
J. Math. Biol. (2007) 54:199–226
DOI 10.1007/s00285-006-0048-4 Mathematical Biology

An algorithm for a decomposition of weighted
digraphs: with applications to life cycle analysis
in ecology

L. Sun · M. Wang

Received: 18 August 2003 / Revised: 22 March 2006 /
Published online: 8 November 2006
© Springer-Verlag 2006

Abstract In the analysis of organism life cycles in ecology, comparisons of
life cycles between species or between different types of life cycles within spe-
cies are frequently conducted. In matrix population models, partitioning of the
elasticity matrix is used to quantify the separate contributions of different life
cycles to the population growth rate. Such partition is equivalent to a decom-
position of the life cycle graph of the population. A graph theoretic spanning
tree method to carry out the decomposition was formalized by Wardle [Ecology
79(7), 2539–2549 (1998)]. However there are difficulties in realizing a suitable
decomposition for complex life histories using the spanning-tree method. One
of the problems is the occurrence of life cycles that contain contradictory direc-
tions that defy biological interpretation. We propose an algorithmic approach
for decomposing a directed, weighted graph. The graph is to be decomposed
into two parts. The first part is a set of simple cycles that contain no contra-
dictory directions and that consist of edges of equal weight. The second part
of the decomposition is a subgraph in which no such simple cycles are obtain-
able. When applied to life cycle analysis in ecology, the proposed method will

Although the research described in this article has been funded in part by the United States
Environmental Protection Agency through STAR cooperative agreement R-82940201-0 to the
University of Chicago, it has not been subjected to the Agency’s required peer and policy review
and therefore does not necessarily reflect the views of the Agency and no official endorsement
should be inferred.

L. Sun
Department of Mathematics, Beijing Institute of Technology, Beijing, China

M. Wang (B)
Department of Statistics, The University of Chicago, 5734 S. University Ave.,
Eckhart Hall, Room 106, Chicago, IL 60637, USA
e-mail: meiwang@galton.uchicago.edu

200 L. Sun, M. Wang

guarantee a complete decomposition of the life cycle graph into individual life
cycles containing no contradictory directions.

Keywords Weighted digraph · Graph decomposition algorithm · Spanning
tree · Life cycle analysis · Loop analysis

1 Introduction

The goal of this study is to develop a graph theoretic algorithmic approach that
decomposes weighted digraphs and provides a useful method in life cycle anal-
ysis in population ecology. To evaluate the importance of different life histories,
comparisons of life cycles between species or between different types of life
cycles within species are frequently conducted. This comparison is particularly
useful in the study of trade-offs between different components of fitness and
reproduction or in evaluating distinct history tactics among individuals. Matrix
population models have been used widely for modeling biological populations
and the analysis of life cycles [3]. A population projection matrix is essentially a
type of transition matrix for Markov processes (see the description in Sect. 4.1).
The dominant eigenvalue λ of the population projection matrix gives the long-
term growth rate of the population. The corresponding elasticity matrix consists
of elements that represent the proportional sensitivity of λ with respect to the
elements in the population projection matrix. The total elasticity (i.e. the sum of
all elements of the elasticity matrix) is 1, or 100%. Partitioning of the elasticity
matrix is used to quantify the separate contributions of different life cycles to
the population growth rate [6]. This method is called loop analysis, because the
components of the decomposition correspond to loops in the life cycle graph.

A life cycle graph is a graphical description of the life cycles of a population.
The nodes (a.k.a. vertices, points) of the graph represent the life stages, the
directed line (a.k.a. arc, edge) from node j to node i indicates that an individual
in stage j at time t can contribute individuals to stage i at time t + 1, i.e., the
(i, j)th element in the population matrix is not zero. Therefore, there is a cor-
respondence between a population projection matrix of n life stages and a life
cycle graph of n nodes, where directed arcs connecting the nodes correspond to
non-zero elements in the projection matrix (see examples in Sect. 4.4). Further-
more, each directed arc can be assigned a weight. In loop analysis, the weight
for the directed arc from node j to node i is the (i, j)th element in the elasticity
matrix. The life cycle graph of the population can be decomposed into a set of
loops (closed paths or cycles) that correspond to life history pathways followed
by individuals in the population. Each loop is given equal weights of elasticities
on every arc in the loop (details given in Sects. 4.3 and 4.4). The sum of the
weights of all loops is 100% – the sum of all elasticities. There is a biological
explanation for the decomposition: the decomposition illustrates and quantifies
the contributions of different life cycles of individuals to the growth rate of the
population [3,6,13].

