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bstract

The purpose of this paper is to evaluate the hypothesis that a systems biology approach can be developed such that a set of transcription
actors, relevant to burn-induced inflammatory response can be identified and modulated to control the host response. We explore a novel method

or identifying coherent and informative expression motifs and we subsequently determine conserved transcription factor binding sites for the
ub-sets of co-expressed genes. The responses are rationalized in the context of burn-induced inflammation and the putative transcription factors
re rationalized in the context of intervention targets for controlling gene expression.

2007 Published by Elsevier Ltd.
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. Introduction

Deep thermal injury over greater than 20 percent of the total
ody surface area is one of the most severe forms of trauma.
ollowing the early acute phase response dealing with the initial

njury and shock (Carter, Tompkins, Yarmush, Walker, & Burke,
988), there exists an equally serious secondary response which
nclude changes in metabolism leading to hypermetabolism and
atabolism, decreased function of the immune system, and sep-
is (Strock, Singh, Abdullah, Miller, & Herndon, 1990). Due to
mprovements in hospital care, more burn victims survive the
cute response to the injury, and are faced with the secondary
ffects of thermal injury, which have proven to be more dif-
cult to treat and control. In particular, prolonged sepsis and
ypermetabolism following severe injury can result in Multi-
le Organ Dysfunction Syndrome (MODS), currently the most

ommon cause of death in non-coronary intensive care units in
he U.S. (Cooper et al., 2006; Tredget & Yu, 1992). A better
nderstanding of the mechanisms by which the early responses
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o thermal injury predispose to the later hypermetabolic state
ould make it possible to define points of intervention by which

uch outcomes can be avoided.
The response to burn injury and trauma results from a com-

lex interplay between inflammation caused by the initial injury
nd hypermetabolism. The advent of DNA microarrays enables
o systematically examine expression changes of a very large
umber of genes, which provides an opportunity to identify
athways, which have not been previously known as important.
iven the importance to better understand the progression of the

esponse after injury, temporal expression profiling in which the
ynamics of mRNA expression are measured over time is more
seful than simply the measurement of gene expression pre burn
nd post burn.

Changes in energy expenditure, increased glucose and lipid
urnover are hallmarks of the hypermetabolic state (Wilmore,
ong, Mason, Skreen, & Pruitt, 1974). Given that the liver plays
key role in metabolic processes of energy production, gluco-
eogenesis and lipid synthesis and oxidation, it is likely that the

iver is one of the primary organs driving the systemic response to
evere thermal injury (Mager, Wykes, Roberts, Ball, & Pencharz,
006). Furthermore, a better understanding of the liver response
o thermal injury may provide mechanistic insights and suggest
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ew ways in which the hypermetabolism associated with severe
hermal injury could be mitigated or even prevented.

To use temporal expression data from microarrays to formu-
ate possible compensatory strategies the following steps must
e accomplished:

. Selection and classification of relevant genes.

. Functional characterization of extracted genes.

. Generation of hypothetical regulatory networks.

. Associating between functional characterization and regula-
tory networks.

e will propose an integrative method that combines temporal
ene expression profiling, sequence analysis, database mining
nd network construction in order to formulate the parameters
or a future experiment to better understand the response of an
rganism to severe burn injury. It is our goal to place the bioinfor-
atics approach into an iterative formalism where experimental

ata guides data analysis which in turn guides the course of
uture experiments.

. Methods

Prominent in engineering analysis is the concept of devel-
ping appropriate mathematical representations of the response
f the system in order to identify critical components and opti-
al strategies (Aris, 1999; Biegler, Grossmann, & Westerberg,

997). Biological systems, much like reaction engineering sys-
ems are characterized by input, output, control variables and
n underlying dynamic model that propagates disturbances due
o input variability across the system. These are manifested
n the response of the output variables. The goal of an engi-
eering analysis is to identify the control points that modulare
he response. An additional complexity of biological systems
s that, by and large, fundamental first principles models that
escribe these dynamic responses are not available. There-
ore, data-based methods are needed to develop appropriate
odels and dependencies. This is a well-accepted paradigm

n chemical engineering that has generated significant suc-
ess. In order to enable the development of such descriptive
odels a number of critical questions need to be answered.
pecifically:

. We need to identify the inherent dynamic of the system and
the informative output variables that best characterize that
response.

. We need to identify the controls that modulate the observed
responses, and finally.

. We need to determine the functional relationships that dictate
how inputs propagate across the systems and how outputs are
modulated by the controls.
n the sections that follow we identify these steps and demon-
trate how such models can be generated and analyzed to identify
nd propose intervention strategies that modulate the systemic
esponse.
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. Experimental data

In a previously published study, male Sprague–Dawley rats
ere subjected to a cutaneous third degree burn injury consist-

ng of a full skin thickness scald burn of the dorsum, calculated
o be ∼20 percent of the rat’s total body surface area (Vemula,
erthiaume, Jayaraman, & Yarmush, 2004). Liver samples were
btained at five time points (0, 1, 4, 8, and 24 hr post burn).
NA extracted from the extracted livers was isolated and subse-
uently hybridized to a U34A GeneChip that had 8799 probes
epresented on each chip. The control for this experiment was
btained at time 0, which was prior to the injury. It has been
reviously shown that time had no significant effect upon
he response of rats to the sham treatment (Lee, Berthiaume,
tephanopoulos, & Yarmush, 2003).

.1. Selection and classification of relevant genes

One of the strengths of microarrays is the fact that they are
ble to measure the levels of gene expression of thousands of
enes at once. Therefore, the researcher is able to measure the
xpression levels of genes whose role in a given biological phe-
omenon was previously unknown. However, this strength is
roblematic for researchers because it then becomes difficult
o determine which gene expression levels are important to the
rganism’s response to an external stimulus.

