i-th value of Y in the k-th block. Thus γ̂k is the average of the Y values in the k-th block.
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If B blocks are drawn with replacement, the bootstrap estimate of γ(hL/N) is given by

γ̂∗ =
1

B

B
∑

j=1

γ̂∗
j =

1

M

B
∑

j=1

M/B
∑

i=1

Y ∗
j,i.

Here, γ̂∗
j denotes the average of the Y values of the j-th sampled block and Y ∗

j,i the actual Y values of

that block.

Let Uj, j = 1, . . . , B be independent with P (Uj = γ̂k) = 1/B, k = 1, . . . , B. Thus γ̂∗ =
∑

Uj/B and

E(Uj |Z) = γ̂. Define σ̂2
∗ as

σ̂2
∗ = Var(γ̂∗|Z) =

1

B2

B
∑

k=1

(γ̂k − γ̂)2

=
1

B4

B
∑

k=1



Bγ̂k −
B

∑

j=1

γ̂j





2

. (5)

We then have the following:

Theorem 1

With γ̂ and σ̂2
∗ defined in (4) and (5) respectively, γ̂ is unbiased,

Var(Nγ̂) =
2θ2L2h(2h2 + 1)

3N
+ O(N−2), (6)

and

N [E(N2σ̂2
∗) − Var(Nγ̂)] = O(B−1) + O(BN−1), (7)

Var(N2σ̂2
∗) = O(B−2N−1). (8)

Proof:

In what follows we will suppress the term hL/N and write γ̂ and γ to denote γ̂(hL/N) and γ(hL/N)

respectively. It is clear that the estimator γ̂ is unbiased. Furthermore,

Var(Mγ̂) =

M
∑

i=1

Var(Yi) + 2

M
∑

i<j

Cov(Yi, Yj)

= 2Mγ2 + 4
M
∑

i<j

Cov(Zi+h − Zi, Zj+h − Zj)
2, (9)
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using the fact that Zi+h − Zi ∼ N(0, γ) and the result that for (U, V ) bivariate normal, Cov(U2, V 2) =

2Cov(U, V )2. For i, j such that j − i = k ≥ 0,

Ck ≡ Cov(Zi+h − Zi, Zj+h − Zj)

= [γ((k + h)L/N) + γ(|h − k|L/N)− 2γ(kL/N)]/2

=















O(N−2) if k ≥ h

θL(h − k)/N + O(N−2) if k < h.

(10)

Putting the expressions for γ2 and Ck into (9) gives (6).

To find E(N2σ̂2
∗) we first define ∆k = Bγ̂k −

∑B
j=1 γ̂j . We note that E(∆k) = 0, so that

E(N2σ̂2
∗) =

N2

B4

B
∑

k=1

Var(∆k). (11)

From the expression

M

B
∆1 = (B − 1)(Y1 + · · · + YM/B) − (YM/B+1 + · · · + YM ), (12)

we have

Var

(

M

B
∆1

)

= M(B − 1)Var(Y1)

+ 4(B − 1)2
M/B−1

∑

l=1

(

M

B
− l

)

C2
l + 4

M−M/B−1
∑

l=1

(

M − M

B
− 1

)

C2
l

− 4(B − 1)





M/B
∑

l=1

lC2
l +

M−M/B
∑

l=M/B+1

M

B
C2

l +
M−1
∑

l=M−M/B+1

(M − l)C2
l



 (13)

where Cl is as defined in (10). In the right-hand side of (13), the second and third terms correspond to

cross-terms within the respective bracketed terms in (12) and the last term corresponds to cross-terms

between terms in the two brackets in (12). Rearranging the terms and noting that for l ≥ h, the sum of

the coefficients of C2
l is O(M2) while C2

l is O(N−4), we have

Var

(

M

B
∆1

)

= M(B − 1)Var(Y1) + 4

h−1
∑

l=1

{BM − M − (B2 − B + 1)l}C2
l + O(N−2),

= 2MBθ2L2h(2h2 + 1)/3N2 + O(B2N−2) + O(N−1).
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Expressions for M∆k/B, k = 2, . . . , B − 1, are the same as the above, differing only in the smaller order

terms. Putting these into (11) yields

E(N2σ̂2
∗) =

2θ2L2h(2h2 + 1)

3N
+ O(N−1B−1) + O(BN−2),

which in turn gives (7).

