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Abstract

Summary: The Total Ozone Mapping Spectrometer (TOMS) is a satellite-based instrument that

measures total column ozone on a daily basis over a fairly dense spatial grid with near global coverage.

Statistical models for the spatial-temporal variations in total column ozone provide insights into

ozone dynamics, are valuable for obtaining inferences on long-term trends in ozone levels, and can

be used to predict ozone levels at unobserved points in space-time. However, developing such a

model is complicated by the seasonally varying nature of the space-time dependence and the partial

confounding of spatial and temporal variation caused by the sun-synchronous orbit of the satellite.

This work considers methods for describing, modeling and estimating the seasonal patterns in the

dependence structure for measurements at a single latitude. Applying one of these models to the

synoptic prediction of total column ozone at a latitude shows that there is at least the potential

for substantially improved predictions by exploiting the high spatial density of observations TOMS

provides.

Key words: Nonstationary process, periodic correlation, spectral analysis, synoptic prediction,

TOMS



1 Introduction

Satellite-based observations of atmospheric quantities provide a number of challenges for statistical

modeling, especially when used at the full spatial and temporal resolution available. Among these

challenges include: capturing space-time dynamics, seasonal patterns in spatial-temporal dependence,

the spherical nature of the spatial domain, anomalies due to the measurement process (including miss-

ing observations), fundamental differences in dependencies at different latitudes and the overwhelming

size of the datasets. This work examines a number of these issues through modeling and analysis of

total column ozone levels from 1980–1993 as measured by TOMS, which provides daily values with

high spatial resolution over many years. The goal here is to aim towards a comprehensive model for

these data at a single latitude. The models are fitted by maximizing approximate likelihoods, which

are obtained by breaking up the data into 26 two-week periods for each year, assuming the correlation

structure has a period of one year, the process is stationarity within periods and is independent across

periods. To approximate likelihoods within a each period, a spectral approximation is used. The

resulting estimates plotted against period indicate that the data’s correlation structure varies fairly

smoothly with the time of year. These results suggest a valid covariance model that may capture the

seasonal dependence in the correlations of total column ozone across time and longitudes.

Section 2 describes the data used in this work and reviews past analyses. The data show clear

persistent differences in ozone levels across seasons and longitudes, and Section 3 describes how these

influences were removed as well as how missing observations were handled. Although there is clear

evidence for seasonality in the correlation structure, it does seem reasonable to treat the process as

stationary within fairly short “seasons,” which we take here to be two weeks long. Section 4 provides

a general model for a stationary space-time process at a single latitude that includes a simple and

readily interpretable way of capturing space-time asymmetries. Section 5 fits an example of this

model to each of 26 two-week seasons. The model provides a good description of the data within

each season. Section 6 considers the problem of synoptic prediction (i.e., prediction at a single time),

which is necessary for setting initial conditions in numerical models for ozone (Lait 2000). Because

this model gives the covariance function of the process at all longitudes and times, we can calculate

optimal linear predictors and their mean squared errors under the fitted models. Section 6 shows how

these prediction errors depend on the spatial density of the observations. Section 7 describes some

initial efforts to obtain and fit a comprehensive model that captures the seasonal dependence structure

and shows that with a small number of parameters, one can capture most of the seasonality found
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by fitting a separate model to every two-week season. Section 8 discusses some of the computational

and modeling challenges in fitting a seasonal model that addresses dependencies on time scales longer

than two weeks.

2 Data

The Nimbus-7 satellite carried a TOMS instrument that measured total column ozone on a daily basis

from November 1, 1978 to May 6, 1993. More recent TOMS observations are available from instru-

ments aboard other satellites, but we will only consider this single instrument here. The Nimbus-7

satellite followed a sun-synchronous polar orbit with an orbital frequency of 13.825 orbits a day. On

each orbit, a scanning mirror scanned across a track about 3000 km wide, yielding 35 measurements

every 8 seconds (Krueger, et al. 1998). Thus, at least away from the poles, all observations were

taken at roughly noon local time. Raw measurements were processed onto a grid of 1◦ latitude ×
1.25◦ longitude for latitudes between 50◦S and 50◦N to obtain the Version-7 Level-3 data used here

(Krueger, et al., 1998). Despite the massive effort put into producing the Version-7 data, it still has

known anomalies, due, for example, to inadequate treatment of the effect of clouds (Liu, Newchurch

and Kim 2003) and anomolous sea-land differences (Cuevas, et al. 2001).

