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ESTIMATING DEFORMATIONS OF ISOTROPIC GAUSSIAN

RANDOM FIELDS ON THE PLANE1

By Ethan B. Anderes and Michael L. Stein

University of California, Berkeley and University of Chicago

This paper presents a new approach to the estimation of the
deformation of an isotropic Gaussian random field on R

2 based on
dense observations of a single realization of the deformed random
field. Under this framework we investigate the identification and es-
timation of deformations. We then present a complete methodologi-
cal package—from model assumptions to algorithmic recovery of the
deformation—for the class of nonstationary processes obtained by
deforming isotropic Gaussian random fields.

1. Introduction. Random fields obtained by deforming the coordinates
of an isotropic random field form a rich class of nonstationary processes. Such
random fields have the form Y (x) = Z(f−1(x)), where Z is a random field
on R

d and f is a deformation, or a smooth bijection of R
d. In one dimension,

for example, the deformation f is used in speech recognition to model local
compression or expansion of time in different utterances of a spoken word
(see [17]). Working with deformations in more than one dimension, however,
has been a challenge. One dimensional deformations behave locally as a
change of scale. In more than one dimension, however, deformations can
rotate as well as scale local coordinates. These added dynamics, in addition
to complicated requirements for invertibility, have restricted the pragmatic
use of deformations when modeling processes in more than one dimension.
In this paper we establish methodology for working with and estimating
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deformations in R
2 from a single realization of a deformed isotropic Gaussian

random field.
The use of deformations to model nonstationary processes was first in-

troduced to the spatial statistics literature by Sampson and Guttorp [18].
Their work, as well as that of subsequent authors (see, e.g., [7, 11, 16, 19])
deals mostly with data from sparse observation locations with independent
replicates of the random field. Two recent papers by Clerc and Mallat [4, 5]
consider a similar deformation model, but under a different observation sce-
nario: a densely observed single realization. They use families of localized
functions to estimate local properties of the deformation, and under the as-
sumption of reflective shape recovery, these local properties are related to
estimates of the shape of the reflective surface. Most of their results hold
in one dimension, however, and it is not clear that in two dimensions their
estimates work for arbitrarily smooth isotropic processes under general de-
formations.

Guyon and Perrin [10] tackle the problem of developing consistent esti-
mates of deformations in two dimensions. They succeed in proving results
within a class of deformations when observing random fields that are station-
ary but not isotropic. In this paper we examine the consequence of adding
the assumption of isotropy to the pre-deformed random fields. The isotropic
assumption complicates the estimation of the original orientation of the lo-
cal coordinates by introducing a rotational invariance to the random field.
In Section 3 we notice the local behavior of C1 diffeomorphisms can be ap-
proximated by a composition of rotations, linear coordinate stretchings and
translations. Estimating the initial local rotation—or the original orienta-
tion of the local coordinates—using only observations in a local neighbor-
hood becomes difficult. Our approach is to estimate two local parameters
of the deformation, a dilatation and scale, which are invariant under initial
local rotations. These parameters can be estimated from the local behavior
of the deformed process and are still sufficient to uniquely characterize the
deformation, up to global rigid motions.

The structure of this paper is as follows. In Section 2 we present our
modeling assumptions on the random fields to be deformed. We introduce a
flexible semi-parametric class of random fields under which we can perform
approximate likelihood estimation of the local parameters that character-
ize the deformation. In Section 3 we make explicit our assumptions on the
class of deformations and study in more detail the consequences of isotropy
when estimating deformations. Sections 4 and 5 present the main contribu-
tion of this paper. We outline our methodology and present an algorithm
which allows fast construction of the deformation. Finally, we discuss some
simulations and future work.
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2. Deformation model. Our deformation model for nonstationarity is
processes of the form Z ◦ f−1, where Z is a constant mean isotropic Gaus-
sian process on R

2 and f :R2 → R
2 is an orientation preserving C1 diffeo-

morphism. We also add the assumption f has bounded local distortion,
which implies our maps are quasiconformal (see Appendix 6 for the def-
inition of quasiconformal and C1 diffeomorphism). By bounded local dis-
tortion, we mean that the ratio of lim supx→x0

|f(x) − f(x0)|/|x − x0| to
lim infx→x0 |f(x)− f(x0)|/|x− x0| be uniformly bounded for all x0 ∈ R

2.
One of the advantages of this model is that estimates of f−1 can be used

to transform the coordinates of Z ◦ f−1, returning a nonstationary process
to isotropy for which one can use existing statistical techniques. This can be
done by mapping the observation locations xi to f−1(xi), which transforms
the graph of (xi,Z ◦ f−1(xi)) to the graph of the original isotropic process
Z at the locations f−1(xi).

We want the second order behavior of Z to be as general as possible while
still allowing approximate likelihood techniques for estimation. We do this
by introducing a regularization parameter α> 0 which restricts the behavior
of the autocovariance at the origin, and therefore controls the mean square
smoothness of the isotropic processes Z. To simplify notation, let pα denote
the nonnegative integer

pα =

{ ⌊α/2⌋, if α/2 /∈ Z,
α/2 − 1, if α/2 ∈ Z.

(1)

Let K be the autocovariance function for Z so thatK(|t−s|) = cov{Z(t),Z(s)}
for s, t ∈ R

2. We suppose there exists a constant c > 0 and an α > 0 so that
K(|t|) has 2pα continuous derivatives and

K(|t|)−
pα∑

k=0

K(2k)(0)

(2k)!
t2k ∼ cGα(t) as |t| → 0,(2)

where Gα is defined by

Gα(t) =

{
(−1)1+⌊α/2⌋|t|α, for α/2 /∈ Z,
(−1)1+α/2|t|α log |t|, for α/2 ∈ Z.