The decomposition of life cycle graphs can be done by inspection if the
number of nodes (life stages) is small (≤4). For general purposes, a spanning

An algorithm for a decomposition of weighted digraphs 201

tree method was summarized and illustrated by Wardle [13]. The spanning tree
method is a systematic approach. Starting with a base tree that has all n nodes
connected by n − 1 edges and contains no loops, loops are formed by adding
edges to the base tree one at a time. The spanning tree method will produce a
set of independent cycles (see Example 4.1).

In practice, using the spanning tree method may lead to two problems. First,
for moderately complicated graphs, it is often hard or impossible to find a tree
that spans a set of cycles containing no contradictory directions. It is clear that
cycles containing contradictory directions do not represent life cycles of indi-
vidual organisms, thus defying biological interpretation [13]. Second, each tree
spans a fixed set of cycles; a pair of cycles that may be interesting for comparison
purposes might not show up in the same set of cycles. One could modify the
situation by combining nodes to reduce the complexity of the graph, but the
modification is often limited and not satisfactory.

We propose an algorithmic approach to decompose connected, non-
negatively weighted directed graphs. Applying our method to loop analysis
in population ecology, one obtains a set of independent cycles containing no
contradictory directions. The decomposition is not unique. In applications such
as life cycle analysis, important, meaningful cycles can be given higher priority
to be selected by the algorithm.

Section 2 provides the graph theory terminology, the proposed algorithm and
the proofs of corollaries relevant to the algorithm. Section 3 uses three simple,
hypothetical examples to illustrate the algorithm. Section 4 discusses the appli-
cations to life cycle analysis, with two examples of complex life cycle graphs.
Conclusions are discussed in Sect. 5. Details of the matrix decompositions of
the two examples in Sect. 4 are given in the Appendix.

2 The algorithmic approach

2.1 Terminology

A directed graph or digraph G can be described as G = (V, E), where V =
{v1, v2, . . . , vn} is the set of vertices or nodes of the graph G, E = {eij =
(vi, vj), 1 ≤ i, j ≤ n} is the set of directed edges or arcs of G that consists of
ordered pairs of vertices of G. |E(G)| denotes the total number of edges of the
graph G. A weighted digraph (G, w) is a digraph G with a numerical weight as-
signed to each directed edge. Such weighted digraph has a matrix representation
(see illustrative examples in Sect. 3):

from vertices
v1 v2 · · · vn

to

v1
v2
...

vn




w11 w12 · · · w1n
w21 w22 · · · w2n

...
...

...
...

wn1 wn2 · · · wnn




202 L. Sun, M. Wang

where wij is the weight of the directed edge from vertex vj to vertex vi. Notice
that the transpose of the above matrix might be more customary in some math-
ematical fields. The notation used here is more conventional in applications in
population biology.

A cycle (according to [1,7]) or a simple cycle (according to Carré [2]) is a
closed trajectory of a sequence of edges in G that connects nodes vi1 , vi2 , . . . ,
vik , vi1 consecutively, where vi1 , . . . , vik are distinct. A graph G is called con-
nected if any two of its vertices are linked by connected edges, i.e. by a path [5]
in G.

In this paper, we consider connected digraphs with n <∞ vertices and non-
negative weights (wij ≥ 0, for all i, j = 1, 2, . . . , n) on all edges. We develop an
algorithm that decomposes a weighted digraph into a set of simple cycles, which
contain no contradictory directions and are of equal weights on every edge in
each cycle, and a remaining subgraph on which no such cycles are obtainable.

2.2 The algorithm

The decomposition method can be described by the following steps:

1. Start with a connected digraph G with |E(G)| directed, weighted edges.
2. Consider a possible simple cycle that starts and ends at a specific node.