Next, we have,

Var(σ̂2
∗) =

1

B8

B
∑

k=1

Var(∆2
k) +

2

B8

B
∑

k,l:k<l

Cov(∆2
k, ∆2

l )

=
1

B8

B
∑

k=1

Var(∆2
k)

+
2

B8

[

B−1
∑

k=1

Cov(∆2
k, ∆2

k+1) +

B−2
∑

k=1

Cov(∆2
k, ∆2

k+2) + · · · + Cov(∆2
1, ∆

2
B)

]

. (14)

The quantities Var(∆2
k), Cov(∆2

k, ∆2
k+1) and Cov(∆2

k, ∆2
k+l) for l = 2, . . . , B − 1 have terms of the form

Cov(YiYj , YuYv). First consider the case where at least one of {u, v} is less than h away from {i, j}.

The covariance terms Cov(YiYj , YuYv) can be classified into four types, represented by Cov(YiYi′ , Yi′′Yi′′′),

Cov(YiYi′ , Yi′′Yj), Cov(YiYj , Yi′Yk) and Cov(YiYj , Yi′Yj′ ), where i′ denotes integers such that |i − i′| < h,

and similarly for i′′, i′′′. These are in turn bounded by Cov(Y 2
i , Y 2

i ), Cov(Y 2
i , YiYj), Cov(YiYj , YiYk) and

Cov(YiYj , YiYj) respectively, where each is O(N−4).

Using (12) and similar expressions for M∆k/B, we can find the sums of the coefficients of

each type for Var(M2∆2
k/B2), Cov(M2∆2

k/B2, M2∆2
k+1/B2) and Cov(M2∆2

k/B2, M2∆2
k+l/B2) for

l = 2, . . . , B − 1. For Var(M2∆2
k/B2), the sum of the coefficients corresponding to Cov(YiYi′ , Yi′′Yi′′′),

Cov(YiYi′ , Yi′′Yj), Cov(YiYj , Yi′Yk) and Cov(YiYj , Yi′Yj′) are respectively O(MB), O(M2B2), O(M3B)

and O(M2). Similarly, these coefficients are O(MB + B4), O(MB3 + M2B), O(M3 + M2B2)

and O(M2) for Cov(M2∆2
k/B2, M2∆2

k+1/B2) and O(MB), O(M2B), O(M3) and O(M2) for

Cov(M2∆2
k/B2, M2∆2

k+l/B2), l = 2, . . . , B−1. Thus the contribution of these terms to (14) is O(N−5B−2).

Repeating the same argument, we find that the contribution of terms Cov(YiYj , YuYv) where both {u, v}

are both at least h away from {i, j} add up to O(N−6B−2). Combining these findings gives (8).

Together with the asymptotic normality of γ̂ (Kent and Wood (1997)), we can further show asymptotic
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normality of (γ̂ − γ)/σ̂∗ as B increases with N , N increasing slightly faster than B:

γ̂ − γ

σ̂∗
=

γ̂ − γ
√

Var(γ̂)
×

(

Var(Nγ̂)

N2σ̂2
∗

)1/2

=
γ̂ − γ

√

Var(γ̂)
[1 + Op(N

1/2B−1) + O(BN−1)]1/2 (using Theorem 1)

=
γ̂ − γ

√

Var(γ̂)
+ Op(N

1/2B−1) + Op(BN−1),

where (γ̂−γ)/
√

Var(γ̂) is asymptotically standard normal (Kent and Wood (1997)). Specifically, (γ̂−γ)/σ̂∗

is asymptotically normal if we let B = Nα such that 0.5 < α < 1 and N → ∞.