This class of autocovariances encompasses a broad range of processes in-
cluding the Matérn model (see [21]) and the so-called exponential family
exp(−c |t − s|γ) for γ ∈ (0,2). The parameter α controls the mean square
differentiability of Z so that Z is n times mean square differentiable if and
only if n< α/2.

One advantage of this class of processes is that we can perform restricted
maximum likelihood estimation under the distributional approximation of
Z by an intrinsic random function of order ⌊α/2⌋ with generalized co-
variance function cGα (see [21]). In particular, suppose Z is a process
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with autocovariance function K that satisfies (2) and suppose we observe
Z := (Z(x1), . . . ,Z(xn)). We can find a matrix L with n columns so that the
covariance structure of LZ is easily approximated by a positive definite ma-
trix that depends only on the function cGα. To find such a matrix L, we first
need some notation: for x = (x, y) ∈ R

2 and r = (r1, r2) ∈ N
2, let x

r denote
the monomial xr1yr2 . Now let L be a matrix for which each row (u1, . . . , un)
satisfies

∑n
i=1 uix

r

i = 0 for all r = (r1, r2) ∈ N such that r1 + r2 ≤ ⌊α/2⌋.
These rows can be easily computed by finding linearly independent vectors
orthogonal to the space spanned by {(xr

1, . . . ,x
r

n) : r1 + r2 ≤ ⌊α/2⌋}. Now let
(u1, . . . , un) and (v1, . . . , vn) be two rows of L and let k ≤ ⌊α/2⌋, then

n∑

i=1

n∑

j=1

uivj|xi − xj |2k = 0

so that

cov

{
n∑

i=1

uiZ(xi),
n∑

j=1

vjZ(xj)

}

(3)

= c
n∑

i,j=1

uivjGα(|xi − xj |) +
n∑

i,j=1

uivjR(|xi − xj|),

where R denotes the error term in the asymptotic approximation (2) so that
R(|t|) = o(Gα(|t|)) as |t| → 0. Let (uℓ

1, . . . , u
ℓ
n) denote the ℓth row of L. Since

the functions Gα are conditionally positive definite of order ⌊α/2⌋, the ma-
trix (c

∑n
i,j=1 u

p
i u

q
jGα(|xi − xj |))p,q is positive definite (see [21]). Therefore,

by ignoring the last term in (3), we can approximate the covariance structure
of LZ, under the semiparametric assumption (2) by the covariance matrix
(c

∑n
i,j=1 u

p
i u

q
jGα(|xi − xj |))p,q.

We point out a useful fact that will be used in the following methodology:
if one supposes the deformation f is smoother than the sample paths of the
process Z, then Z and Z ◦ f−1 share the same local mean squared smooth-
ness. This is to our advantage in that α is invariant under deformations of
the process, which should allow estimation of α directly from Z ◦ f−1 with-
out knowledge of f . For example, suppose the autocovariance of the process
Z has the form (2) with α< 2 and suppose h ∈ R

2 such that h 6= (0,0). We
show that there exists a constant 0< c1 <∞ such that

E{Z(x + ǫh)−Z(x)}2 ∼ c1 E{Z ◦ f−1(x + ǫh)−Z ◦ f−1(x)}2(4)

as ǫ→ 0. In other words, the processes Z and Z ◦ f−1 both have the same
power decay of the variogram at the origin (see [6]), which can be estimated
from one realization of Z ◦ f−1.

To see why (4) is true, first notice that

E{Z(x + ǫh)−Z(x)}2 = 2K(0) − 2K(|ǫh|) ∼ 2 c |h|αǫα(5)
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as ǫ→ 0 (for the rest of this section we write f1 ∼ f2 to denote that f1/f2 → 1
as ǫ→ 0 with x and h fixed). Similarly,

E{Z ◦ f−1(x + ǫh)−Z ◦ f−1(x)}2 ∼ 2 c |f−1(x + ǫh)− f−1(x)|α

by direct application of (2) since |f−1(x+ǫh)−f−1(x)| → 0 as ǫ→ 0. Now by
the differentiability assumption on f−1 we also have |f−1(x+ǫh)−f−1(x)| ∼
c2ǫ for some 0< c2 <∞. This gives

E{Z ◦ f−1(x + ǫh)−Z ◦ f−1(x)}2 ∼ 2 c cα2 ǫ
α,

which, in conjunction with (5), proves (4).
The following methodology requires that the process Z be smoother than

the deformation f . However, this assumption is made only to exclude difficul-
ties when estimating α. In addition, we anticipate only using this method in
practice for smooth deformations where the process Z is rarely very smooth.
Therefore, we consider this assumption a minor technicality to the methods
described below.

Remark 1. In what follows we will be using approximate likelihood
methods that will depend on the data only through sufficiently high order
increments of the processes. Therefore, all our methods can be extended to
intrinsic random functions (see [3]) such as fractional Brownian surfaces, for
example.

Remark 2. The dependence of K on the parameter c presents an iden-
tifiability problem if one assumes the constant c is unknown. This is because
c is confounded with changes of scale (which are included in our deformation
class). For example, if the autocovariance for Z satisfies (2) with c= 1, then
the autocovariance for the deformed processes Z(2x) satisfies (2) for c= 2α.
In what follows we choose to fix the constant c= 1 and assume it is known.
This allows us to estimate the correct scale of the deformation.

3. C1 diffeomorphisms with bounded distortion. Since the original
process, Z, is assumed to be isotropic, the most one can hope for is the
identification of the deformation up to rigid motions of the plane. We will
show in this section that this is indeed possible. We begin by studying the
local behavior of the map f in terms of local affine transformations—whose
existence is guaranteed by the assumption that f is a C1 diffeomorphism.
These local affine transformations can be decomposed using the singular
value decomposition, which makes explicit how to obtain the local coordi-
nates of the map by a composition of rotations and stretchings. Since the
isotropic assumption on the original random field complicates the identifi-
cation of the initial local rotation, we estimate the remaining parameters of
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the local coordinates. These remaining parameters are characterized by an
ellipse. The theory of quasiconformal maps, in part, studies maps through
these ellipses, and provides us with the theoretical foundation we need. A
brief overview of quasiconformal maps is included in Appendix 6.