Most automated techniques such as dChip, MAS5, PMMM,
NOVA, t-tests, and RMA attempt to extract genes from
icroarrays based upon the notion that genes which show sta-

istically significant changes in gene expression levels ought to
e informative (Millenaar et al., 2006). The primary drawback
ith these methods is that they look for genes whose differen-

ial expression is statistically significant rather than evaluating
hether or not a given gene is relevant to the experiment at
and. The difference between a statistically significant gene and
gene, which is relevant to the experiment is a subtle but impor-

ant one. This difference arises due primarily to the dynamic
ature of homeostasis. Even in an unperturbed state there is sig-
ificant transcriptional activity taking place within the organism
egulating events such as feeding, resting, or physical activity.
herefore, even in a control state in which the organism has not
een experimentally perturbed, there ought to be gene expres-
ion profiles, which change at a statistically significant level.
owever, what researchers should be interested in is the identi-
cation of gene expression profiles that are directly responding

o the experimental perturbation and not just genes that show a
tatistically significant dynamic.

Adjunct to this concern is the fact that the currently estab-
ished filtering techniques are essentially answering the wrong
uestion. All of these techniques were derived in response to
wo state microarray experiments in which the primary ques-
ion was, “Does the gene expression of a given gene change
ignificantly between the two states.” However, with temporal

xpression microarray data the relevant question should be, “Is
he shape of the temporal expression profile accurate.”

SeLection of Informative Genes via Symbolic Hashing of
ime Series (SLINGSHOTS) was developed specifically to iso-
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ate genes that could be hypothesized to be important to the
nderlying response of an organism. The fundamental hypoth-
sis, which underlies SLINGSHOTS is that in response to an
xternal perturbation, there ought to be a coordinated set of genes
hose expression profiles are highly correlated. In addition to

his, this set of genes in aggregate ought to illustrate significant
eviations from the baseline distribution of expression levels.
y identifying these genes, one ought to be able to obtain the
enes whose expression profiles are representative of the under-
ying changes. The prime innovation of this technique is that the
election criteria uses a global metric to assess the “informa-
iveness” of the isolated genes by evaluating the set in aggregate
ather than the local metrics used by other selection techniques
hich checks the informativeness of each genes individually.
he details of the method were recently discussed in (Yang,
aguire, Yarmush, Berthiaume, & Androulakis, 2007).
SLINGSHOTS is broken down into two related steps, a hash-

ng step in which the genes are clustered into a large number
f highly correlated clusters, and a selection step in which a
et of these clusters is evaluated for their ability to represent
he experimental perturbation. The behavior of SLINGSHOTS
s defined by two primary parameters, α and w, of which α

s the size of the alphabet used and w is the number of time
oints to average together for longer time series. In this evalua-
ion, α was selected to be 4 and w was selected to be 1. Given
hat the clustering and selection are combined, the results of the
election are already clustered negating the need for a separate
lustering step.

The result of the hashing step is a large set of gene clusters of
hich all of the gene expressions show a correlation coefficient

o the average profile above a certain threshold. Unlike in QT
lustering where the threshold is set explicitly, SLINGSHOTS
ets this cutoff through a combination of w and alpha. In this
ase, the minimum correlation coefficient for any of the given
lusters is greater than .75.

The identification of clusters that comprise up of the hypo-
hetical primary response of the organism to thermal injury then
llows for further analysis in terms of the functional role of
he genes and the identification of the regulatory mechanisms
hich give rise to the observed expression profiles. The follow-

ng steps will allow for the identification of possible mechanism
ith which to mediate the undesired responses associated with

evere thermal injuries.

.2. Identification of functional ontologies

The purpose behind the identification of functional ontolo-
ies is the determination of the underlying biological processes
hat are related to the phenomenon being investigated. This
ssentially allows for the interpretation of the biological sig-
ificance of isolated genes. This will be conducted by isolating
he ontologies, which are related to the selected genes via the
atabase present at http://www.geneontology.org (Ashburner et

l., 2000). The primary assumption behind this analysis is that
o-expressed genes ought to have related functionality (Wolfe,
ohane, & Butte, 2005). Therefore, by looking at an aggregate

et of clustered genes, it is expected that there should prefer-
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nce of certain biological process ontologies to be localized to
specific cluster.

To determine which of the isolated processes are significant,
t is important to determine which of the associated ontologies
re enriched at a statistically significant level (p < .05). Due to
he fact that many genes can participate in different biological
rocesses especially those associated with cellular signaling, it
s important to determine which of these biological processes are
onsistent over all of the selected and clustered genes. This is
one utilizing the hypergeometric distribution. The hypergeo-
etric distribution however, is inaccurate if the total number

f counts is less than 5, a more accurate assessment of the
ount is given by the Fisher distribution (Ashburner et al., 2000;
raghici, Khatri, Martins, Ostermeier, & Krawetz, 2003). A sec-
ndary benefit of such analysis is that it allows for an ad hoc
valuation as to the correctness of selection and clustering. If the
enes that were isolated and classified do not show any notable
nrichment, then it would suggest that there was a flaw in the
ither the data or the methodology.

.3. Regulatory network construction

The dynamic response of biological organisms is governed
y a large interconnected network, which ties the response of
ach gene to intercellular conditions or the expression levels
f other genes. Part of the rationale behind conducting tempo-
al gene expression experiments is that the measured dynamics
an help in the construction of a transcriptional network, which
ives insights as to how an organism responds to external stimu-
us. We make the additional assumption that by grouping genes
nto co-expressed clusters, the network is simplified through the
ssumption that these co-expressed genes are regulated by the
ame mechanism. This prunes many of the connections thereby
implifying the overall network. This network can be further
implified by treating it as a bi-partite graph Fig. 1, in which a
et of inputs drives a set of output. It does not explicitly model
he existence of feedback loops. However, feedback loops can
e handled if an input gene is also present in the output. For
xample, if a transcription factor such as GATA6 were driving
he system, it could also be present in the output. Therefore,
espite the fact that a bi-partite graph is a simplification of the
verall network interactions, it is possible to retrieve the original
AG (Directed Acyclic Graph) from a bipartite network (Liu &
ai, 2000). The primary benefit of treating our gene regulatory
etwork as a bi-partite graph, is that there are robust methods
or estimating the connectivity strengths from gene expression
ata such as Network Component Analysis (NCA) (Boulesteix