Chapman, et al. (1974), Salby (1982, 1987), Hayashi (1983), Lait and Stanford (1988) and Lait

(2000) all address issues arising in analyzing data taken from a polar-orbiting satellite. They largely

focus on the problem of producing synoptic images from the asynoptic data the satellite-based instru-

ment provides. Multiple observations from a single scan are not emphasized in these works because,

as Salby (1987) argues, such multiple observations should be of little value in reproducing synoptic

patterns at longitudes far from where a scan was taken. Section 6 provides some evidence against this

claim.

In all, the TOMS data includes over 100 million observations, so that developing a statistical

model for the entire dataset that provides a good description of the joint variations across latitudes,

longitudes and seasons would be a monumental conceptual task and fitting such a model an enormous

computational task. Gelpke and Künsch (2001) model advective displacement from one day to the

next of total column ozone from satellite images in the latitude band 26.5◦N to 71.5◦N. As such,

this work represents a rare attempt to model simultaneously latitudinal and longitudinal variations

in total column ozone at high spatial resolution. However, their approach is geared towards analyzing

detailed movement of ozone from one day to the next, and not to develop a statistical model for
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multiple years of data. Huang, Cressie and Grabosek (2002) propose a model for the whole dataset

based on a multiresolution tree-structured approach that is amenable to very fast analysis at the

necessary cost of realism in the covariance structure for the total column ozone process. Fang (1996)

used a simple advection-diffusion equation driven by white noise to model total column ozone levels

at a single latitude, but did not explicitly attempt to model the seasonality nor use formal methods

for parameter estimation. The increase in computing power since Fang (1996) opens the possibility

of using at least crude approximations of the likelihood function to fit models to all of the data at

a single latitude. This paper considers the single latitude 40.5◦N, leaving us with 360/1.25 = 288

possible observations each day. We further restrict to January 1, 1980 to May 6, 1993, because of a

higher fraction of missing data in the first year or so of operations. Even with these restrictions, there

are still J = 1,404,000 potential ozone observations (288 longtitudes×4875 days), of which slightly

under 1% are missing.

Near the equator, there is very little overlap in observations from one orbit to the next, but as one

heads poleward, many of the processed observations are in fact based on averages of raw observations

from two or more orbits. Thus, it is not a simple matter to identify each processed observation with

a specific time. Nevertheless, Fang and Stein (1998) provide spectral analyses showing little influence

of the orbital frequency on results at temperate latitudes, so that a reasonable approximation to the

times (where time is measured with respect to a fixed location) and locations of the observations is

that the jth observation is at longitude {π − 2π(j − 1/2)/288} mod 2π (in radians) and time j/288

(in days) if, in accordance with the gridding scheme used for Level-3 TOMS data, we define the first

observation to be at longitude −179.375◦ and time 1/288. Near the equator and especially after the

Pinatubo eruption, Fang and Stein (1998) do find evidence of artifacts due to the orbital frequency of

the satellite, but we will ignore this issue hereafter in this work.

3 Preliminary analyses

All analyses will be done on the natural logarithms of total column ozone (in Dobson units), since

this transformation helps somewhat to equalize variation across seasons and makes the process more

nearly Gaussian. From here on, we will just say ozone when referring to the natural logarithm of total

column ozone.

Stratospheric ozone shows strong seasonal cycles that must be accounted for in any sensible model.

To remove seasonal effects from mean ozone levels, a constant term and four harmonics of the annual
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cycle was fit via ordinary least squares separately at each of the 288 available longitudes and then

subtracted from the observations. Fitting a separate seasonal cycle at each longitude should help to

remove real and anomolous differences in ozone values over land and sea (Cuevas, et al. 2001).

Before proceeding with further analyses, it will be helpful to fill in the missing observations. Ideally,

one would want to use an approach that accounts for the uncertainty in the unobserved values, but

considering that fewer than 1% of the observations in the dataset under study are missing, a simple

imputation scheme is unlikely to have much of an effect on our analyses. Thus, we used a simple linear

interpolation scheme to fill in any missing observations. Specifically, writing Zj for j = 1, . . . , 1,404,000

for the deseasonalized ozone series, if Zj and Zj+k were observed and Zj+1, . . . , Zj+k−1 were missing,

then for ` = 1, . . . , k − 1, the missing observation Zj+` was replaced by
(
1− `

k

)
Z(j) + `

kZ(j + k).