Since f is a diffeomorphism, its local linear behavior is characterized by

f(x + h) = f(x) + Jf h + o(|h|), as |h| → 0,(6)

where Jf is the Jacobian of f and, writing f(x, y) = (u(x, y), v(x, y)), is
defined as

Jf :=

(
ux uy

vx vy

)
.(7)

Since f is orientation-preserving, detJf > 0, and since f is C1, it has con-
tinuous partial derivatives ux, uy, vx and vy . We can further decompose
the map f by using the singular value decomposition to represent the linear
map Jf as a sequence of rotations and stretchings. In particular, Jf = UΛV t,
where U , V are orthogonal matrices and Λ is a diagonal matrix with diag-
onal elements λ1 ≥ λ2 > 0 (see [9]). Since detJf > 0, we can take U,V to be
rotation matrices, which gives

Jf =

(
cos θ − sinθ
sinθ cos θ

)(
λ1 0
0 λ2

)(
cosψ − sinψ
sinψ cosψ

)
,(8)

where λ1 ≥ λ2 > 0. This decomposition describes the local behavior of f by
an initial rotation, a stretching and a final rotation. This sheds light on the
information Z ◦f−1 provides about the map f . Since Z is rotationally invari-
ant, the initial rotation by an angle of ψ will be difficult, if not impossible,
to estimate locally. However, our deformations map infinitesimal circles to
infinitesimal ellipses and these ellipses are invariant under the initial local
rotation of the map f , so there is some prospect of estimating them from
one sample path of the process Z ◦f−1. The inclinations of these ellipses are
given by θ and their eccentricities by λ1/λ2 ≥ 1.

These locally defined ellipses are particularly useful in the study of de-
formations. First, notice that the eccentricity provides a natural measure of
local distortion that equals our original notion of distortion as the ratio of
the upper and lower limits of |f(x) − f(x0)|/|x − x0| as x approaches x0

from different directions. This notion of distortion will become useful when
studying the smoothing problem for local ellipse estimation. Second, there
is existing literature that characterizes maps with a given ellipse field. For
example, the inclinations and eccentricities of these ellipses are sufficient to
recover f−1 up to postcomposition of conformal maps (see Appendix 6).

We parameterize these ellipses by a pair {(µ,φ) ∈ C×R
+ : |µ|< 1}, where

µ is referred to as the complex dilatation and φ as the scale. Set µ to be the
complex number

µ= −K − 1

K + 1
ei2θ,(9)
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where K denotes the eccentricity of the ellipse and θ denotes inclination.
The scale parameter is defined by φ=

√
λ1λ2. In the mathematical literature

µ is called the complex dilatation of the map f−1. The complex dilatation of
a map characterizes the infinitesimal ellipse that gets mapped to a infinites-
imal circle. The mapping theorem from quasiconformal theory tells us that
specifying (µ,φ) on a Jordan region Ω is sufficient to characterize the map
f−1 on Ω up to rigid motions of Ω (see Appendix 6).

4. Methodology. This section outlines our procedure for the estimation
of the deformation f−1 and the fractional index of the process α in the pres-
ence of a densely observed sample path of a deformed Gaussian process. The
estimation procedure will be done in three stages. First we estimate the frac-
tional index of the process, taking advantage of the invariance of the fractal
properties of the sample paths under sufficiently smooth deformations. Then,
using the estimated fractional index α̂, we use a local likelihood approach to
estimate the local complex dilatation and scale of the deformation, (µ,φ),
independently over each neighborhood. Finally, we smooth and interpolate
the estimates (µ̂, φ̂) across neighborhoods.

The two parameters (µ,φ) are enough to characterize the deformation
f−1 on the observation region up to a rotation and translation of the orig-
inal coordinates. Therefore, on estimating (µ,φ), one has estimated all the
parameters in the model. To make this more useful, however, we need to
recover f−1 from (µ,φ). Sections 4.3.2 and 5 detail how one can efficiently
reconstruct the deformation given (µ,φ).

For both the estimation of α and (µ,φ), we use likelihood methods. Since
we are supposing we have observed the process densely, any full likelihood
method will be computationally impractical. Therefore, we partition the ob-
servation locations into neighborhoods and assume independence of the pro-
cess across partitions. To be clear, we are not changing our model assump-
tions, just devising approximate likelihood techniques. Likelihood methods
present two advantages for an initial study of estimation. First, there are
no requirements on the configuration of observation locations. Second, the
estimates are easily constructible and our experience has been that they are
highly efficient.

It is advantageous to switch to complex notation where a point (x, y) is
represented by z = x+ iy and consider our deformations as mapping regions
of the complex plane. To set notation, we let z := (z1, . . . , zn)′ be the vector of
observation locations in C, and Y := (Y1, . . . , Yn)′ denote the corresponding
observations of the process Y := Z ◦ f−1. In what follows we dividing the
observations into local neighborhoods. We denote by Nn the partition of
indices {1, . . . , n} that corresponds to the local observation neighborhoods.
For an index set I = {i1, . . . , im} ∈ Nn, let zI denote the vector (zi1 , . . . , zim),
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and similarly, define YI . Last, for a function F (z,w), we let (F (zp, zq))I
denote the matrix with entries F (zp, zq) for p, q ∈ I .

The description of the methodology is described as it applies to the sim-
ulation pictured in Figure 1. It shows a simulation of a deformed process
Y := Z ◦f−1, where the isotropic autocovariance function for Z has the form
K(t) = 0.5151− |t|0.7 +O(|t|2) as t→ 0; see [2] for details. The observations
are on a grid of size 400× 400 in [0,1]2 and the deformation that transforms
the coordinates of Y to isotropy is

f−1(x+ iy) := (1.2 − y)e−iπ(1−x)/2 + i1.2.(10)

4.1. Estimating α. To estimate α, we first construct the neighborhood
structure, Nn, of the observation locations. For this step alone, one would
want the size of the neighborhoods to be as large as computationally feasible.
Then α̂ is obtained by maximizing an approximated log-likelihood under the
supposition of independence across neighborhoods and that the process is
isotropic with autocovariance satisfying (2).