Extract a simple cycle without contradictory directions from G by search-
ing among all possible simple cycles without contradictory directions with
the given ending node.
This step can be illustrated by the following search for a simple cycle that
starts and ends at a node, say, v1, under the condition that weight wi,1 > 0
for some i �= 1 (i.e. there is at least one edge from v1), and w1,j > 0 for some
j �= 1 (there is at least one edge going to v1).
(a) Search through the rest nodes v2, . . . , vn. Choose the first i1 such that

wi1,1 > 0 (edge v1 → vi1 exists).
(b) If w1,i1 > 0 (edge vi1 → v1 exists), the selection is completed: the

cycle selected is v1 → vi1 → v1. Else search through the rest nodes
{v2, . . . , vn} \ vi1 (i.e. all nodes but vi1). Choose the first i2 such that
wi2,i1 > 0. (If wj,i1 = 0,∀j (i.e. for all j), go back to Step 1 to choose
another i1 such that wi1,1 > 0, then proceed.)

(c) If w1,i2 > 0, the selection is completed: the cycle selected is v1 → vi1 →
vi2 → v1. Else repeat step 2: search through {v2, . . . , vn} \ {vi1 , vi2},
choose the first i3 such that wi3,i2 > 0, . . . and see if w1,i3 > 0, etc.
(If wj,i2 = 0,∀j, go back to Step 2 to choose another i2 such that
wi2,i1 > 0, then proceed.)

(d) If the cycle cannot be completed for all j such that wj,1 > 0, there are
no simple cycles starting and ending at v1.

3. Once a simple cycle L1 is obtained, each edge will be assigned the same
weight that is the least edge weight among all edges of L1.

4. G has decomposed to G = G1 ∪ L1, and |E(G1)| < |E(G)|.

An algorithm for a decomposition of weighted digraphs 203

Here the union of weighted digraphs corresponds to the element-wise
matrix addition of the weight matrices of the graphs:

(
wG

ij

)
n×n
=

(
wG1

ij

)
n×n
+

(
wL1

ij

)
n×n

where wG
ij , wG1

ij and wL1
ij are the edge weights of graphs G, G1 and L1,

respectively.
5. Repeat the above steps on G1 and get a new simple cycle L2 in G1.
6. At the end of this procedure,

G = Gr

⋃ (
r⋃

i=1

Li

)

where Li’s are simple cycles without contradictory directions, Gr is a sub-
graph of G with no such cycles obtainable.

2.3 Corollaries

There are two immediate corollaries on the properties of the decomposition.
The corollaries are related to the concept of flow conservation described in the
following definition.

Definition (The flow conservation condition) A weighted digraph satisfies the
Flow Conservation Condition if ∀i,

n∑
j=1

wij =
n∑

j=1

wji (1)

where n is the number of nodes in G.

The above definition is equivalent to the definitions in Carré [2] and
Jungnickel [7] with the point of view of networks and flows. If wij is treated
as the amount of flow of some substance from node j to node i, then

∑
j wij is

the total amount flowing into node i,
∑

j wji is the total amount flowing out of
node i. The flow conservation condition asserts equal amounts of inflow and
outflow at each node. The term “balanced” is used in [1] for individual vertices
satisfying Condition (1), and the term “circulation” in [1] is essentially equiva-
lent to the definition of the flow conservation condition under a more general
setting that involves costs and path lengths.

Corollary 2.1 If G satisfies the flow conservation condition, then the remainder
graph Gr = Ø (the empty set).

204 L. Sun, M. Wang

Proof The idea behind the proof is straight forward. Each cycle in the decompo-
sition satisfies the flow conservation condition. The flow conservation condition
is additive. Thus the remainder graph Gr must also satisfy the condition, and
since Gr contains no cycles, it must be empty. The details follow and may appear
cumbersome with all the subscripts, superscripts and summations.