At this point, one has a deseasonalized ozone series of length 1,404,000, and our main goal in

the rest of this work is to model the covariance structure of this series. One major difficulty is that

although seasonality has been removed from the mean of the observations, the variation in the data

still depends strongly on season, as has been previously noted by Allen and Reck (1997) and Fang

and Stein (1998). We provide further evidence of seasonality in the covariance structure here. Define

Ip,y(ωj) to be the periodogram for the time series Z at frequency ωj = 2πj/4032 and the pth two-week

period in year y and let Lp,y(ωj) = log Ip,y(ωj). Furthermore, for the frequency band [ωk, ω`], let

Lp([ωk, ω`]) =
1

(`− k + 1)Np

∑̀

j=k

Np∑
y=1

Lp,y(ωj),

where Np is the number of available years for period p, either 13 or 14. For each of five frequency

bands, Figure 1 plots deviations of Lp([ωk, ω`]) from its average over the 26 two-week periods. If Y

were stationary, we should see roughly random scatter about 0 for each frequency band. In contrast,

we see a strong cyclical pattern at all frequencies, with relatively less power in the late summer and

more power in the late winter. If this pattern were the same at all frequencies, that would indicate

that the correlation structure does not depend on season and that the inferred nonstationarity could

perhaps be removed by a seasonal rescaling. However, the pattern is not the same for all frequency

bands: Figure 1 shows a stronger cycle for lower frequencies and a phase about one month ahead of

the higher frequencies.

For limited parts of the year, Figure 1 suggests it is reasonable to assume the Zjs are an approx-

imately stationary time series. Figure 2 plots 1
14

∑14
y=1 I1,y(ω), the average of the 14 periodograms

for the first 4032 observations of each year. The most striking feature of this empirical spectrum

4



is the strong periodicity in the lower frequencies that is highlighted in the top plot of the figure,

which reflects the periodicity in the observation pattern, with every 288th observation occurring at

the same longitude. It is interesting to note that if we used only one observation for each orbit of the

satellite, the frequency of the observations would be reduced by a factor of 288/13.825, which would

be roughly like restricting Figure 2 to frequencies up to (13.825/288)π = 0.048π. Visual inspection

of Figure 2 indicates that restricting to this frequency range would throw out some real information

about fluctuations in the spectrum up to around 0.1π.

There are other features of the covariance structure that we would like to capture in our model.

Fang and Stein (1998) note shifts in ozone from one day to the next, always eastward at 40◦N, but

with a clear seasonal cycle in the size of this shift, with the largest daily shifts generally occurring

in the winter. Figure 3 plots the sample autocovariance function corresponding to the empirical

spectrum in Figure 2, in which this eastward shift can be seen through the fact that the peaks in the

autocovariance function are shifted to the left away from lags of an integer number of days. Thus,

fully symmetric covariance functions (Gneiting 2002), which we can define in the present context

as covariance functions satisfying cov{Z(`, t), Z(`′, t′)} = cov{Z(`, t′), Z(`′, t)} for all `, `′, t and t′,

will not be appropriate. Allen and Reck (1997) observe substantial power in low wavenumbers in

total column ozone as well as a noticeable seasonal cycle in this power at more northerly latitudes.

Finally, one needs to consider the dependence structure over longer time scales, especially its seasonal

structure. For example, Bloomfield, Hurd and Lund (1994) found periodic correlations in monthly

stratospheric ozone levels as measured at Arosa, Switzerland (46.8◦N) over a 50 year period. We will

return to the problem of modeling correlations on longer time scales in Section 8.

4 Model

To describe the ozone process at a single latitude, it is natural to represent it as a Fourier series in

longitude with amplitudes evolving in time. Specifically, letting T be the real line mod 2π, we can

write the process Z(`, t) on T× R in the form

Z(`, t) =
∞∑

m=0

{Am(t) cos(m`) + Bm(t) sin(m`)}

with the Ams and Bms stochastic processes. This expression is a partially spectral representation

of the process Z. As a special case of results on spectral representations for homogeneous processes

on groups (Yaglom, 1961), it is possible to show that for Z to be real-valued, mean 0 (to get other
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constant means, just include a nonzero mean in A0) mean square continuous and weakly stationary

on T× R, it is necessary and sufficient that we can write

Am(t) =
∫

R
cos(ωt)X̂m(dω)−

∫

R
sin(ωt)Ŷm(dω) and

Bm(t) =
∫

R
sin(ωt)X̂m(dω) +

∫

R
cos(ωt)Ŷm(dω),

where the X̂ms and Ŷms are uncorrelated real-valued random measures with orthogonal increments,