3.1 Resampling in the presence of a trend

Theorem 1 still holds if the observed process has a trend, provided the trend is sufficiently smooth. Specif-

ically, suppose X(t) = µ(t) + Z(t), where Z is a zero mean process with variogram γ(t) = θt + S(t), S(t) ≤

Dt2, with a bounded second derivative on (0, L].

First, we note that Var(Xi+h −Xi) = γ(hL/N). Setting γ̂ =
∑N−h

i=1 (Xi+h −Xi)
2/(N −h), we find that

E(γ̂) = γ

(

hL

N

)

+
1

N − h

N−h
∑

i=1

(µi+h − µi)
2.

If, for example, the first derivative of µ is bounded, then the second term in the expression above is

O(N−2). Then γ̂ is asymptotically unbiased, and Var(Nγ̂) is as given in (6), with the additional terms in

µ being O(N−3). Furthermore, the steps in the proof leading to Equations (7) and (8) also carry through

unchanged.

4 Resampling the second-order variogram in a fixed domain

Kent and Wood (1997) showed that for processes with variogram given by

γ(t) = θtα + o(tα) as t → 0,

the fixed domain asymptotic behavior of estimates of α is different for α < 1.5 and α ≥ 1.5. This difference

in asymptotic behavior can be attributed to longer range dependence in processes with α ≥ 1.5. Kent and

9



Wood (1997) also showed that higher order differencing of the data can remove this long range dependence.

See also Istas and Lang (1997).

In this section, we show how the idea of differencing to remove dependence can apply to inference via

resampling with a specific model where α = 2. Specifically, we consider the model for a Gaussian process

Z in one dimension, with variogram given by

γ(t) = βt2 + θt3 + R(t) t ≥ 0, (15)

where |R(t)| ≤ Dt4 and γ(t) has a bounded fourth derivative.

We consider estimating the second-order variogram, which we will denote by φ and is defined in (1).

For this model, the second-order variogram φ(hL/N) = 6C(0) − 8C(hL/N) + 2C(2hL/N) has the form

N3φ = −8θh3L3 + 8N3R(hL/N) − 2N3R(2hL/N)

= −8θh3L3 + O(N−1), (16)

so that the first term of N3φ is independent of N . Note also that (16) does not contain β. An estimator

of φ is

φ̂

(

hL

N

)

=
1

M

M
∑

i=1

Yi, (17)

where Yi = [Zi+h−2Zi+Zi−h]2, i = h+1, . . . , N−h and M = N −2h. Using the block-of-blocks bootstrap

like in the previous section we get the following:

Theorem 2

The estimator φ̂ given in (17) is unbiased and

Var(N3φ̂) =
θ2L6

105N
P (h) + O(N−2), (18)

where P (h) = 29280h7 − 47040h6 + 42336h5 + 3360h4 − 17920h3 + 3360h2 + 1744h is a fixed polynomial

in h, so that N3φ̂ has N−1 convergence. Furthermore,

N [E(N6σ̂2
∗) − Var(N3φ̂)] = O(B−1) + O(BN−1), (19)

Var(N6σ̂2
∗) = O(B−2N−1). (20)
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Proof:

The estimate φ̂ is clearly unbiased. Furthermore,

Var(φ̂) =
1

M
Var(Y1) +

4

M2

M
∑

i<j

Cov(Zi+h − 2Zi + Zi−h, Zj+h − 2Zj + Zj−h)2

=
2

M
φ

(

hL

N

)2

+
4

M2

M
∑

i<j

C2
|i−j|, (21)

where

Ck = − 6γ

(

kL

N

)

+ 4γ

(

(k + h)L

N

)

− γ

(

(k + 2h)L

N

)

− γ

( |k − 2h|L
N

)

+ 4γ

( |k − h|L
N

)

. (22)

Using (15), we can evaluate (22) for the three cases k = |i − j| < h, h ≤ k < 2h and k ≥ h, giving

Ck =































−θL3(6k3 − 12k2h + 8h3)/N3 + O(N−4) for k < h

−θL3(−2k3 + 12k2h − 24kh2 + 16h3)/N3 + O(N−4) for h ≤ k < 2h

O(N−4) for k ≥ 2h

(23)

There are M − k pairs of Yi and Yj such that j − i = k, thus there are order M2 terms with k ≥ 2h.