The corollary comes from the following two facts:

1. Any simple cycle L of G with equal edge weight satisfies the flow conser-
vation condition (1) at every node vi ∈ G.
Assume that L has path vi1 → vi2 → · · · → vik → vi1 , where im, m =
1, 2, . . . , k, are distinct, and each edge of L is of equal weight w. Let wL

ij
denote the edge weight for the weighted digraph L. Then for any vertex
vi ∈ G,

∑
j

wL
ij =




wL
im,im−1

= w = wL
im+1,im=

∑
j wL

ji if the vertex vi = vim∈ L

0 =∑
j wL

ji if the vertex vi �∈ L

where we use the convention that im−1 = ik if im = i1, im+1 = i1 if im = ik
and wL

ij = 0 if the corresponding directed edge is not in L. The sums are
over all vj ∈ G. Notice that the equation still holds if the sums are over
vj ∈ L. In another word, the flow conservation condition is satisfied by L
with respect to G as well as with respect to L.

2. G \ L satisfies the flow conservation condition (1) at every node vi ∈ G.
Let wij be the edge weight for G, w′ij be the edge weight for G \L, wL

ij = w
be the edge weight for L. From the above, for any vertex vi ∈ G,

∑
j

w′ij=




∑
jwij−w =∑

j wji−w =∑
jw
′
ji if the vertex vi = vim∈ L

∑
j wij =∑

j wji =∑
j w′ji if the vertex vi �∈ L

Consequently from the above facts (1) and (2), Gr = G \⋃r
i=1 L satisfies the

flow conservation condition.
Let wGr

ij denote the edge weight for the reminder graph Gr. By definition, Gr

contains no simple cycles, particularly no one-cycles, or self-loops, of the form
vi ↔ vi. That is, wGr

ii = 0,∀i. Also Gr contains no two-cycles vi → vj → vi,
which implies wGr

ij = 0 if wGr
ji �= 0.

We claim that wGr
ij ≡ 0. Assume instead that there is at least one wGr

ij > 0 on
Gr. Let

wo = wGr
r2,r1
= min

i�=j

{
wGr

ij : wGr
ij > 0

}

An algorithm for a decomposition of weighted digraphs 205

be the smallest non-zero weight on Gr, where wo = wr2,r1 means that the
directed edge from vertex vr1 to vertex vr2 �= vr1 is of weight wo. Since Gr
satisfies the flow conservation condition at vertex vr2 ,

∑
j

wGr
j,r2
=

∑
j

wGr
r2,j ≥ wGr

r2,r1
= wo > 0.

There must be a vertex vr3 such that wGr
r3,r2 ≥ wo > 0, i.e., there is an edge with

weight wGr
r3,r2 from vertex vr2 to vertex vr3 , and vr1 , vr2 , vr3 are distinct because Gr

contains no more simple cycles. At vertex vr3 , Gr satisfies the flow conservation
condition,

∑
j

wGr
j,r3
=

∑
j

wGr
r3,j ≥ wGr

r3,r2
≥ wo > 0

and so on. Because there are no simple cycles of any length in Gr, this procedure
would construct a path vr1 → vr2 → · · · → vrm ended at a vertex vrm for some
m > 1 with < n edges in the path. This implies

∑
j

wGr
j,rm
= 0 �=

∑
j

wGr
rm,j ≥ wGr

rm,rm−1
≥ wo > 0

The conservation condition could not be satisfied at the end vertex vrm . This is
a contradiction. Therefore there must be wGr

ij ≡ 0. Consequently Gr = Ø. This
completes the proof of Corollary 2.1.

Corollary 2.2 For the remainder graph Gr, all eigenvalues of its weight matrix(
wGr

ij

)
n×n

are zero.

Proof Consider the nontrivial case Gr �= Ø. An eigenvalue λ of
(

wGr
ij

)
n×n

makes the corresponding characteristic function zero, i.e., det
{
λIn−

(
wGr

ij

)
n×n

}

= 0, where In is the identity matrix of order n. Consider an expansion of the
characteristic function

det
{
λIn −

(
wGr

ij

)
n×n

}
= λn + c1λ

n−1 + c2λ
n−2 + · · · + cn

with

c1 = wGr
11 + wGr

22 + · · · + wGr
nn

c2 = −
∑

(
i1 i2
j1 j2

)
∈Sn

sign
(

i1 i2
j1 j2

)
wGr

i1,j1
wGr

i2,j2

206 L. Sun, M. Wang

c3 = −
∑

(
i1 i2 i3
j1 j2 j3

)
∈Sn

sign
(

i1 i2 i3
j1 j2 j3

)
wGr

i1,j1
wGr

i2,j2
wGr

i3,j3

...