EX̂m(dω)2 = EŶm(dω)2 = Fm(dω) and
∑∞

m=0 Fm(R) < ∞. It follows that

cov{Am(t), Am(t′)} = cov{Bm(t), Bm(t′)} =
∫

R
cos{ω(t− t′)}Fm(dω),

cov{Am(t), Bm(t′)} =
∫

R
sin{ω(t− t′)}Fm(dω)

and {Am, Bm} and {An, Bn} are uncorrelated if m 6= n. We then get

cov{Z(`, t), Z(`, t′)} =
∞∑

m=0

[
cos{m(`− `′)}

∫

R
cos{ω(t− t′)}Fm(dω)

− sin{m(`− `′)}
∫

R
sin{ω(t− t′)}Fm(dω)

]
.

If we add the condition that the Fms are symmetric about 0, then Am and Bm become uncorrelated and

Z is fully symmetric on T × R. Since the total column ozone process is clearly not fully symmetric,

we might want to consider allowing asymmetry in the Fms. However, we will instead introduce

asymmetries by considering models of the form

Z(`, t) =
∞∑

m=0

(
Am(t) cos[m{`− sm(t)}] + Bm(t) sin[m{`− sm(t)}]) (1)

for deterministic functions sm. Salby (1987) uses a similar approach to modeling advections across

longitudes for trace atmospheric constituents such as ozone. If Km is the Fourier transform of Fm,

we get

cov{Z(`, t), Z(`′, t′)} =
∞∑

m=0

cos[m{`− `′ − sm(t) + sm(t′)}]Km(t− t′). (2)

The function sm has a direct interpretation as a rotation for the mth wavenumber and its derivative

Sm(t) = s′m(t) a rotational velocity. Stationarity would require that Sm be constant for each m.

Next, consider what this model for Z(`, t) says about the process {Zj}. From now on, we will

assume that Zj occurs at time j, so time is measured in steps of 1/288 days. Let fm be the spectral
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density on (−π, π] corresponding to the covariance function Km on the integers. Then the spectral

density for {Zj} under (2) is

f(ω) =
1
2

∞∑
m=0

{
fm

(
ω + m

(
2π

288
− Sm

))
+ fm

(
ω −m

(
2π

288
− Sm

))}
. (3)

Since f determines the covariance function for the observations, the data alone provide no basis

for distinguishing between the various fms, which is an inherent limitation of data taken by a sun-

synchronous satellite. Salby (1982) provides further discussion on the aliasing problems resulting from

observations taken from a sun-synchronous satellite. However, by assuming that each fm is of some

simple form, we may be able to get reasonably stable estimates of them. For example, with the fms

monotonically decreasing on (0, π], a sum of the form (3) can match the peaks in the spectrum of

{Zj} in Figure 2.

5 Fitting the model season by season

Let us consider fitting (3) to the empirical spectrum in Figure 2. We have several choices to make:

what to do about the infinite sum in (3), the form for fm (or, equivalently, Km), and the functional

dependence of Sm on m. To deal with the infinite sum, we will truncate the sum with an upper

limit of M . Modest changes in the value of M do not appear to affect the fit much and we will use

M = 15 (so 16 terms in the sum), which provides a reasonable compromise between complexity and

flexibility. Although it would be easier at this point to specify the spectral densities fm rather than

the covariance functions Km, when we consider nonstationary models, a time domain specification will

be preferable. Following Gneiting and Schlather (2004), we might use Km(t) = αm(1 + |t/γm|2δ)−ν ,

which is a valid stationary covariance function for all positive αm, γm and ν and all 0 < δ ≤ 1. As

pointed out by Gneiting and Schlather (2004), this covariance function allows one to model the local

smoothness of the process and the long-range dependence separately, at least for nondifferentiable

processes. We will in fact set δ = 1, not because we believe that Am is an analytic process on R as

this choice implies, but because it is difficult to estimate both δ and ν and setting δ = 1 yields good

fits to the observations. With regards to the Sms, we will make the simplest possible assumption

and take them all equal to S independent of m over each season, although Mote, Holton and Wallace

(1991) found evidence for faster propagation at around wavenumbers 6 and 7. Finally, our model for

{Zj} includes an independent and identically distributed N(0, σ2) term for each Zj .