Strimmer, 2005; Liao et al., 2003).
Various methods exist for the construction of transcriptional

etworks from gene expression data. These techniques fall
roadly under two primary categories of algorithms, those which
eek to identify relationships between the expression level of dif-
erent genes over multiple conditions (Dojer, Gambin, Mizera,
ilczynski, & Tiuryn, 2006; Kauffman, Peterson, Samuelsson,
Troein, 2003), and those which utilize outside information to

enerate regulatory network such as using the set of gene reg-
lators which have been previously identified, or analyzing the

http://www.geneontology.org/
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ig. 1. A bi-partite representation of a transcriptional network and its associate
epresented. The representation as a bi-partite network however allows for effic

romoter region to look for possible links between genes and
heir regulators (Manson McGuire & Church, 2000; Segal et
l., 2003; Tavazoie, Hughes, Campbell, Cho, & Church, 1999).
iven the form of our data which consists of a single condition

nd five time points, the construction of the network requires
xternal data in the form of predicted transcription factor binding
ites. Due to the relative dearth of data, it is imperative for us to
ocalize our analysis to a small portion of the regulatory network,
amely the genes and regulators that are directly responding
o the input perturbation, and hence make the gene selection
rocess discussed previously an integral part of the analysis.

The network associated with temporal gene expression data
s the gene regulatory network in which the primary links are the
ranscription factors whose activity mediates the production of
he genes. Transcription factors are proteins that bind to the pro-

oter region of a given gene and through that activity can either
p or down-regulate the gene expression of that gene. Given that
ranscription factors themselves are genes, they are also regu-
ated by other transcription factors and sometimes by a protein
roduct further down in the signaling cascade, which they ini-
iate (Ayte, Schweitzer, Zarzov, Nurse, & DeCaprio, 2001). In
east, many of the transcription factors have been experimen-
ally identified. However, in more complex mammalian systems
uch as rat, there is a limited number of experimental informa-
ion forcing the use of algorithms, which predict transcription
actor binding sites. These transcription factors binding site pre-
iction algorithms fall under two general categories, algorithms
uch as AlignACE (Manson McGuire & Church, 2000) which
ork by looking for over-expressed motifs (n-mers) within the
romoter region of a cluster of genes, and those like CONSITE
Sandelin, Wasserman, & Lenhard, 2004), which base their pre-
ictions off transcription factor position weight matrices which
re obtained experimentally through procedures such as SELEX
Klug & Church, 1994). The latter method was chosen for this
nalysis due to the relative difficulty in associating the over-
xpressed motifs to transcription factors whereas the second

ethod is based off of known transcription factors. The specific

ool used for the determination of possible transcription factor
inding sites was COmparative Regulatory Genomic (CORG)
Dieterich, Wang, Rateitschak, Luz, & Vingron, 2003), which

a
s
t
l

G. There is no loss in generality in terms of the possible networks that can be
uantification of the network through various algorithms such as NCA and PLS.

s an online tool that is able to extract the promoter sequence
rom homologous genes between two organisms and obtain the
ssociated transcription factor binding sites. The one piece of
nformation which we utilized was simply whether or not a pos-
ible connection existed between a transcription factor an its
ssociated binding site.

. Results

Out of the original 8799 probes, the algorithm has identified
81 probes corresponding to 208 known genes located in four
lusters (Appendix B) of which the z-score normalized expres-
ion profiles are given in Fig. 2. The transcriptional state of these
enes over the experimental time course is given in Fig. 3, and
hat is clearly evident is that these genes illustrate a two-wave

esponse to the initial burn injury. At hour 1, a large disjoint in
he transcriptional levels can be seen in where there is a large
mount of activity with all of the genes either significantly up-
egulated or down-regulated. At hours 4 and 8, the expression
rofiles are fairly close to the pre-injury profile, suggesting a
eturn to the initial homeostatic state. Then, at hour 24, an even
reater disjoint representing a major shift in the cellular tran-
criptional state is visible, which is associated with an abundant
ver-expression of the inflammation marker and acute phase
rotein Alpha 2 Macroglobulin (A2M). Elucidating the mecha-
ism that gives rise to this more delayed response would have
ignificant implications in the treatment of severe thermal injury.

In the transformation from gene expression profile to hash
alue by SLINGSHOTS (Yang, Berthiamume, Yarmush, &
ndroulakis, 2006), the z-score normalization was used. There-

ore scale information is discounted when forming the clusters.
ommonly used selection metrics such as n-fold changes or

-test require the preservation of scale information within the
ndividual expression profiles. Since this information is elim-
nated during the transformation, the selection of incorrect
enes was a concern. If for the most part, the selected genes

re part of co-regulated processes and the clusters that were
elected, there ought to be a distinct separation in the func-
ional ontologies between the different clusters. The ontology
ocalization is evident in Fig. 4. It is clearly evident that the
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Fig. 2. The expression profiles of the selected genes. Clusters 3 and 4 have an early phase response, while clusters 1 and 2 primarily have a late term response.

Fig. 3. The transcriptional state of the selected genes. At t = 1 and 24, we have evidence of a 2 wave effect in which significant transcriptional processes are being
altered. The response at t = 1 is evidence of the short term compensatory mechanism, while the response at t = 24 represents a potentially irreversible, state change
into the chronic inflammation and hypermetabolic state.
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Fig. 4. The enrichment of ontologies associated with the clustered and selected
genes. The diagonally dominant nature of the graph suggests that our clustering
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Table 1
Associated transcription factors

Cluster Associated transcription factors

1 STAT5, STAT6, TEF1
2 AP2 alpha
3 STAT5, STAT6
4 TEF1, STAT5, STAT6, CIZ, CDXA, GATA6, AP2 alpha
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as indeed separated out genes with related functionalities despite superficial
imilarities in their overall shape.

ntologies are indeed localized to the cluster, and despite the
act that clusters 2 and 3 seem to differ by only one time point
fter normalization, they do encapsulate two different sets of
unctions.