The sum of the corresponding covariance terms within the double sum in (21) for k ≥ 2h is of order N−6,

whereas for k < 2h,

M
∑

i<j:|i−j|<2h

C2
|i−j| =

θ2L6

N6

[

h−1
∑

k=1

(6k3 − 12k2h + 8h3)2(M − k)

+

2h−1
∑

k=h

(−2k3 + 12k2h − 24kh2 + 16h3)2(M − k)

]

+ O(N−6).

Putting this together with (16) into (21) gives (18).

For the bootstrap calculations, many of the expressions for the bootstrap variance estimator follow from

the previous section. Here, we find that the terms involving Ck for k ≥ 2h sum up to a lower order than

the terms corresponding to k < 2h. Specifically, for (13), there are O(M2) number of terms involving C2
l

with l ≥ 2h, of order O(N−8). Thus we find that, for M/B ≥ 2h,

Var

(

M

B
∆1

)

= M(B − 1)Var(Y1) +
4θ2L6

N6

h−1
∑

l=1

[MB − M − (B2 − B + 1)l][(6l3 − 12l2h + 8h3)2 + O(N−1)]

+
4θ2L6

N6

2h−1
∑

l=h

[MB − M − (B2 − B + 1)l][(−2l3 + 12l2h − 24lh2 + 16h3)2 + O(N−1)] + O(N−6)

=
MBθ2L6

105N6
P (h) + O(N−5) + O(B2N−6),
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where P (h) is defined just after (18). Putting this into

E(N6σ̂2
∗) =

N6

B4

B
∑

k=1

Var(∆k)

and comparing with Var(N3φ̂) in (18) gives (19).

To obtain (20), we note that the same argument of the two paragraphs after (14) applies here as well.

The terms Cov(YiYj , YuYv) where at least one of {u, v} is at most 2h away from {i, j} are bounded by

one of Cov(Y 2
i , Y 2

i ), Cov(Y 2
i , YiYj), Cov(YiYj , YiYk) or Cov(YiYj , YiYj), which are O(N−12). The sums of

coefficients corresponding to these terms are of the same order as those in the previous section. This gives

(20), after noting that terms Cov(YiYj , YuYv) for u and v both 2h or more away from i and j are O(N−14)

and their total is o(B−2N−1).

As in Section 3.1, the bootstrap is consistent in the presence of a trend, if the trend is sufficiently

smooth. Specifically, if the second derivative of µ is bounded, φ̂ is asymptotically unbiased. Equations

(18), (19) and (20) of Theorem 2 remain unchanged.

Note that the second-order variogram φ contains θ but not β. Under fixed domain asymptotics, φ,

and thus θ can be consistently estimated and we showed above that the block-of-blocks bootstrap yielded

asymptotically correct inferences under fixed domain asymptotics.

On the other hand, β cannot be consistently estimated using observations in a fixed domain and we

do not expect any bootstrap method to yield asymptotically correct inferences for β under fixed domain

asymptotics. The results of our simulation study (Section 5 Figure 3) also show that as we consider

smoother processes, consistency is achieved only if we difference enough, e.g. by considering the second-

order variogram rather than the first-order variogram.

5 Simulation Study

We present here the results of a simulation study to bootstrap a Gaussian random field using the block-of-

blocks bootstrap. We performed simulations in one and two dimensions, using equally spaced observations

on the unit interval and the unit square. In our simulations we used the Matérn model with covariance

12
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Figure 1: For each point x in the two dimensional simulations, the distances at which the variograms are
estimated are the distances to the 10 nearest neighbors as shown here.

function given by (2), with ρ = 0.01 and 0.15 and ν = 0.25, 0.5, . . . , 2.0. The values ν = 0.5 and 1.5

correspond to models belonging to those considered in Sections 3 and 4 respectively.