We thus have 35 parameters (16 αms and γms, ν, S and σ2) in the model, which we estimated

by maximizing a spectral approximation to the likelihood using the optimization routine nlm in the
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statistical package R. Specifically, letting ωj = 2πj/4032 be the jth Fourier frequency, we will assume

that I(ωj), j = 1, . . . , 2016, are independent, I(ωj) follows a gamma distribution with parameters 14

and EI(ωj)/14 for j = 1, . . . , 2015 and a gamma distribution with parameters 7 and EI(ωj)/7 for

j = 2016. We will not use j = 0 in fitting the parameters. This approximation follows from the

standard asymptotics for the periodogram (e.g., Theorem 5.2.6, Brillinger 1981) together with the

assumption that seasons from different years are independent of each other. To obtain EI(ωj) one

often uses the approximation f(ωj), but here we do not have a convenient expression for this spectral

density. Furthermore, when ν ≤ 1, fm (3) is not differentiable at the origin, so that the resulting f

is not differentiable in S, which is problematic for a routine like nlm that uses numerical derivatives.

Thus, we use the exact formula for the expected value of the periodogram of a stationary process

(Priestley 1981, (6.1.37)), which can be computed quickly and exactly using the fast Fourier transform.

Figure 2 shows good visual agreement between the fitted model and the empirical spectrum. One can

do moderately better by increasing M , but the parameter estimates become increasingly unstable. For

example, increasing M to 17 in period 1 adds 4 parameters to the model and increases the loglikelihood

by 2.5, which is a quite modest increase considering that it is based on 56,448 observations. Figure 3

shows the empirical and fitted covariance functions for period 1. The agreement between the two is

fairly good for the first few days, but the fitted covariances are noticeably off for the peaks near days

3 and 4, being too soon, too large and too spread out, perhaps suggesting that more sophisticated

models for space-time asymmetry and long-range correlations are needed.

Figures 4 and 5 give the α̂ms and γ̂ms for periods 2, 8, 14 and 21 (period 1 is not selected because

for this period, as well as for periods 6, 7 and 26, there is considerable instability in the estimate of

α̂1). The general patterns are similar for each of these four seasons. It appears that the patterns

in α̂m and γ̂m for m = 14 and 15 reflect the model’s attempt to fit the high frequency variations in

the data rather than any dramatic differences in the temporal evolution of wavenumbers 14 and 15

compared to lower wavenumbers. There is no guarantee that we have found the global maximizers of

the likelihood for each season and, indeed, there are instabilities in some parameter estimates beyond

those already noted in α̂1.

Rather than give results for all 35 parameters individually, Figure 6 gives the plots for certain

groupings of the parameters for all 26 seasons. The top plot in Figure 6 shows seasonal patterns of

the α̂ms: α̂3, α̂4 and α̂5 as representative of the lower wavenumbers and α̂14 and α̂15 to show the

behavior at the highest wavenumbers in the model. Both ranges of m show a clear seasonal pattern,
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but the lower wavenumbers show stronger seasonality. Again, this is almost certainly connected to

the fitted model using wavenumbers 14 and 15 to track the high frequency behavior in the data rather

than any change in seasonality at these wavenumbers. The bottom two plots give the seasonal pattern

of γ̂3, γ̂4 γ̂5, ν̂, Ŝ and σ̂2. The fluctuations in the γ̂ms are rather similar to those for ν̂, which may

be natural since both the γms and ν relate to how quickly correlations die out over time. Thus, this

similarity is likely at least in part due to statistical correlations rather than due to similarity in the

underlying seasonality for the γms and ν. Finally, Ŝ shows a clear seasonal pattern, whereas σ̂2 does

not. Values for Ŝ indicate eastward rotational velocities of around 9◦ per day in midwinter and under

3◦ a day in mid to late summer, which qualitatively agree with the findings in Fang and Stein (1998),

although there the data were divided into only four seasons, thus flattening out the seasonal pattern

considerably.