Taking the set of genes as a whole instead of as four clusters,
e find that the most significant biological processes revolve

round metabolism, inflammation, protein production, and sig-
aling which is in agreement with the macroscopic observations
f pathophysiology after severe thermal injury. The localiza-
ion of functional ontologies to each cluster suggests to us that
ur clustering is indeed correct and the selection of signifi-
ant ontologies related to metabolism, inflammation and protein
atabolism and synthesis suggests that the selection process
as likewise successful. However, while significant processes

nd their underlying dynamics have been identified, there still
emains an open question as to what the best way to mediate the
esponse of the system.

The most prevalent transcription factors amongst all of the
lusters are STAT5/STAT6 associated with the JAK-STAT path-
ay, and Translation Elongation Factor (TEF1). While there

re genes, which are part of the JAK-STAT pathway expressed
n cluster 4 such as erythropoietin, the JAK-STAT transcrip-
ion regulation pathway is not particularly informative due to its
idespread use in cellular signaling. In fact, looking at a random

election of genes, the JAK-STAT pathway is found to also be
ighly prevalent.

The only clusters with a consistent set of transcription factors
inding sites that were not STAT5, STAT6, and TEF1 amongst

he genes of that cluster (greater than 95 percent of identified
enes containing a transcription factor binding site) were clus-
ers 2 and 4. It was somewhat surprising that we were not able
o find a small set of transcription factors that regulated all

a

t
w

hose highlighted in orange are transcription factors that are highly conserved,
ut not found.

f the clusters. However, it was noticed that the clusters that
ontained a significant set of genes that coded for transcription
actors had a consistent set of activators, while the clusters of
enes that did not contain transcription factors (clusters 1 and
) were not regulated by transcription factors other than STAT5
nd STAT6. The associated transcription factors are given in
able 1.

The primary activators that we found were AP2 alpha, GAT
6, and CIZ. AP2 alpha was localized to cluster 2, while GATA
and CIZ were co-localized to cluster 4. While cluster 1 and

luster 3 did not have a set of consistent transcriptional regula-
ors, they did however, have a large fraction of genes that were
egulated by the Octamer Binding Family (OCT) of transcrip-
ion factors and genes that respond to myogenin (MYOD) both
f which are transcription factors that were present in clusters
and 4. This suggests that there are some elements of a sig-

aling cascade within the transcriptional regulatory network.
gross overview of the transcriptional network is given in

ig. 5.

. Discussion

From the results of the clustering, we find that the two wave
henomenon can be rationalized by the expression dynamics of
luster 1 and cluster 4, in which cluster 1 remains constant up
ntil hour 24 in which there is a large increase in the level of gene
xpression. Cluster 4 is indicative of the early response show-
ng significant up-regulation during this period, and a relaxation
fterwards with significant overshoot. Clusters 2 and 3 are sim-
lar in terms of their response except at hour 1 with cluster 1
emaining constant up until that time and cluster 3 being down
egulated at hour 1.

Characteristic of the genes that show activity early on such
s clusters 3 and 4, we find that there is a significant over-
epresentation of genes that code for transcription factors,
egulate metabolism, and protein production within these clus-
ers (Appendix B). We hypothesize that the initial thermal injury
auses the change in the expression levels of clusters 3 and 4,
hich affect the dynamics of clusters 1 and 2, either directly

hrough the production of transcription factors or indirectly by
ltering the levels of circulating metabolites through changes in
etabolism of macromolecules such as proteins, carbohydrates
nd fatty acids.
Coupled with the transcriptional driving forces found within

hese genes, are associated metabolic processes associated
ith catecholamines, which are important in the hyperme-
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Fig. 5. A gross schematic of the predicted response mechanisms. The notable thing is that MYOG which is up-regulated early is a regulator in a significant number
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f genes in clusters 1 and 2, and may drive the secondary response.

abolic response seen after thermal injury (Herndon, Hart, Wolf,
hinkes, & Wolfe, 2001; Wilmore et al., 1974). Although the
ypermetabolic response is known to occur 3 days or more after
njury, the presence of these metabolic genes in Appendix B
uggests that there is a significant metabolic component early
n in the response of the burn injury. It is currently unclear as
o whether these early changes in liver metabolism and corre-
ponding changes in levels of metabolites in the circulation play
role in the subsequent more systemic and chronic changes
n metabolism and the inflammatory response, events that lie
utside of the experimental time frame analyzed herein. There
s evidence that the sustained inflammation leads to inhibi-
ion of transporters leading to abnormal levels of circulating

t
a
p
l

etabolites such as lipids and glucose (Khovidhunkit, Moser,
higenaga, Grunfeld, & Feingold, 2003; Savage, Petersen, &
hulman, 2005), which may affect the other organs in the
rganism.

As part of the early response to thermal injury, a large por-
ion of the genes appears to be either metabolic in nature or
nvolved in transcriptional signaling. Cluster 4, which has an
mmediate response at hour 1, contains genes that are respon-
ible for the metabolism of fatty acids. This is paired with

he activity in cluster 2 in which a major component of its
ctivity is a corresponding down-regulation in fatty acid trans-
ort. It has been noted in previous work that gene expression
evels often do not correlate well with the levels of their cor-
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esponding metabolites in circulation (Vemula et al., 2004).
his opposing dynamics of the fatty acid transporters and the

atty acid enzymes suggests that the levels of fatty acids are
ontrolled by competing transport and metabolic processes.
oupled with the changes in metabolism are a series of transcrip-

ional changes. What we find is that within these early response
lusters, there are changes in expression of murinoglobulin 1,
nd complement component 5. These regulate key inflammatory
nd acute phase responses and work to dampen the long term
nflammatory response of the genes found in clusters 1 and 2
Arumugam et al., 2004; Northemann, Shiels, Braciak, & Fey,
989).

The longer term responses shown by clusters 1 and 2 seem
o revolve around a transcriptional signaling component and a
rotein catabolism component. Given the localization of protein
atabolism along with inflammation in cluster 1, we believe that
he increased protein turnover rate may be one of the primary
riving forces leading to the hypermetabolic state. So, while
here are undoubtedly changes in the energetics of an organ-
sm after thermal injury, we believe that long-term changes in
nergetics manifest themselves primarily in the levels of pro-
ein turnover rate. Given the severe fall in ATP levels (Vemula
t al., 2004) post burn, we believe the organism is making
p for a significant shortfall in available energy through the
atabolism of protein. This counter-productive process may
e one of the significant barriers to recovery from thermal
njury.