Normally a simulation of a realization of a random field requires performing a Cholesky decomposition of

the covariance matrix and, for large data sets, is very computationally intensive. However, for observations

on a regular lattice, simulations can be done very quickly using the fast fourier transform. Wood and

Chan (1994) and Dietrich and Newsam (1997) provide slightly different methods to do this (see also Stein

(2002)). We used the method of Dietrich and Newsam (1997).

With a realization of the process, we computed the first and second-order variograms at distances

corresponding to the 10 nearest neighbors of the observations. In one dimension, h = 1, 2, . . . , 10, while in

two dimensions, h = 1,
√

2, 2,
√

5,
√

8, 3,
√

10,
√

13, 4,
√

18 (see Figure 1).

The bootstrap method described in Section 2 was then used to resample the observations to obtain

bootstrap estimates. For each realization, we obtained R = 999 bootstrap samples. With the 999 bootstrap

estimates, a nominal 95% confidence interval is then constructed using what Davison and Hinkley (1997)

call the basic bootstrap interval.

Specifically, for each realization of a process, we have, for the first order variogram, say, an estimate

γ̂ = γ̂(h/N) and R bootstrap estimates γ̂∗
k , k = 1, . . . , R. If γ̂(R+1)(1−α/2) and γ̂(R+1)α/2 are respectively

the (R + 1)(1 − α/2)th and (R + 1)(α/2)th ordered values of γ̂∗
k , k = 1, . . . , R, the 100(1 − α)% basic

bootstrap interval is given by

[2γ̂ − γ̂(R+1)(1−α/2), 2γ̂ − γ̂(R+1)α/2]. (24)

13



Figure 2: This figure shows how toroidal wrapping is implemented in two dimensions. The dots represent
the observation points. The smaller square is a resampling block that does not fully lie within the obser-
vation region. The dotted portion is wrapped around and samples the observations on the other side as
well.

The above interval is obtained by assuming that the sampling distribution of γ̂∗ − γ̂ is similar to that of

γ̂ − γ, so that the (1− α/2)th and (α/2)th quantiles of γ̂ − γ can be estimated by the (R + 1)(1 − α/2)th

and (R + 1)(α/2)th ordered values of γ̂∗ − γ̂. The bootstrap procedure is performed 500 times, giving 500

nominal 95% confidence intervals. The empirical coverage of the confidence intervals can then be examined.

We implemented a few modifications to the resampling scheme described in the earlier sections. First,

we used overlapping blocks instead of non-overlapping ones. In analogy to block boostrap, this means we

used moving blocks instead of fixed blocks. Thus, in the one-dimensional simulations, block 1 consists of

observations 1 through N/B, block 2 of observations 2 through N/B + 1 and so on, and a new sample is

obtained by sampling B of these blocks with replacement.

Also, to ensure that every point has equal probability of being selected, we implemented a toroidal

wrapping procedure and allow blocks to fall partly outside the observation region. Such blocks are wrapped

around so that they also sample points on the other side of the observation region. So, for example, in

one dimension, block N consists of observations N, 1, 2, . . . , N/B − 1. Figure 2 shows toroidal wrapping

implemented in two dimensions. Note that the marks are calculated from the original observations without

any toroidal wrapping. The toroidal wrapping is only applied to the resampling of the points. Any other

procedure for selecting points with equal probability can be used, if desired. For the simulations in one

dimension, we use N equal to 32, 64, 128, 256, 512, 1024 and 2048 and blocks of length 1/2, 1/4, 1/8 and

14



r r

Figure 3: Plots of empirical coverage of nominal 95% confidence intervals for the first-order variogram γ
(thin lines) and second-order variogram φ (thick lines), obtained by resampling using the block-of-blocks
bootstrap method for the Matérn models in one dimension, for ρ = 0.15, ν = 0.25, 0.5, . . . , 2. Different
numbers of observations N and block sizes 1/B were considered: N = 128, B = 4 (solid), N = 512, B = 8
(dashed) and N = 2048, B = 16 (dotted).
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ν = 1.5, ρ = 0.15, N = 32
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Figure 4: Plots of empirical coverage of nominal 95% confidence intervals for the second-order variogram
φ, obtained by resampling using the block-of-blocks bootstrap method for the Matérn model with ν =
1.5, ρ = 0.15 in one dimension. The numbers of observations N are 32 (left) and 2048 (right). For each
plot, the different lines correspond to different block size 1/B: B = 2 (solid), B = 4 (dashed), B = 8
(dotted) and B = 16 (dotted and dashed).