cn = −
∑

(
i1 i2 · · · in
j1 j2 · · · jn

)
∈Sn

sign
(

i1 i2 · · · in
j1 j2 · · · jn

)
wGr

i1,j1
wGr

i2,j2
· · ·wGr

in,jn

where Sn is the symmetric group of order n, its element

(
i1 i2 · · · in
j1 j2 · · · jn

)
∈ Sn

is a permutation of ordered arrangement of integers {1 2 3 · · · n} from
{i1 i2 i3 · · · in} to {j1 j2 j3 · · · jn}. The notation

(
i1 i2 · · · ik
j1 j2 · · · jk

)
∈ Sn, 1 < k < n

denotes a subset permutation of k of the n integers {1 2 3 · · · n} from {i1 i2 · · · ik}
to {j1 j2 · · · jk}, while the other n−k integers {1 2 3 · · · n} \ {i1 i2 · · · ik} remain
unchanged. A switch of exactly two integers

(· · · i · · · i′ · · ·
· · · i′ · · · i · · ·

)

is considered as one move in Sn. The sign of a permutation is −1 if the number
of moves needed to complete the permutation is odd, +1 otherwise.

Since there are no simple cycles in Gr, there are no one-cycles, or self-loops
vi ↔ vi. Therefore

wGr
ii ≡ 0 ∀i = 1, . . . , n

which implies

c1 = 0.

Consequently, if

∃ im = jm, 1 ≤ m ≤ k in
(

i1 i2 · · · ik
j1 j2 · · · jk

)
, 1 < k ≤ n

then the corresponding term

wGr
i1,j1

wGr
i2,j2
· · ·wGr

ik,jk
= 0.

An algorithm for a decomposition of weighted digraphs 207

For k = 2, the above implies that the terms in c2 must have the form

c2 = −
∑

(
i1 i2
i2 i1

)
∈Sn

sign
(

i1 i2
i2 i1

)
wGr

i1,i2 wGr
i2,i1

since the terms wGr
i1,i2 wGr

i2,i1 corresponding to permutations

(
i1 i2
i1 i2

)

are zero. Furthermore, there are no two-cycles vi1 → vi2 → vi1 in Gr, thus

wGr
i1,i2 wGr

i2,i1 ≡ 0 ∀i1, i2 = 1, . . . , n

which implies

c2 = 0.

And consequently, if

∃ im = jm′ , im′ = jm, 1 ≤ m, m′ ≤ k

in
(

i1 · · · im · · · im′ · · · ik
j1 · · · jm · · · jm′ · · · jk

)
, 1 < k ≤ n

then the corresponding term

wGr
i1,j1
· · ·wGr

im,jm
· · ·wGr

im′ ,jm′ · · ·w
Gr
ik,jk
= wGr

i1,j1
· · ·wGr

im,jm
· · ·wGr

jm,im
· · ·wGr

ik,jk
= 0.

The same argument on k-cycles gives

wGr
i1,ik wGr

ik,ik−1
· · ·wGr

i2,i1 ≡ 0

for k = 3, 4, . . . , n, which implies

ck = 0, ∀k = 3, 4, . . . , n.

Therefore the characteristic function

λn + c1λ
n−1 + c2λ

n−2 + · · · + cn = λn = 0

⇒ λ = 0.

This completes the proof of Corollary 2.2.

208 L. Sun, M. Wang

3 Illustrative examples

In this section, three simple, hypothetical examples are used to illustrate the
properties of the algorithm and the decomposition. The numbers used are for
illustration convenience, they do not correspond to realistic population dynam-
ics situations.

Example 3.1 – A simple decomposition with non-empty remainder graph
Consider the weighted digraph in Fig. 1.