While there is a significant metabolic component to the burn
esponse, there is also a significant role played by transcriptional
ignaling pathways. The regulatory network which we were able
o infer from a combination of gene expression data and pro-

oter region analysis has suggested three possible initiators of
he burn response GATA 6, AP2 alpha, and CIZ. We believe
hat the identification of these initiatory transcription factors are
ot wholly unreasonable. These three transcription factors have
een cited in functions related to inflammation (Gille, Swerlick,

Caughman, 1997; Lin, Spoor, Gerth, Brody, & Peng, 2004;
orrungruang et al., 2002). Unlike other factors such as the ubiq-
itous JAK-STAT pathway, these transcription factors offer the
est hope of altering individual burn injury-induced responses
ndependently.

While clusters 2 and 4 have a possible set of regulators with
hich their responses can be perturbed, clusters 1 and 3 do not
ave a readily apparent set of regulators. It is possible that the
o-expression of the genes within clusters 1 and 3 is due pri-
arily to the co-expression of their regulators, meaning that the

enes in clusters 1 and 3 may be co-expressed not because they
ave precisely the same regulators, but because the activity of
heir individual regulators is similar. Looking at clusters 2 and
, we find a set of regulators, which may not bind to the same
ecognition sequence but may have very similar responses, of
hich the most notable ones are MYOG and the POU family
f transcription factors which are known to be important reg-

lators in liver. MYOG is present in more than 35 percent of
he genes found in clusters 1–3. This is notable given the rela-
ive long length of the MYOG recognition sequence, which is
9 base pairs long. Finding it in such a large number of pro-

p
e
c
r
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oter regions is highly statistically significant given the fact
hat the expected hit rate of MYOG is 1 out of 5.21 × 1012

ases. What is even more notable is that MYOG is found in
any of the genes, which are responsible for metabolism, includ-

ng catecholamine metabolism. The transcription factor family
OU seems to be more biased towards the genes, which code
or calcium and potassium ion channels. Given that the tran-
cription factor MYOG is highly significant in terms of the
umber of matches, and the fact that it appears to regulate
enes related to metabolism rather than the genes associated
ith inflammation, we hypothesize that by altering the activity
f MYOG, we may be able to affect the severity of the hyperme-
abolism while having a minimal impact upon the inflammatory
espose.

. Conclusions

The role of bioinformatics is not to look for answers indepen-
ently of experimentation, but rather to look for the basis of new
xperiments. By integrating the experimental gene expression
ata with genomic data and the results of SELEX experiments,
e were able construct a rough network, which gave hints as

o possible points of intervention. Seeking to prevent the induc-
ion of the system into hypermetabolism, we have identified
he myogenin transcription factor as perhaps one of the crit-
cal signals, which drives the system from its acute response
o burn injury to the longer term systemic hypermetabolic
tate.

Identifying a regulatory layer and the core nodes of that
ayer provides a mechanism to elucidate intervention points to
ttenuate the inflammatory process. Intervention utilizing these
F proteins could theoretically take one of three forms: (1)

nhibition of TF production using knockout or silencing tech-
iques; (2) blocking TF activity through competitive inhibition;
3) blocking TF activity through suicide inhibition. Promising
pproaches for silencing focus on the use of siRNA techniques
Lee & Church, 2003). In this approach double-stranded RNA
dsRNA) is digested by the dsRNA-specific RNase III enzyme
icer into small interfering RNAs (siRNAs). The siRNAs then
ssemble with a multiprotein nuclease complex, RNA-induced
ilencing complex (Wu, Kwon, Driscoll, & Faeth, 1991), which
nwinds the dsRNAs and degrades target mRNAs homologous
o the single stranded siRNA in a sequence-specific man-
er. The result of this process is the degradation of mRNA
eeded as a template for protein production, thereby inhibit-
ng the production process, and depleting pools of proteins
eeded for specific enzymatic reactions. One specific example
f siRNA utilized for intervention in inflammatory response is
he application of siRNA techniques to inhibition the produc-
ion of STAT-3 in order to elucidate key signaling molecules
n the inflammatory response pathway (Verga Falzacappa et
l., 2006). Therefore, a key advantage of the methodology dis-
ussed in this work is the systematic identification of several

utative regulatory proteins of the inflammatory response, thus
nabling the rational selection of multiple targets and design of
ombination therapies for the modulation of the inflammatory
esponse.
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ppendix A

. Normalization of the gene expression profile to N(0,1) via
the z-score transform.

. If the sequences are longer than 10 time points, piece-
wise averaging is conducted, that is averaging together
sets of n time points to reduce the exponential expan-
sion of the search space. In the case of our data, the 17
time points are interpolated to 18 time points, and the
time series are broken down into sets of 2 to be piecewise
averaged.

. These piecewise averaged points are then converted into
symbols through the use of Gaussian breakpoints. Gaussian
breakpoints are divisions in the Gaussian distribution such
that the cumulative probability of each section are equivalent.
These can be obtained through the use of CDF tables found
in statistics text books or by solving the following equation
for b:

i

k − 1
= 1

2

[
1 + erf

(
b√
2

)]
i = 1, . . ., k; k = number of breakpoints; b = breakpoint value.
The overall process of assigning a letter to each piecewise

averaged point is illustrated in below:
A
o

ene ID Gene

I030286 Brain derived neurotrophic factor
A859878 ret proto-oncogene
I234604 Heat shock protein 8
60416 Myosin 5B
I171243 Replication protein A3 (predicted)
50084 Ameloblastin
A874941 Adipose differentiation-related protein
A819776 Heat shock 90 kDa protein 1, alpha-like 3 (predicted)
23566 Alpha-2-macroglobulin
A900582 Alpha-2-macroglobulin
13983 Alpha-2-macroglobulin
22670 Alpha-2-macroglobulin
22670 Alpha-2-macroglobulin
83209 Parotid secretory protein
10233 Renin binding protein
12407 Dopamine beta hydroxylase
26043 Perilipin
24071 unc-13 homolog B (C. elegans)
64061 Eukaryotic translation initiation factor 5B
A892680 Peptidylprolyl isomerase (cyclophilin)-like 3
50696 Peptidase (prosome, macropain) 26S subunit, ATPase 1
50194 Tripeptidyl peptidase II
10699 Ubiquitin carboxy-terminal hydrolase L1
l Engineering 32 (2008) 356–369