1/16. In two dimensions, we use N = 162, 322, . . . , 10242 and blocks of area 1/22, 1/42, 1/82 and 1/162.

5.1 Results

Figure 3 shows the results of our simulation study in one dimension, specifically, plots of the empirical

coverage of nominal 95% confidence intervals for the first-order and second-order variograms, for the Matérn

process with ρ = 0.15 and ν from 0.25 to 2.0. The results for ρ = 0.01 are very similar and are not shown.

We only show plots for representative values of N and B, specifically, N = 128 with B = 4, N = 512

with B = 8 and N = 2048 with B = 16. We did not include plots for N = 32 as the empirical coverages

attained for this N are uniformly poor, especially for large r.

When estimating the first-order variogram, we find that the empirical coverage of nominal 95% con-

fidence intervals approaches the nominal level as N and B get larger, with N/B increasing, for small ν,

specifically, ν = 0.25, 0.5 and 0.75. This holds for both ρ = 0.01 and 0.15. As we increase ν further, we

find a gradual degradation, with the empirical coverage becoming noticeably less than 95% for all N when

ν is about 1 and larger, especially so when ρ = 0.15. Furthermore, there is little or no improvement in

coverage probabilities when N increases from 512 to 2048.
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ν = 1.5, ρ = 0.15, N = 32 x 32
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Figure 5: Plots of empirical coverage of nominal 95% confidence intervals for the 2nd order variogram
φ, obtained by resampling using the block-of-blocks bootstrap method for the Matérn model with ν =
1.5, ρ = 0.15 in two dimensions. The numbers of observations N are 32 × 32 (left) and 512 × 512 (right).
For each plot, the different lines correspond to blocks with area 1/B2: B = 2 (solid), B = 4 (dashed),
B = 8 (dotted) and B = 16 (dotted and dashed).

From the results in the previous sections, we expect, for the ν = 1.5 model, that the empirical coverage

will be closer to the nominal level when we consider the second-order variogram for larger values of N .

We find from Figure 3 that this is indeed the case. Again, we see a gradual drop in empirical coverage

as ν is increased to 2. For ν = 2, we find that the empirical coverage of 95% confidence intervals for the

second-order variogram does not approach the 95% level as the number of observations is increased.

We also examine how the empirical coverage probabilities of nominal 95% confidence intervals vary

when B is varied, with N fixed. In general, we find that for a particular value of N , empirical coverage

improves as B increases. With small B, the bootstrap samples tend to be more alike, so that bootstrap

estimates do not have the appropriate variance. However, we find that the empirical coverage may drop if

B is increased too much. Figure 4 shows the empirical coverage of nominal 95% confidence intervals for

the second-order variogram for N = 32 (left) and N = 2048 (right) with the Matérn ν = 1.5, ρ = 0.15

model. The right plot shows the common situation of empirical coverage increasing as B increases. The

left plot shows an example of empirical coverage dropping when B gets too large.

This drop in empirical coverage when B is too large is slightly more pronounced in our simulations in

two dimensions. Figure 5 shows plots of the empirical coverage of nominal 95% confidence intervals for φ

of the Matérn ν = 1.5, ρ = 0.15 model, with N = 322 and 5122. Notice that empirical coverage drops when
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Figure 6: Plots of empirical coverage of nominal 95% confidence intervals for the 1st order variogram γ (thin
lines) and 2nd order variogram φ (thick lines), obtained by resampling using the block-of-blocks bootstrap
method in two dimensions for the Matérn model with ρ = 0.15 and ν = 0.25, 0.5, . . . , 2. Different numbers
of observations N and block areas 1/B2 were considered: N = 32×32, B = 2 (solid), N = 128×128, B = 4
(dashed), N = 512 × 512, B = 8 (dotted and dashed).
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the smallest block sizes were used.