6 Synoptic prediction

As noted in Section 2, synoptic maps of total column ozone are used for setting the initial conditions

of numerical models. Lait (2000) summarizes various methods for producing such maps, including

those that are purely data-driven and those that combine data and numerical models, such as 4-D

data assimilation (Fisher and Lary, 1995). Because we are here modeling the covariance structure of

total column ozone at all longitudes and times, we can, under our estimated model, compute optimal

(ignoring the fact that the mean and covariance structures were estimated) linear predictions of total

column ozone at any longitude and time, as well as produce mean squared errors for these predictions.

In particular, by examining these mean squared errors as a function of observation density, we can

examine the claim of Salby (1987) that having more than one observation per scan should not be of

much value in producing synoptic maps, especially at locations for which the local time is not near

an actual observation time, which is always near local noon for the dataset under consideration here.

Lait (2000) examined this question using simulated N2O fields and various sampling protocols and

interpolation methods (none of which involved modeling the covariance structure), finding varying

degrees of improvement from using more than one observation per orbit depending on the conditions.

Although we cannot directly examine the effect of using only some fraction of the observations from

each orbital pass based on the Level-3 data used here, we can approximate this situation. In particular,

288/21 = 13.714 is very near the daily orbital frequency of the satellite of 13.825, so using evey 21st

observation should be comparable to using one observation per orbit. Consider predicting total column
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ozone along latitude 40.5◦ at local noon on the international date line when it is January 8 west if the

line and January 7 east of the line. Using observations from the season January 1–January 14 and the

stationary model fit to this season in the preceding section, we can compute mean squared prediction

errors of best linear predictors assuming the mean of the process is 0. Figure 7 gives these root mean

squared prediction errors under this model using different sampling frequencies. Because these mean

squared errors ignore the uncertainty in both the mean and covariance structures, they are likely to be

somewhat overly optimistic. However, in light of the large sample sizes, we might hope that the effects

of ignoring these uncertainties is modest, and that, in any case, the effect would be similar for different

sampling densities, but we have no direct evidence for this claim. Using only every 21st observation

leads to strongly oscillating mean squared errors, with local minima not necessarily corresponding to

locations at which observations were available on that day. Using every seventh observation greatly

dampens these oscillations and does much better overall; using every third observation does nearly

as well as using every observation. The quite small root mean squared errors near −180◦ longitude

for the two highest observation frequencies should perhaps not be taken too seriously as they may

depend critically on the approximation that the observations are all taken exactly at local noon. One

would need to go back to the Level-2 version of the data (Krueger, et al. 1998), which gives ozone

measurements at their actual times and locations (so includes observations at essentially the same

location taken on successive orbits), to address this question.

Given that it is possible to compute the optimal linear predictors based on two weeks of data

using the full density of observations, there seems to be no point in throwing away some of the

observations, even if the gains in prediction accuracy are modest. If, on the other hand, when designing

an instrument, one has to make a tradeoff between spatial resolution and cost and/or measurement

error, it does appear that not much would be lost for purposes of synoptic prediction by having

somewhat less dense observations than provided by this TOMS instrument.

Of course, the results in Figure 7 assume that the fitted covariance structure is correct. In fact,

in addition to the possible model misfit indicated in Figure 3, the confounding of location and time

on a local scale makes it very difficult to distinguish small scale temporal and spatial fluctuations,

so our fitted covariance function could be seriously in error. However, it is worthwhile to distinguish

between problems with inferring the covariance function and ability to predict synoptic maps once the

covariance function is known. What Figure 7 shows is that a model that fits the empirical spectrum of

the TOMS data well implies that predictions even around midnight local time can be greatly improved
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by using more than one observation per orbit. Before giving this result too much credence, one would

want to find further evidence that the fitted covariance structure is appropriate for Z(`, t) for all `

and t, and not just for the locations in space-time for which TOMS takes observations. By using some

combination of other sources of ozone data and theoretical knowledge about the ozone process, it might

be possible to address this issue. Another problem that is impossible to address using the TOMS data

is the possibility of diurnal cycles in total column ozone. If there were a substantial diurnal cycle, it

would have to be estimated using some other source of information in order to account for its impact

on a synoptic map.

7 Models for seasonality

From Figure 6, it is apparent that there is a great deal of structure to the seasonality in the covariances,

so a model that fits separate parameters for each of the 26 two-week seasons is unnecessarily complex.