. After the symbolic transformation, the series of symbols is
converted into a single integer via the formula:

hash(c, w, a) = 1 +
w∑

j=1

[ord(cj) − 1] × aj−1

where c is the letter assigned to each piecewise averaged
point, a is the size of the alphabet (3), and w is the total length
of the expression profile divided by the number of points per
piecewise average (2). The parameters of the alphabet were
selected to so that the population distribution of motifs is
non-exponential, to reflect the non-random distribution of
expression profiles present in the data. w was chosen to pre-
serve as much of the high frequency component of the signal
as possible.

ppendix B. Informative genes, class membership and
ntology annotation

Cluster Function

1 Apoptosis
1 Cell cycle regulation
1 Cell cycle regulation cytoskeleton
1 Organization
1 DNA repair
1 ECM organization
1 Fatty acid transport
1 Heat shock
1 Inflammation
1 Inflammation
1 Inflammation
1 Inflammation
1 Inflammation
1 l-Serine biosynthesis
1 Metabolism
1 Metabolism
1 Metabolism neurotransmitter
1 Secretion

1 Protein biosynthesis
1 Protein biosynthesis
1 Protein catabolism
1 Protein catabolism
1 Protein catabolism
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A

D a type 5 1 Protein catabolism
D a type 2 1 Protein catabolism
D ha type 1 1 Protein catabolism
A 1 Protein processing
X 1 Protein synthesis
A 1 Protein synthesis
M 1 Protein synthesis
A 2 1 Protein synthesis
A 1 Reproduction
A 1 Response to cold
X 1 Signaling
D 1 Signaling
M 1 Signaling
A 1 Signaling
U 1 Signaling
D 1 Signaling
Z 1 Signaling
A 1 Skeletal development
A 1 Transcription
A 1 Transcription
A 1 Transcription
A 1 Transcription
M pha 1D subunit 1 Transport
X 1 Transport
A 1 Transport
X 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
X 1 No identified ontologies
X 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A dicted) 1 No identified ontologies
A d) 1 No identified ontologies
H 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
M 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
H 1 No identified ontologies
H 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 1 No identified ontologies
A 4) 1 No identified ontologies
L 1 No identified ontologies
U 1 No identified ontologies
A 1 No identified ontologies
A 2 Apoptosis
A 2 Apoptosis
A 2 Cell Adhesion
A , non-ATPase, 1 2 Cell cycle regulation
X
A
A
A
A
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ppendix B (Continued )

45247 Proteasome (prosome, macropain) subunit, bet
21799 Proteasome (prosome, macropain) subunit, bet
90265 Proteasome (prosome, macropain) subunit, alp
F054270 Prolactin induced protein
93352 Ribosomal protein L10A
A891713 Ribosomal protein L13A
17419 Ribosomal protein L5
I170685 DnaJ (Hsp40) homolog, subfamily A, member
I103238 Regulatory subunit B (PR 52), beta isoform
B011068 Deiodinase, iodothyronine, type II
68400 Protein kinase C, eta
45412 Protein tyrosine phosphatase, receptor type, O
17526 Guanine nucleotide binding protein, alpha o
F064706 G protein-coupled receptor 6
66274 Neuropeptide Y receptor Y5
15069 Adrenomedullin
35654 mcf.2 transforming sequence-like
A859752 Noggin
F053101 Paired box gene 4
I639353 Pleiotropic regulator 1 homolog (Arabidopsis)
F062594 Nucleosome assembly protein 1-like 1
A866472 Nucleosome assembly protein 1-like 1
99221 Calcium channel, voltage-dependent, Ltype, al
78997 Cadherin 17
F019043 Dynamin 1-like
81448 Similar to cytokeratin
I104388 Aurora-A kinase interacting protein
A891829 WD40 protein Ciao1 (predicted)
99338 Stromal cell derived factor receptor 1
77815 Variable coding sequence A2
I072634 –
A859804 –
A892310 –
A800017 Similar to hypothetical protein BC011833 (pre
A893307 Nuclear cap binding protein subunit 2 (predicte
31648 Transcribed locus
A874849 –
A892369 –
A894054 CDNA clone IMAGE:7326015
A956941 –
A892818 Transcribed locus
13949 –
A800275 Transcribed locus
A799865 Transcribed locus
I639039 –
A875554 Transcribed locus
33467 Transcribed locus
31753 Transcribed locus
I230789 –
I639464 –
I639289 –
I639459 –
I639033 –
A800948 Similar to tubulin alpha-4 chain (alpha-tubulin
03386 Olf-1/EBF associated Zn finger protein Roaz
66707 Densin-180
F053987 Putative pheromone receptor V2R1
F079873 Zinc finger protein 162
I070295 –
A945608 Serum amyloid P-component
A859869 Proteasome (prosome, macropain) 26S subunit

67805 Synaptonemal complex protein 1 2 Cytokinesis
F017757 Axin2 2 Development
A893280 Adipose differentiation-related protein 2 Fatty acid transport
A858520 Follistatin 2 Gametogenesis
B014722 Squamous cell carcinoma antigen recognized by T-cells 1 2 Immune response
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A

J 2 Metabolism
A 2 Metabolism
M 2 Metabolism
S ma isoform 2 Metabolism
S isoform 2 Metabolism
J 2 Metabolism
U 2 Metabolism
A 2 Nucleosome assembly
U ma, 2 2 Protein biosynthesis
A unit 9 (eta) (predicted) 2 Protein biosynthesis
U 2 Protein catabolism
L 2 Protein catabolism
U 2 Signaling
M ta isoform 2 Signaling
X ta isoform 2 Signaling
X 2 Signaling
A on 4 2 Signaling
A 2 Transcription
A 2 Transcription
A 2 Transcription
A peptide 1 2 Transcription
A B 2 Transcription
X 2 Transcription
A 2 Transcription
M 2 Transcription
D 2 Transcription
S 2 Transcription
A 2 Transcription
X 2 Transcription
A ted channel 2 Transport
J 2 Transport
A low twitch 2 2 Transport
J 2 Transport
U 2 Transport
A 2 Transport
H 2 Transport