To approximate the log-likelihood for the observations YI on a partic-
ular neighborhood I = {i1, . . . , im} ∈ Nn, we use the techniques discussed
in Section 2 and approximate the log-likelihood for a linear transformation
of the data LYI . We want to set the rows of L to be linearly independent
vectors orthogonal to the space spanned by {(zri1 , . . . , z

r

im) : r1 + r2 ≤ ⌊α/2⌋},
where (x+ iy)r denotes the real number xr1yr2 . Unfortunately this involves
knowing ⌊α/2⌋. However, if we suppose we know a predetermined upper

Fig. 1. Deformed process.
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bound on the magnitude of α, which we denote by αo, it will be suf-
ficient to find linearly independent vectors orthogonal to space spanned
by {(zri1 , . . . , z

r

im) : r1 + r2 ≤ ⌊αo/2⌋}. Now, using (3), the random vector

ỸI := LYI is multivariate Gaussian with covariance matrix

EỸIỸ
′
I = L(K(|zp − zq|))I L

′

= L(Gα(|zp − zq|))I L
′ + L(R(|zp − zq|))I L

′.

By ignoring the remainder term L(R(|zp − zq|))I L
′ and setting

ΣI,α := L(Gα(|zp −zq|))I L
′, we get the following approximate log likelihood

over neighborhood I :

ℓ(α|ỸI ,zI) = −1
2 log |ΣI,α| − 1

2Ỹ
′
IΣ−1

I,αỸI +C,(11)

where C is a constant additive term not depending on α. We suppose inde-
pendence across blocks so the log-likelihood for the full observation vector Y

is computed by summing the log-likelihoods (11) over neighborhoods I ∈N .
Now we estimate α by

α̂ := arg max
α≤αo

∑

I∈Nn

ℓ(α|ỸI ,zI).

For the simulation in Figure 1, the neighborhood structure, Nn, was con-
structed by dividing the 400 × 400 grid into 40 × 40 blocks of size 10 × 10.
The maximum approximate likelihood estimate is α̂= 0.696 (the true α is
0.7). We do not address the accuracy of the estimates of α in this paper.
However, in all our simulations we have seen very accurate estimation of α.

4.2. Estimating (µ,φ). In this section we suppose we have an estimate
α̂ so that by regarding this estimate as the truth, the only unknown param-
eter is the quasiconformal map f , or equivalently, f−1. As was discussed in
Section 3, we reparameterize f−1 by its complex dilatation and scale field
(µ,φ). Fixing α̂, we use approximate maximum likelihood estimation on

(µ,φ) locally on each neighborhood to get a spatial map (µ̂, φ̂).
Given a particular neighborhood I ∈Nn, we suppose the process behaves

like a geometric anisotropic process Z(Jf−1x) with smoothness parameter α̂.
As was discussed in Section 3, only three parameters of Jf−1 are estimable,
and they can be reparameterized as a complex dilatation and scale (µi, φi).
In complex notation the geometric anisotropic process can be written as
Z(Ai(z + µiz)), where |Ai|2 = φ2

i /(1 − |µi|2). Here i indexes the neighbor-
hoods Nn and (µi, φi) denotes these constants for each neighborhood. As in
Section 4.1 consider the vector ỸI := LYI , where the rows of L are linearly
independent vectors orthogonal to {(zri1 , . . . , z

r

im) : r1 + r2 ≤ ⌊α̂/2⌋}. Letting
θi denote (µi, φi), we then estimate θi by maximizing the log-likelihood
ℓ(θi|ỸI ,zI) = − log |ΣI,θi

|/2 − Ỹ
′
IΣ−1

I,θi
ỸI/2 + C, where C is a constant
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term not depending on θi. Similar to what was done in Section 4.1, the
covariance matrix ΣI,θi

is computed by ignoring the remainder term so that
ΣI,θi

= L(Gα̂,θi
(zp − zq))IL

′, where Gα̂,θi
(z) := Gα̂(|Ai|(z − µiz)). Notice

that the parameter range for µ is the complex unit disk {µ ∈ C : |µ| < 1}
and φ > 0.

For the simulation in Figure 1, we again use the neighborhood structure
of 40 × 40 blocks of size 10 × 10 to estimate (µ,φ). The left-hand plot in
Figure 2 graphs the local estimates µi as vectors.

4.3. Smoothing and interpolating (µ̂, φ̂). The parameters (µ̂, φ̂) are lo-
cally estimated values of the functions µ and φ. Since the local likelihood
estimation was done independently on each neighborhood, there was no
smoothness constraint incorporated into the estimation of µ and φ. To in-
corporate smoothness conditions in these estimates, we choose to smooth
(µ̂, φ̂) after local likelihood estimation has been completed. As we will see,

smoothing µ̂ and φ̂ should, and will, be done in completely different ways.

4.3.1. The complex dilatation field µ̂. The most näıve approach to smooth-
ing the dilatation field µ̂ would be local averaging. However, it is worthwhile
to investigate the smoothing problem under more generality. In particular,
the dilatation field is a parameterization of the ellipse, which is the pre-image
of a local infinitesimal circle under the deformation f−1. Just averaging the
elements of a particular parameterization, however, does not provide a con-
sistent notion of smoothing under reparameterization. In the following we
develop a metric on the complex dilatation parameterization, based on a
geometrical motivation, and use this metric to smooth µ̂.