This section compares various models for the seasonality through their maximized loglikelihoods under

the approximation that seasons are statistically independent of each other (in addition to the spectral

approximation to the likelihood we are using within seasons). Since there clearly is dependence

between at least nearby seasons, we should not take the differences in loglikelihood too seriously, but

their orders of magnitude should be indicative of the quality of fit of the various models. The two

extreme models we will fit are the model with no seasonality of the form (2) (with 35 parameters) and

the “fully seasonal” model that has separate parameters for each season (35× 26 = 910 parameters).

The difference in maximized approximate loglikelihoods between these models is 24,366.

Figure 6 suggests fitting two separate seasonal models to the αms, one for m ≤ 13 and one for

m ≥ 14, and a seasonal model for S. It is not clear from Figure 6 whether seasonal models for the γms,

ν and σ2 are needed. Consider the following parsimonious model for seasonality. Using the subscript

j to indicate two-week period j with j = 1, . . . , 26, setting ζ = 2π × 14/365.25, assume

αmj =

{
αm exp[Tα1 cos{ζ(j − 1) + φα1}], if m ≤ 13;
αm exp[Tα2 cos{ζ(j − 1) + φα2}], if m ≥ 14,

(4)

where Tα1 and Tα2 are nonnegative and φα1 and φα2 are in (−π, π]. Forcing the Tαjs to be nonnegative

avoids an identifiability problem in that changing the sign of Tαj and adding π (mod 2π) to φαj yields

the same model. Since S need not be positive, assume Sj = S[1 + TS cos{ζ(j − 1) + φS}]. This model

has 41 independent parameters and was fit by maximizing the sum of the approximate likelihoods over

the 26 two-week periods, yielding a loglikelihood 21,096 greater than the 35-parameter nonseasonal
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model and only 3270 smaller than for the 910-parameter fully seasonal model. Adding a common

single harmonic seasonal pattern for all βmjs and a single harmonic pattern for the νjs and σ2
j s adds

six parameters and increases the loglikelihood by only 283 units, whereas allowing only a single cycle

for all m for the αmjs removes two parameters but decreases the loglikelihood by 3583. Table 1 gives

the estimated seasonality parameters for this model, which shows, as one would expect from Figure 6,

much stronger seasonal cycles for the αmjs for m ≤ 13 than for m > 13 and a substantial seasonal

cycle for S.

To capture the seasonal influence on the covariance structure, we seek a version of (2) that allows

the covariances to change smoothly with season. It is natural to assume that the Ams and Bms are

periodically correlated (Hurd 1989) with period one year, so that for D = 288 × 365.25 = 105,192,

Km(t+Dj, t′+Dj) = Km(t, t′) for any integer j. One way to do this and obtain covariance functions

that are guaranteed to be valid is to use the approach of Paciorek and Schervish (2006) to derive

nonstationary versions of Km(t) = αm(1+t2/γ2
m)−ν . Specifically, using a simple extension of Paciorek

and Schervish (2006) (see Stein 2005), one has that

Km(t, t′) =
21/2αm(t)αm(t′)γm(t)1/2γm(t′)1/2

{γm(t)2 + γm(t′)2}1/2

[
1 +

21/2(t− t′)2

{γm(t)2 + γm(t′)2}1/2

]−{ν(t)+ν(t′)}/2

(5)

is a valid covariance function for a process on R for all positive functions αm, γm and ν. In this

parameterization, var{Am(t)} = var{Bm(t)} = αm(t)2. If we further assume that the functions αm,

γm, S and ν are continuous and have period D and all but S are positive, then

cov{Z(`, t), Z(`,′ t′)} =
∞∑

m=0

cos[m{`− `′ − sm(t) + sm(t′)}]Km(t, t′) (6)

with Km(t, t′) as in (5) is a valid periodically correlated version of (2) as long as
∑∞

m=0 αm(t)2 < ∞ for

all t. As with the stationary version of this model, we would want to restrict this model considerably

before attempting to fit it to data, but it perhaps could serve as a basis for the comprehensive model

we seek for all of the data at this latitude.

8 Discussion

Presently, it is not even remotely feasible to calculate the likelihood function exactly for the full dataset

under (6). Indeed, even computing all of the covariances is a daunting task, since after taking account

of the yearly periodicity in the covariance structure, there are still over 1011 different covariances.