-like (predicted) 2
H 2 No identified ontologies
D 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A ted) 2 No identified ontologies
A member 21 (predicted) 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A olog (predicted) 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
A 2 No identified ontologies
S 2 No identified ontologies
A 2 No identified ontologies
D 3 Aldehyde catabolism
Z 3 Apoptosis
X 3 Cell cycle
X
A
S
M
A
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ppendix B (Continued )

05446 Glycogen synthase 2
A891286 Thioredoxin reductase 1
27440 Apolipoprotein B

78217 Protein phosphatase 1, catalytic subunit, gam
78218 Protein phosphatase 1, catalytic subunit, beta
02810 Glutathione S-transferase, mu 1
91847 Mitogen activated protein kinase 14
A859920 Nucleosome assembly protein 1-like 1
95052 Eukaryotic translation initiation factor 4 gam
A875205 Eukaryotic translation initiation factor 3, sub
13176 Ubiquitin-conjugating enzyme E2D 2
38615 Glutathione synthetase
48592 Interleukin 1 receptor accessory protein
23591 Protein phosphatase 2a, catalytic subunit, be
16044 Protein phosphatase 2a, catalytic subunit, be
89704 Olfactory receptor 1283
F055291 Signal transducer and activator of transcripti
F037199 RE1-silencing transcription factor
B017044 Forkhead box A3
B017044 forkhead box A3
I177751 Transcription elongation factor B (SIII), poly
I104524 Heterogeneous nuclear ribonucleoprotein A/
66022 Neuronal d4 domain family member
J001641 POU domain, class 3, transcription factor 3
18416 Early growth response 1
17711 Heterogeneous nuclear ribonucleoprotein K
59893 Sjogren syndrome antigen B
F044910 Survival of motor neuron 1, telomeric
62145 Ribosomal protein L8
F083341 Potassium large conductance calcium-activa

05510 Inositol 1,4,5-triphosphate receptor 1
A799276 ATPase, Ca2+ transporting, cardiac muscle, s

03969 Nucleophosmin 1
12402 ADP-ribosylation factor-like 1
A875099 Nuclear pore associated protein
31747 –

Actin related protein 2/3 complex, subunit 5
32977 Beta-1,3-glucuronyltransferase 1
88035 (Glucuronosyltransferase P)
F016702 Glycoprotein hormones, alpha subunit
F090692 Cystatin 8
FFX-TrpnX-M –
I178828 –
B013454 Similar to Ac2-210
A893603 Solute carrier family 35, member E1 (predic
A891842 Tumor necrosis factor receptor superfamily,
I639257 –
I639476 –
I639474 –
A892010 Similar to hypothetical protein CGI-128 hom
A893422 Transcribed locus
I071399 –
I639486 –
A893180 Transcribed locus
A900850 –
I639120 Similar to RIKEN cDNA 1700088E04
68589 Protein kinase N3 (predicted)
A891838 Similar to ribosomal protein P0-like protein
10854 Aldo–keto reductase family 1, member A1
75029 Heat shock 70 kDa protein 1A3A
53428 Glycogen synthase kinase 3 beta

59859 Decorin 3 ECM organization
F054618 Cortactin isoform B 3 Endocytosis
45392 Heat shock 90 kDa protein 1, beta 3 Heat shock
81225 Farnesyltransferase, CAAX box, alpha 3 Metabolism
A799466 Adenylate kinase 2 3 Metabolism
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A

D 3 Metabolism
J 3 Metabolism
J 3 Metabolism
U 3 Metabolism
A 3 Metabolism
A like 3 3 Methylation
M 3 Neuron differentiation
A 3 Nucleosome assembly
X 3 Protein biosynthesis
A 3 Protein biosynthesis
A 3 Protein biosynthesis
X 3 Protein biosynthesis
X 3 Protein biosynthesis
A 3 Protein biosythesis
D 3 Protein catabolism
X 3 Protein synthesis
A 3 Protein synthesis
X 3 Protein synthesis
A 3 Protein synthesis
X 3 Protein synthesis
X 3 Protein synthesis
X 3 Protein synthesis
M 3 Protein synthesis
A 3 Protein synthesis
A 3 Protein synthesis
A 3 Pyridoxine biosynthesis
A 3 RNA splicing
A 3 RNA splicing
U 3 Signaling
U ceptor 1 3 Signaling
U 3 Signaling
U 3 Signaling
A 3 Signaling
M 3 Signaling
X 3 Signaling hydroxysteroid dehydrogenase-1, delta〈5〉-3-beta
S ) 3 Biosynthesis
A 3 Stress
M 3 Transport
M ember 3 3 Transport
A 3 Wound healing
U 3 No identified ontologies
A 3 No identified ontologies
X 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
S 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
U 3 No identified ontologies
H 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
A 3 No identified ontologies
D 3 No identified ontologies
A 3 No identified ontologies
H
H
A
A
X

E. Yang et al. / Computers and Ch

ppendix B (Continued )