Fig. 2. Left : The estimated complex dilatation µ̂. Right : The result of smoothing the
estimated dilatation µ̂.
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The locally defined ellipses represent infinitesimal linear deformations, the
magnitudes of which are naturally measured by their eccentricities, denoted
by K. To develop a metric on ellipses, consider two matrix representations A
and B of infinitesimal linear transformations. We claim that the magnitude
of the distortion of the composed linear map AB−1 is a natural measure of
distance between two ellipses. By (9), this is easily computed by

KAB−1 =
1 + |µAB−1 |
1− |µAB−1 | , |µAB−1 | =

∣∣∣∣
µA − µB

1− µAµB

∣∣∣∣.

Since KAB−1 is at least 1, we take logarithms to define the distance measure
d on the complex dilatations:

d(µA, µB) :=
1

2
logKAB−1 =

1

2
log

(
1 + |µAB−1 |
1− |µAB−1 |

)
.

It interesting to note that d is indeed a metric and it equals the hyperbolic
metric on the unit disk of C (see [12], e.g.). Much is known about this metric,
in particular, the geodesic connecting two points is easily expressible as the
arc on a circle that is orthogonal to the unit circle and joins the two points.
One way to extend these ideas to define the convex combination, µ∗, of n
complex dilatations with positive weights w1, . . . ,wn could be

µ∗ = arg min
|µ|<1

{w1 d
p(µ,µ1) + · · · +wn d

p(µ,µn)}(12)

for some power p > 0. Now by using weights that spatially vary, one can
smooth the estimated dilatation field µ̂. In addition, convex combinations
allow one to define bilinear or other interpolation approaches to produce
maps of µ̂ throughout the observation region Ω.

Unfortunately, we do not know of any closed form for (12), but a compu-
tational approximation to the minimum is attainable. The right-hand plot
of Figure 2 shows the result of the approximated minimization of (12) for
p= 2 with uniform weights on a sliding window of size 4× 4 in the interior,
and the rectangular region that overlaps the sliding 4 × 4 window near the
boundary.

4.3.2. The scale field φ̂. Given a quasiconformal map f : Ω → Ω′ with
complex dilatation µ, all other quasiconformal maps with dilatation µ are
obtained by postcomposing f with a conformal map on Ω′. Therefore, once
we smooth and interpolate µ̂, we need to use the scale information φ to
identify the deformation within the class of quasiconformal maps specified
by µ̂. Section 5 outlines an algorithm for constructing a representative qua-
siconformal map with prescribed dilatation. We use this map to transform
the observation coordinates, then use the scale information to postcompose
this map conformally to estimate the true deformation f−1. Figure 3 shows
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an example of two maps with the same dilatation but different scale fields.
The right-hand plot is the map f−1 given by equation (10) and the left-hand
plot is a representative map, constructed from our algorithm, with the same
dilatation µf−1 . The two maps can be equated by postcomposing one with
a conformal map.

Consider deforming the observation space Ω by a representative quasi-
conformal map f̌ : Ω → Ω′ with dilatation µ∗ (see Section 5), where µ∗ is
the dilatation obtained by smoothing µ̂. Remember that µ∗ is an estimate
of µf−1 so that f̌ is an estimate—before postcomposition with a conformal

map—of f−1. So by transforming the coordinates of the observed process
Z ◦f−1 by f̌ , the resulting process takes the form Z ◦g−1, where g = f̌ ◦f is
a conformal map with local scale φg = |g′| = φf (φf̌ ◦ f). Therefore, we want

to find a conformal h that transforms g to the identity, that is, h = g−1.
Once we find such an h, the composition h ◦ f̌ will estimate f−1 up to rigid
motions of C. In particular, we want |(h ◦ g)′| = |h′ ◦ g||g′| = 1, so that

|h′| =
1

φg ◦ g−1
=

1

φf (φf̌ ◦ f)
◦ g−1(13)

on Ω′. Notice that our estimate φ̂ is a pointwise estimate of φf−1 = 1/φf ◦f−1

at spatial locations z = (z1, . . . , zn). Therefore, we want conformal h that
satisfies

|h′(wj)| ≈
φ̂j

φf̌ ◦ f̌−1(wj)
,(14)

where (w1, . . . ,wn) := (f̌(z1), . . . , f̌(zn)) are points in Ω′. Section 5 shows
how one constructs f̌ and computes φf̌ ◦ f̌−1 efficiently.

Fig. 3. Two maps which have the same local dilatation but different local scale.
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Notice that h′ is analytic on Ω′ and nonzero by invertibility. Therefore,
logh′ is analytic on Ω′, with real part log |h′|. Since the real part of an an-

alytic function is harmonic, by (14), we have that log φ̂j − logφf̌ ◦ f̌−1(wj)
should approximate a sampled harmonic function at locations wj . By rescal-
ing, we suppose, without loss of generality, that Ω can be embedded into
the unit disk D of the complex plane. Now, any harmonic function on the
unit disk is harmonic when restricted to the region Ω ⊂ D. We then use the
Fourier series to represent the boundary values for harmonic functions on
D. Since the boundary values of a harmonic function uniquely determine its
values on the interior, this gives a series representation of harmonic func-
tions on Ω. Unfortunately there are harmonic functions on Ω that cannot
be extended harmonically to the whole disk D. One way to avoid this diffi-
culty is to conformally map Ω to the disk D instead of embedding it. This is
guaranteed to work, but is more computationally expensive. For this reason,
our examples used the embedding technique.

We consider the class of harmonic functions on the unit disk represented
by g(w) =

∑N
n=0Anw

n for complex coefficients An and some finite N . In po-
lar coordinates (r, θ), where w= reiθ, this becomes g(r, θ) =

∑N
n=0Anr

neinθ.
We use this decomposition for the harmonic function logh′ on Ω′. Since the
real part of logh′ is log |h′|, we want to find a sequence An such that

Re
N∑

n=0

Anr
n
j e

inθj ≈ log
φ̂j

φf̌ ◦ f̌−1(wj)

for j = 1, . . . , n, where wj = rje
iθj . Now by setting An = an +ibn, the problem

becomes finding an, bn so that

N∑

n=0

rn
j (an cosnθj − bn sinnθj) ≈ log

φ̂j

φf̌ ◦ f̌−1(wj)
.