The corresponding matrix of directed weights is

from

[1] [2] [3]

to
[1]
[2]
[3]




13 12 15
26 18 0
0 15 2


 = G

We begin by searching for simple cycles starting from the node 1.

– Start with node 1, find a positive cycle in G containing node 1. We get
L1 = {1→ 2→ 1}.

– Take the smallest edge weight wG
12 = 12 in the selected cycle as the weight

for all edges of L1.
– Remove the cycle L1 from the graph G. The remaining graph G1 is shown

in Fig. 2.
– Start with node 1, find another cycle in G1 containing node 1. We get L2 =
{1→ 2→ 3→ 1}.

– Take the smallest edge weight wG1
21 = 14 in the cycle L2 as the weight for all

edges in the cycle.
– Remove the cycle L2 from the graph G1. The remaining graph G2 is shown

in Fig. 3.
– The remaining graph G2 contains three self-loops, or one-cycles. Remove

the self-loops L3, L4 and L5 from G2. The remaining graph G5 is shown in
Fig. 4.

1 2 3

15

1526

12

213 18

Fig. 1 Example 3.1, original graph G

An algorithm for a decomposition of weighted digraphs 209

1 2 3

15

15

213 18

14

Fig. 2 Example 3.1, subgraph G1

31 2

213 18

1

1

Fig. 3 Example 3.1, subgraph G2

1 2 3
1

1

Fig. 4 Example 3.1, remainder graph G5

– G5 contains no cycles. The original graph is decomposed into five cycles and
a remainder graph G5.

G = G5

⋃



5⋃
i=1

Li




– The decomposition steps can be written in terms of a decomposition of the
corresponding matrix. To remove L1 from G,

G =



13 12 15
26 18 0
0 15 2


 =




0 12 0
12 0 0
0 0 0


+




13 0 15
14 18 0
0 15 2


 = L1+G1

210 L. Sun, M. Wang

1 2 3

12

213 18

11

Fig. 5 Example 3.2, subgraph G1

To remove L2 from G1,




13 12 15
26 18 0
0 15 2


 =




0 12 0
12 0 0
0 0 0


+




0 0 14
14 0 0
0 14 0


+




13 0 1
0 18 0
0 1 2




To complete the decomposition,

G =



13 12 15
26 18 0
0 15 2


 =




0 12 0
12 0 0
0 0 0


+




0 0 14
14 0 0
0 14 0


+




13 0 0
0 0 0
0 0 0




+



0 0 0
0 18 0
0 0 0


+




0 0 0
0 0 0
0 0 2


+




0 0 1
0 0 0
0 1 0




G = {1→ 2→ 1}
⋃
{1→ 2→ 3→ 1}

⋃
{self loops}

⋃
G5

Notice that, the corresponding characteristic function of the remainder
graph Gr = G5 is

det




λ 0 −1
0 λ 0
0 −1 λ


 = λ3

All eigenvalues of Gr are zero.

Example 3.2 – Non-uniqueness of the decomposition
Consider the same weighted digraph G in Fig. 1 of Example 3.1. This time

we extract the three-cycle {1→ 2→ 3→ 1} first. The first remaining graph G1
is Fig. 5.

Notice that the edge weight for the cycle {1→ 2→ 3→ 1} is 15 instead of 14
as in Example 3.1. Next we extract the two-cycle {1→ 2→ 1}. The edge weight
for the cycle is 11 instead of 12 as in Example 3.1. The remaining subgraph G2
is Fig. 6.

An algorithm for a decomposition of weighted digraphs 211

31 2

213 18

1

Fig. 6 Example 3.2, subgraph G2

31 2

1

Fig. 7 Example 3.2, remainder graph G5

Removing the self loops will end up with an acyclic graph G5 (Fig. 7).
The corresponding matrix decomposition is




13 12 15
26 18 0
0 15 2


 =




0 0 15
15 0 0
0 15 0


+




0 11 0
11 0 0
0 0 0


+




13 0 0
0 0 0
0 0 0




+



0 0 0
0 18 0
0 0 0


+




0 0 0
0 0 0
0 0 2


+




0 1 0
0 0 0
0 0 0




This alternative decomposition can be written as

G = {1→ 2→ 3→ 1}
⋃
{1→ 2→ 1}

⋃
{self loops}

⋃
G5

The decomposition results in the same set of cycles as in the previous exam-
ple, but the edge weights are different. Although the remainder graph here is
different from the remainder graph in the previous example, its characteristic
function is

det




λ −1 0
0 λ 0
0 0 λ


 = λ3

Again all eigenvalues of Gr are zero.