Figure 6 shows plots of the empirical coverage of nominal 95% bootstrap confidence intervals of the

first- and second-order variograms in the two-dimensional case, with different combinations of the number

of observations N and block area 1/B2: N = 322 with B = 2, N = 1282 with B = 4 and N = 5122

with B = 8. In two dimensions, we see that we require larger sample sizes for the asymptotics to become

apparent. Note that the actual empirical coverages attained in the one- and two-dimensional simulations

are difficult to compare. For example, it is not clear whether N = 128 in the one-dimensional case should be

compared with N = 128 or N = 1282 in two dimensions. It is also not clear whether to make comparisons

using block width or number of blocks.

We do find the same qualitative behavior of the empirical coverage as in the one-dimensional case:

as N and B are increased, with N/B increasing, the empirical coverage increases toward the nominal

level, provided ν < 1 for the first-order variogram and ν < 2 for the second-order variogram. This once

again suggests that consistency is achieved only if we difference enough. The results in Chan and Wood

(2000) show different asymptotic behavior of increment-based estimators in one and two dimensions for a

related setting. However, it is difficult to say anything conclusive about differences between the one- and

two-dimensional cases from our simulation study.

6 Conclusion

In spatial statistics, asymptotics can be considered in the context of an increasing or fixed domain as the

number of observations increases. As far as we are aware, there has not been any asymptotic results for

the spatial bootstrap under the fixed-domain setting. In this work, we showed that the block-of-blocks

bootstrap gives asymptotically consistent results in the fixed domain case, when appropriate quantities

are considered. Specifically, we considered two Gaussian processes, one with variogram of the form γ(t) =

θt + S(t), |S(t)| ≤ Dt2 and the other of the form γ(t) = βt2 + θt3 + R(t), |R(t)| ≤ Dt4, and showed

that the block-of-blocks bootstrap gives consistent results for the variogram and second-order variogram

respectively. The results here are not specific to the block-of-blocks bootstrap and should apply to other
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similar resampling schemes.

In our simulations with Matérn processes, we find that as the smoothness parameter ν is increased,

the empirical coverage of nominal 95% confidence intervals for the variogram decreased. For ν about 1

and larger, the coverage of confidence intervals was noticeably lower than the nominal level even for large

N . For confidence intervals of the second-order variogram, however, the nominal level is attained as N is

increased, for larger values of ν, with the degradation becoming noticeable at a higher value of ν than for

the first-order variogram.

Following Matheron (1971), Stein (1999) defines the principal irregular term as the first term in the

expansion of the covariance function C(t) in t about 0 that is not an even power of t. For example, for the

processes considered in Section 3 and 4, the principal irregular terms are θt and θt3 respectively. For the

Matérn model, the principal irregular term has power given by 2ν. With the second-order variogram in

Section 4, we removed the βt2 term in the expansion of the covariance function by taking second differences

and were able to make consistent inferences for the principal irregular term under fixed-domain asymptotics.

Kent and Wood (1997) considered estimating α in γ(t) = θtα + o(tα). They showed that estimates for

α obtained from first differences of the process are n1/2-consistent only if α ∈ (0, 1.5), but when second

differences are used, n1/2-consistent estimates are obtained for α ∈ (0, 2). Our simulations suggest a similar

result for the bootstrap: the bootstrap can work reasonably well for a high enough order of the variogram

relative to the smoothness of the process.

Covariance functions with similar high frequency behavior of their spectral densities yield very similiar

predictions (Stein (1999)). The high frequency behavior is in turn related to the principal irregular term

in the expansion of the covariance function in t about 0. We showed here that the bootstrap estimate

is consistent for the standard error of the principal irregular term estimate, but not necessarily for the

empirical variogram.
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