The advantage of this representation is the linearity in the parameters an

and bn. Using ℓ2 minimization to estimate an + ibn, this corresponds to
solving the linear problem minc ‖Fc− l‖2

2, where

c := (a1, . . . , aN , b1, . . . , bN ),

l :=

(
log

φ̂j

φf̌ ◦ f̌−1(wj)

)

j
,

F := [(rn
j cosnθj)jn, (−rn

j sinnθj)jn].

The right-hand plot of Figure 4 shows the resulting smoothed φ̂ for the
simulation in Figure 1.

Once we have estimated the sequence An, we can then approximate h′ by
ĥ′(w) = exp{∑N

n=0Anw
n}, which is then used to construct ĥ. Finally, f−1
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Fig. 4. Left : The estimated scale field φ̂. Right : The result of smoothing the estimated
scale field φ̂.

Fig. 5. Left : Estimated deformation. Right : True deformation.

is estimated by f̂−1 := ĥ ◦ f̌ . Figure 5 plots f̂−1 (left) and the true defor-
mation f−1. Now, using our estimated deformation, we can transform the
coordinates of Y attempting to return the process to isotropy. The resulting
process is shown in Figure 6.

5. Generating a quasiconformal map from its complex dilatation. We
first need to introduce some notation and present a few facts, most of which
are explained in more detail in Appendix 6. The basic approach to our
algorithm is to find a vector field flow representation of a quasiconformal
map. By a vector field flow representation of a quasiconformal map f , we
mean a class of maps indexed by a time variable, {ft}t∈[0,1], where f0 is the
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identity, f1 = f , and the functions ft depend smoothly on t so that

ft+ε ◦ f−1
t (z) = z + ε (ut(z) + ivt(z)) + o(ε)(15)

for some class of functions ut, vt:C → R. By writing f = u+ iv, Appendix 6
shows that the complex dilatation of f can be expressed as the ratio ∂zf/∂zf ,
where ∂zf := 1

2(ux +vy)+ i
2(vx−uy) and ∂zf := 1

2 (ux−vy)+ i
2(vx +uy). The

final fact that we need for the presentation of the algorithm is an equation
relating the complex dilatation of the composition g ◦ f to the complex
dilatations µg and µf . Using the chain rule to compute ∂z(g◦f) and ∂z(g◦f),
we get

µg◦f :=
∂z(g ◦ f)

∂z(g ◦ f)
=
µf + (∂zf/∂zf)µg ◦ f
1 + (∂zf/∂zf)µg ◦ f

.

By rearranging terms,

µg ◦ f =
∂zf

∂zf

µg◦f − µf

1− µg◦fµf
.(16)

In what follows we derive a set of differential equations for the vector fields
{(ut, vt)}t∈[0,1] which will be numerically solved to reconstruct f . A contin-
uous extension of a construction in [1], page 99, demonstrates that one can,
indeed, embed a quasiconformal map f into a vector field flow by specifying
a class of dilatations {µt}t∈[0,1] with boundary conditions µ0 ≡ 0 and µ1 = µ
that depends smoothly on t. Let {ft}t∈[0,1] be a vector field flow such that

Fig. 6. Estimated original isotropic process.
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ft has dilatation µt with condition µ0 ≡ 0 and µ1 = µ. Let {(ut, vt)}t∈[0,1]

denote the vector field associated with the flow ft so that equation (15) is
satisfied. By setting g = ft+ε ◦ f−1

t and f = ft in the composition formula
(16), one can easily compute the dilatation of ft+ε ◦ f−1

t as
(
µt+ε − µt

1− µt+εµt

∂zft

∂zft

)
◦ f−1

t = ε

(
∂tµt

1− |µt|2
∂zft

∂zft

)
◦ f−1

t + o(ε).(17)

We can also compute the complex dilatation of z + ε(ut + ivt) + o(ε), by
taking derivatives to give

ε(∂xut − ∂yvt) + iε(∂yut + ∂xvt) + o(ε)

2 + ε(∂xut + ∂yvt) + iε(−∂yut + ∂xvt) + o(ε)
= ε∂z(ut + ivt) + o(ε).(18)

Then equating (17) with (18) and letting ε→ 0 gives

∂z(ut + ivt) =

(
∂tµt

1 − |µt|2
∂zft

∂zft

)
◦ f−1

t .

In particular, the vector field (ut, vt) satisfies

∂xut − ∂yvt = 2Re(σt),(19)

∂yut + ∂xvt = 2Im(σt),(20)

where

σt :=

(
∂tµt

1− |µt|2
∂zft

∂zft

)
◦ f−1

t .

Now, given {µt}t∈[0,1], if one can solve (19) and (20) for (ut, vt), then one
can construct a time varying vector field flow realization of the map f . The
usefulness of this representation is in its recursive nature. First notice that
the initial map f0 is the identity. Now supposing one has constructed ft

up to some fixed time t < 1, one can compute σt easily by deforming ∂tµt,
µt and ∂zft/∂zft along with ft. Then by solving (19) and (20), one can
approximate ft+ε by ft+ε = ft + ε(ut ◦ ft + ivt ◦ ft) + o(ε).