Thus, we either need to use methods that do not require calculation of all of these covariances or

12



calculates most of them only approximately, or both. The model reported on in Table 1 exploits

both shortcuts: covariances across different two-week periods are ignored, and the process is assumed

stationary within any two-week period, so that the covariance matrix is fully specified by its first

row. A way to account for covariances across seasons, guarantee a valid covariance structure for the

entire dataset, but keep the computations somewhat manageable would be to take {αm}, {γm}, ν and

{sm} in (5) and (6) to be constant within each season. In particular, the covariance matrix of the

observations then has Toeplitz blocks of size 4032 × 4032, which reduces the number of covariances

that have to be calculated by a factor of about 2000 and makes possible the use of methods for block

Toeplitz matrices to carry out the likelihood calculations. However, full likelihood calculations would

still be infeasible at present. A more realistic approach would be to write the 347 two-week seasons

as a vector-valued stationary process of length 4032 and assume the vector-valued discrete Fourier

transform is complex Gaussian and independent at distinct Fourier frequencies (see Theorem 4.4.1,

Brillinger 1981). One would then have to deal with complex covariance matrices of size 347 × 347,

but these matrices would have further exploitable structure due to the annual cycle in the covariance

structure. As in Section 5 for a univariate time series, we would not have explicit expressions for the

matrix-valued spectral density and could instead calculate these covariances exactly using the fast

Fourier transform. Longer seasons would reduce computations but lead to poorer representations of

seasonality. Even so, yet further approximations to the likelihood might be necessary.

Before embarking on fitting a single model to the entire time series, one should take account of the

fact that variations over longer time scales in total column ozone are influenced by a number of known

exogenous factors such as volcanic eruptions, the solar cycle, chlorine loading and QBO (quasibiennial

oscillation) (Guillas, et al. 2005), as well as perhaps geopotential height (Peters and Enizian, 1999).

Figure 8 plots the two-week averages of the Zjs, which show a sharp jump in 1992, variations in

seasonal patterns and a hint of a downward trend. Any modeling of these data on time scales longer

than a few months should try to account for these patterns using known exogenous influences before

resorting to purely stochastic modeling.
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Table 1. Seasonality parameters. Reported phases are estimates (in radians) divided by π and, by
definition, fall in (−1, 1].

α (m ≤ 13) α (m ≥ 14) S
Scale 0.9495 0.7268 0.4608

Phase −0.1779 −0.4481 0.8817

16



Figure captions

Figure 1. Seasonal deviations in logperiodogram from annual average for selected frequency bands.

Band 1–50 (i.e., [ω1, ω50]) given by black solid line, band 51–150 by black dashed line, band 151–300

by black dotted line, band 301–600 by gray solid line, band 601-2016 by gray dashed line.

Figure 2. Empirical (gray symbols) and fitted (black curve) spectra for period January 1–14, split into

two frequency bands to highlight the strong periodicity at lower frequencies. The empirical spectrum

is the average of the 14 periodograms for January 1–14 for 1980–1993.

Figure 3. Emprical (black dashed) and fitted (gray curve) correlation functions for period January

1–14.

Figure 4. Estimates of αm for m = 0, . . . , 15 for four two-week periods. Solid curve is period 2, dashed

is period 8, dotted is period 14 and dotdash is period 21.

Figure 5. Estimates of γm for m = 0, . . . , 15 for four two-week periods. Line types as in previous

figure.

Figure 6. Estimates for the 26 two-week periods. Upper plot gives α̂m for m = 3, 4, 5 (gray solid,

dashed and dotted, respectively) and m = 14, 15 (black dashed and dotted, respectively). Middle plot

gives γ̂m for m = 3, 4, 5 (gray solid, dashed and dotted, respectively) and ν̂ (black dashed). Bottom

plot gives eastward movement −Ŝ (solid), σ̂2 (dashed).

Figure 7. Root mean square prediction errors for a day in the middle of the Jan. 1–Jan. 14 season

as a function of observation density. Solid gray curve uses every observation, black dashed every

third observation, gray dashed-dotted every seventh, black dotted every 21st, ×s indicate longitudes

of available observations on day of prediction when use every 21st observation. Results for positive

longitudes are omitted because of symmetry. For comparison, the estimated standard deviation for

any one observation based on the fitted model is 0.096.

Figure 8. Two-week averages of adjusted log ozone values at latitude 40.5◦ N. Dashed vertical lines

drawn to highlight seasonal variations.
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Figure 2
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Figure 3
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Figure 4
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Figure 6
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Figure 7
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Figure 8
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