86215 NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 5
02752 Acyl-coenzyme A oxidase 1, palmitoyl
05470 Carnitine palmitoyltransferase 2
17901 Phospholipase A2, activating protein
A946040 Cytochrome c oxidase, subunit VIb (predicted)
F059530 Heterogeneous nuclear ribonucleoprotein methyltransferase-
37568 Homeo boxC8
A875069 H3 histone, family 3B
62166 Ribosomal protein L3
A875327 Eukaryotic translation initiation factor 4H
A859719 –
62146 Ribosomal protein L11 (predicted)
62146 Ribosomal protein L11 (predicted)
A892367 Ribosomal protein L3
10755 Proteasome (prosome, macropain) subunit, alpha type 6
51536 Ribosomal protein S3
A800054 Ribosomal protein L19
51536 Ribosomal protein S3
I178750 Eukaryotic translation elongation factor 2
58465 Ibosomal protein S5
53378 Ribosomal protein L13
78327 Ribosomal protein L13
89646 Ribosomal protein S24
I176546 Heat shock protein 1, alpha
A944397 Heat shock protein 1, alpha
A800211 Pyridoxine 5′-phosphate oxidase
F036335 NonO/p54nrb homolog
F036335 NonO/p54nrb homolog
87960 Protein tyrosine phosphatase, receptor type, F
10303 Endothelial differentiation sphingolipid G-protein-coupled re
14409 Melatonin receptor 1A
50949 Olfactory receptor 1641
B007688 Homer homolog 1 (Drosophila)
36317 Thyrotropin releasing hormone
01454 Thyroid stimulating hormone, beta subunit
63167 Hydroxysteroid dehydrogenase-1, delta 〈5〉-3-beta (predicted
I009098 Hypoxia up-regulated 1
96630 SEC61, alpha subunit (S. cerevisiae)
30312 Potassium voltage-gated channel, shaker-related subfamily, m
I230914 Farnesyltransferase, CAAX box, beta
82591 Chromosome 6 open reading frame 108
F051155 G protein beta subunit-like
52815 –
A891742 Similar to cDNA sequence BC019806 (predicted)
A892863 –
I104513 –
76758 –
I012942 –
F027188 Similar to RIKEN cDNA 4933424N09 (predicted)
I639409 –
I233591 –
A859835 Transcribed locus
F053097 –
F034753 Similar to hypothetical protein FLJ22490 (predicted)
47311 –
33253 Similar to tubulin-specific chaperone d
I113046 –
A900850 –
A875265 –
17349 Similar to cytochrome P450 2B15
I007820 Heat shock 90 kDa protein 1, beta

31907 Embryo-related protein 3 No identified ontologies
33725 Associated molecule with the SH3 domain of STAM 4 Apoptosis
A800206 Actinin alpha 2 (predicted) 4 Apoptosis
B010436 Cadherin 8 4 Cell adhesion
95990 Complement component 5, receptor 1 4 Chemotaxis
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A

M 4 Cytolysis
D 4 DNA metabolism
X 4 DNA replication
A 4 Embryo implantation
M 4 Inflammation
M 4 Inflammation
M tide 2 4 Metabolism
A 4 Metabolism
D 4 Metabolism
D 4 Metabolism
A 4 Metabolism Microtubule
M 4 Depolymerization
M 4 Nitrogen fixation
A 4 Protein catabolism
L 4 Protein production
X 4 Protein transport
A g-related), member 5 4 Signaling
U 4 Signaling
L 4 Signaling
L amma 8 subunit 4 Signaling
D 4 Stress
A 4 Tansport
M 4 Transciprtion
L 4 Transcirption
U 4 Transcription
A 4 Transcription
A in 2 4 Transcription
A 4 Transport
A 4 Transport
J 4 Transport
D 4 Transport
U 4 Transport
U member 3 4 Transport
A 4 Transport
X 4 Transport
A 4 No identified ontologies
D 4 No identified ontologies
A 4 No identified ontologies
X 4 No identified ontologies
A 4 No identified ontologies
U otein 21) 4 No identified ontologies
A 4 No identified ontologies
A cted) 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A cted) 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
H 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A 4 No identified ontologies
A
S
A
A
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ppendix B (Continued )

33605 Perforin 1 (pore forming protein)
90219 Natriuretic peptide precursor type C
84210 Nuclear factor I/A
A892798 Uterine sensitization-associated gene 1 protein
22360 Murinoglobulin 1 homolog (mouse)
22993 Murinoglobulin 1 homolog (mouse)
94548 Cytochrome P450, family 4, subfamily F, polypep
F008554 Implantation-associated protein
00688 Monoamine oxidase A
00729 Dodecenoyl-coenzyme A delta isomerase
F036761 Stearoyl-coenzyme A desaturase 2
83196 Microtubule-associated protein 1A
91652 Glutamine synthetase 1
F061726 Calpain 3
34262 Palmitoyl-protein thioesterase
13905 Similar to Ras-related protein Rab-1B
F073891 Potassium voltage-gated channel, subfamily H (ea
57500 Protein tyrosine Phosphatase, receptor type, A
19112 Fibroblast growth factor receptor 2
35921 Guanine nucleotide binding protein (G protein), g
10763 Erythropoietin
B015432 Tumor-associated protein 1
24393 Myogenin

13206 Forkhead box D4
01146 Nuclear receptor subfamily 4, group A, member 2
I145177 Early growth response 4
F059273 Glucocorticoid modulatory element binding prote
J006519 Amiloride-sensitive cation channel 2, neuronal
F104399 Cbp/p300-interacting transactivator

02844 carnitine O-octanoyltransferase
12573 Hippocalcin
02096 Fatty acid binding protein 7, brain
09211 solute carrier family 18 (vesicular acetylcholine),
I102031 Bridging integrator 1
63744 Solute carrier family 1
F090692 Cystatin 8
26492 Dynein, axonemal, heavy polypeptide 1
I639159 Solute carrier family 23
01115 Seminal vesicle secretion 5
A875001 Tripartite motif protein 8 (predicted)
77626 WW domain binding protein 4 (formin binding pr
I639076 –
A892394 CUG triplet repeat, RNA binding protein 1 (predi
I639179 –
I231445 –
A866264 –
I638972 –
A892228 CUG triplet repeat, RNA binding protein 1 (predi
A866293 Transcribed locus
A875089 –
I639500 –
I009658 –
31550 Transcribed locus
I137538 –
A859992 –
I639012 Similar to cDNA sequence BC019776
A800803 Similar to RIKEN cDNA6720485C15

I169372 RAS-like family 11 member A 4 No identified ontologies
65091 similar to protein phosphatase 1, regulatory (inhibitory) subunit 1C 4 No identified ontologies
A858621 CaM-kinase II inhibitor alpha 4 No identified ontologies
I171848 Apical early endosomal glycoprotein 4 No identified ontologies
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