To uncouple equations (19) and (20), represent (ut, vt) by two functions
Φt and Ψt using ut = ∂yΦt + ∂xΨt and vt = ∂xΦt − ∂yΨt. Notice that Φt

is the potential function and Ψt is the stream function for the vector field
(vt, ut). Equations (19) and (20) then become the Poisson equations

∆Ψt = 2Re(σt),(21)

∆Φt = 2Im(σt).(22)

To get a unique solution for these equations, one must specify boundary
conditions on Φt and Ψt. These boundary conditions correspond to different
vector field embeddings under the dilatation constraint µt.
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The examples in the previous sections set µt := tµ for t ∈ [0,1] and the
boundary conditions Φt = Ψt = 0 on ∂Ωt, where Ωt = ft(Ω). In our imple-
mentation of this algorithm, at each time step t, we interpolated σt to a grid
enclosing Ωt, then used a fast Poisson equation solver for grid data with
Matlab.

6. Discussion. Our main motivation for developing this methodology is
to demonstrate that estimating deformations of arbitrarily smooth isotropic
random fields is not only theoretically possible, but can be accomplished
in practice. We make no claim to optimality of our methods, but we do
hope that this will serve as a test case in the pursuit of efficient and robust
methodology for these models in spatial statistics. The use of local likeli-
hood techniques gives quick and easy estimates of (µ,φ) that seem to work
quite well in simulation. Unfortunately they are not very amenable to theo-
retical study. We do think, however, that quasiconformal theory presents a
promising avenue for the theoretical study and quantification of variability
for estimates of deformations. In particular, we believe that quasiconformal
theory will be useful for constructing consistent estimates of C1 diffeomor-
phisms and can also be used for developing flexible parametric models of C1

diffeomorphisms.
We conclude this section with some simulations. First, we demonstrate

our methods on differentiable processes. Figure 7 shows the results of apply-
ing our methodology to a simulation of a deformed differentiable isotropic
process. The true deformation is generated by a vector field flow and the
original isotropic process has autocovariance function K of the form K(t) =
0.0231 − (0.4034)t2 + |t|3 + o(|t|3) as |t| → 0 and is simulated on a 400× 400
square grid on [0,1]2; see [2] for details. Notice that even though the process
is smooth and, thus, it is more difficult to see the deformation, there is suf-
ficient information embedded in higher order increments for very accurate
estimation of the deformation.

Another aspect of these models that warrants further study is the con-
struction of distances on deformations that would allow comparison of method-
ologies and a study of the variability of the deformation estimates. Since the
deformations are only estimable up to rigid motions of the plane, we want
these measures to be invariant under such postcomposition. Letting Ω de-
note the observation region in C, the following are two candidates that have
this invariance:

d2
1(f̂ , f) =

∫ ∫

Ω2
(|f̂(z) − f̂(w)| − |f(z)− f(w)|)2 dz dw,

d2
2(f̂ , f) =

∫

Ω
|µf̂ (z) − µf (z)|2 dz.
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Fig. 7. Deformation estimation for differentiable processes. Upper left : The deformed
process Z ◦ f−1. Upper right : The estimate of the original isotropic process Z using the

estimated deformation f̂−1. Bottom left : The true deformation f−1. Bottom right : The

estimated deformation f̂−1.

The first distance is based on how well the interpoint distances of f̂ match
f . The second distance is a function of the dilatations of f̂ and f , instead
of the pointwise values.

As a first step toward quantifying the variability of the deformation esti-
mates, we independently simulated the same deformed process as in Section
4 three times. We then added white noise to the last two simulations with
a standard deviation of 10% and 25% of the process standard deviation,
respectively. The simulations and the corresponding deformation estimates
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Table 1

Two different distance measures on deformations (columns). The rows
correspond to the simulations and estimates shown in Figure 8

d1(f̂−1, f−1) d2(f̂−1, f−1)

No noise 0.0563 0.0675
10% noise 0.0655 0.0842
25% noise 0.1257 0.1354

are shown in Figure 8. First notice that the estimated deformation in Figure
5 and the estimated deformation shown top right in Figure 8 are from the
same estimation procedure applied to two independent samples. This gives a
sense for the variability of the methodology applied to this deformed process.
Notice the large scale structure of the deformation looks to be qualitatively
stable. Also, notice that one could improve the deformation estimates from
the last two samples by modeling the white noise in the likelihood estimation
steps. We find it interesting that even without modeling the white noise the
estimates are reasonable.

For each estimate, we also computed its distance from the truth for each
of our proposed distance measures (the integrals being approximated by
Riemann sums). The results are displayed in Table 1. Notice that adding
white noise degrades the deformation estimates. This can be seen both qual-
itatively and from the distance measurements. We think, however, that the
noisy estimates are reasonable and show a certain robustness and stability.

APPENDIX:
QUASICONFORMAL MAPS AND COMPLEX DILATATIONS

The goal of this section is to give a short introduction to the theory of qua-
siconformal maps and to state, without proof, the Mapping theorem (Ahlfors
[1], Chapter 5) concerning the uniqueness of a map with a given dilatation.
A complete study of quasiconformal maps can be found in Ahlfors [1], Lehto
and Virtanen [15], Krushkal’ [13] or  Lawrynowicz [14]. The Mapping theo-
rem will show that the complex dilatation, µ of an orientation preserving
C1 diffeomorphism, f , with bounded distortion uniquely determines f up
to postcomposition with a conformal map. The Mapping theorem is more
general, however, and will not, for example, require the maps to be differen-
tiable everywhere as in the case of C1 diffeomorphisms. We first define C1

diffeomorphisms and take advantage of the extra smoothness assumptions
to redefine µ. We then derive some properties of the complex dilatation
and show how µ characterizes the infinitesimal ellipse that gets mapped to
an infinitesimal circle under f . Finally, we will relax the C1 diffeomorphic
assumptions to state the Mapping theorem.
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Fig. 8. Independent simulations of the deformed process from Section 4 with white noise
(left column) and the corresponding estimated deformation (right column).
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We will be considering maps f that are defined, not only on C, but also
on domains Ω ⊂ C. We choose to consider only well-behaved domains, which
will allow succinct exposition. In particular, by a region, we mean a subset
Ω ⊂ C that is either the whole plane C or is a simply connected open subset
of C whose boundary, ∂Ω, is a Jordan closed curve (also known as a Jordon
region, see [20], e.g.). Define a homeomorphism f from a region Ω to Ω′ to
be a continuous, one-to-one, onto map from Ω to Ω′ such that both f and
f−1 are continuous. All the maps we wish to consider are necessarily home-
omorphic; however, homeomorphisms are not smooth enough to allow us to
talk about directional derivatives and Jacobians, which provide the easiest
way to understand a complex dilatation. For this reason, we first restrict our
homeomorphisms to be sufficiently smooth so that derivatives are defined
everywhere and are continuous, that is, C1 diffeomorphic. A homeomor-
phism f(x) = (u(x), v(x)) is an orientation preserving C1 diffeomorphism if
u and v are continuously differentiable and for any x ∈ Ω,

f(x + h) = f(x) + Jfh + o(|h|) as |h| → 0,(23)

where Jf is the Jacobian of the map f and detJf > 0. Now since all the
derivatives exist, we can define ∂zf and ∂zf as in Section 5. Notice that
∂zf 6= 0 since detJf > 0 and detJf = uxvy − uyvx = |∂zf |2 − |∂zf |2. This
allows us to define the complex dilatation µ = µf := ∂zf/∂zf . We will see
that µ(z) agrees with the complex dilatation of the map defined in Section 3
as parameterizing the eccentricity and inclination of the infinitesimal ellipse
centered at z that gets mapped to an infinitesimal circle under f .

To see how µ characterizes the local behavior of the diffeomorphism f ,
we switch to complex notation, z = x+ iy, so we can write the behavior of
f as

f(z) = f(z0) + fx(z0)(x− x0) + fy(z0)(y − y0) + o(|z − z0|).
Rearranging terms, we get f(z) = f(z0)+∂zf(z0)(z−z0)+∂zf(z0)(z − z0)+
o(|z − z0|) and then factoring the nonzero term ∂zf , we can decompose the
local behavior of f into an initial stretch map, a final rotation and a uniform
stretching

f(z0 + h) = f(z0) + ∂zf(z0)(h+ µh) + o(|h|),(24)

where µ = ∂zf/∂zf is the complex dilatation. Now define the directional
derivative of f at an angle β ∈ [0,2π) by

∂βf(z) = lim
ǫ→0

f(z+ ǫeiβ)− f(z)

ǫeiβ
,

the limit existing by the differentiability of f . Notice that when µ is zero
at a point z0, (24) tells us that the directional derivative of f at z0 does
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not depend on direction, that is, that f is conformal at z0. In particular,
∂zf = 0 reduces to the Cauchy–Riemann equations. Now since ∂βf(z) =

e−iβ ∂
∂ǫf(z+ǫeiβ)|ǫ=0, we get ∂βf = e−iβ(fx cosβ+fy sinβ) = ∂zf+e−2iβ∂zf .

Therefore, the magnitudes of maximal and minimal stretching are attained
at maxβ |∂βf | = |∂zf | + |∂zf | and minβ |∂βf | = |∂zf | − |∂zf |, where the last
equality holds since detJf = |∂zf |2 − |∂zf |2 > 0 implies that |∂zf | > |∂zf |.
The singular value decomposition of Jf yields the representation (8) with
λ1 ≥ λ2 > 0, which equal the major and minor magnitudes of local stretching.
Therefore,

λ1

λ2
=

maxβ |∂βf |
minβ |∂βf |

=
1 + |µ|
1− |µ| .

To see how µ is related to the inclination of the ellipse, notice that ∂βf =
∂zf(1+µe−2iβ) so that maxβ |∂βf | is attained when 2β = arg(µ). Therefore,
the inclination of the ellipse that gets mapped to the circle is arg(−µ)/2,
which agrees with (9).

In Section 3 we defined a measure of distortion at a point z0, induced by
f , to be the ratio of lim supz→z0

|f(z)− f(z0)|/|z− z0| to lim infz→z0 |f(z)−
f(z0)|/|z − z0|. Since this ratio is equal to maxβ |∂βf |/minβ |∂βf |, our orig-
inal notion of bounded distortion at a point z0 is equivalent to |µ(z0)|< 1.
Therefore, the assumption that f has uniformly bounded distortion amounts
to the supposition that ‖µf‖∞ < 1.

It turns out that our smoothness assumptions on f are unnatural and
the presentation of the theory is best done in full generality. Instead of
forcing the derivatives ux, uy, vx and vy to exist everywhere, we only suppose
existence in the distributional sense and that they be locally integrable (see
[8]). Here is the full definition of a quasiconformal map taken from [8]:

Definition A.1. An orientation preserving homeomorphism f from a

region Ω to a region f(Ω) is quasiconformal if there exists k < 1 such that

f has locally integrable, distributional derivatives ∂zf and ∂zf on Ω, and

|∂zf | ≤ k|∂zf | almost everywhere.

In particular, any orientation preserving C1 diffeomorphism with uni-
formly bounded distortion is by definition considered a quasiconformal map.
Now we have the following existence and uniqueness theorem, taken from
[15], page 194.

Theorem A.1. Let Ω and Ω′ be conformally equivalent regions and µ a

measurable function in Ω with ‖µ(z)‖∞ < 1. Then there exists a quasicon-

formal mapping f : Ω → Ω′ whose complex dilatation coincides with µ almost

everywhere. This mapping is uniquely determined up to a conformal mapping

of Ω′ onto itself.
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A useful restatement of the above theorem is that all quasiconformal maps
on Ω can be represented by finding a map f , with dilatation µ, then post-
composing it with conformal maps.

We conclude by mentioning that for a general dilatation µ the associated
quasiconformal maps will always be a homeomorphism, but not generally a
C1 diffeomorphism. There are sufficient conditions on the complex dilata-
tion µ to guarantee C1 diffeomorphic solutions; see [15], Theorem 7.2, for
example.
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