Example 3.3 – A complete decomposition into cycles
Consider the weighted digraph in Fig. 8.
This is the graph in Example 3.1 with weight wG

12 = 11 instead of 12. However
this modified graph satisfies the flow conservation condition

212 L. Sun, M. Wang

3∑
j=1

wij =
3∑

j=1

wji, ∀i = 1, 2, 3

This can be seen more clearly from the row and column sums of the correspond-
ing matrix:

row sum


13 11 15
26 18 0
0 15 2




39
44
17

column sum 39 44 17

The decomposition will be complete, i.e. Gr = Ø, the empty graph. The matrix
decomposition can be written as

G =



13 12 15
26 18 0
0 15 2


 =




0 11 0
11 0 0
0 0 0


 +




0 0 15
15 0 0
0 15 0


 +




13 0 0
0 18 0
0 0 2




The graph is decomposed into five cycles:

G = {1→ 2→ 1}
⋃
{1→ 2→ 3→ 1}

⋃
{self loops}

In this example, the decompositions are the same whether one starts from the
long cycle {1→ 2→ 3→ 1} or from the short cycle {1→ 2→ 1}.

4 Applications in life cycle analysis

In this section, we apply the proposed method to life cycle analysis, more spe-
cifically loop analysis, in population dynamics studies.

4.1 Matrix population models

In the analysis of population structures and population dynamics, matrix popu-
lation models have been used on a wide range of species. A typical population
projection matrix is of the form

N(t + 1) =




N1(t + 1)

N2(t + 1)
...

Nn(t + 1)


 =




a11 a12 · · · a1n
a21 a22 · · · a2n

...
... · · · ...

an1 an2 · · · ann







N1(t)
N2(t)

...
Nn(t)


 = A N(t)

An algorithm for a decomposition of weighted digraphs 213

where n is the number of life cycle stages and Ni(t) is the number of individuals
of the population in stage i at time t. The stages are phases in the life cycle, such
as age and size, identified as potentially having high impact on the population
growth rate. The projection matrix element aij is the contribution of individuals
in stage j at time t to the population in stage i at time t + 1, i.e., the proportion
of stage j individuals that survive and grow into stage i plus the rate of success-
ful birth by stage j individuals into stage i from time t to time t + 1. Based on
Perron–Frobenius theory and its variations [3] on non-negative, irreducible and
primitive matrices, the matrix A has a dominating eigenvalue (i.e., one of largest
norm) λ > 0. Biologically, λ is the long term growth rate of the population.

4.2 Sensitivity and elasticity matrices

The matrix elements aij are composed of life cycle parameters such as survival
rate, growth rate and birth rate of individuals in a stage. The impact of life cycle
parameters on the population growth rate can be analyzed via the sensitivity
matrix S = (

sij
)

n×n , sij = ∂λ
∂aij

and the elasticity matrix E = (
eij

)
n×n , eij = ∂ ln λ

∂ ln aij

evaluated at the long term population rate. The analysis is particularly useful in
demographic analysis [10–12]. The relationship between S and E is eij = λ

aij
sij.

Elasticities are also called proportional sensitivities. The total elasticity (the
sum of the elements in E) is one, or 100%. In addition, elasticity is conserved
at each stage:

n∑
j=1

eij =
n∑

j=1

eji ∀i = 1, . . . , n,

i.e., the elasticity matrix satisfies the flow conservation condition. In life cycle
analysis, elasticity can be viewed as a conservative quantity that “flows” through
the life cycle graph. When the population life cycle graph decomposes into
different cycles that represent life paths followed by different individual organ-
isms (as in loop analysis described in the section below), the total elasticity
of each cycle represents the proportional sensitivity of the population growth
rate λ to the particular life path. In other words, elasticities can be used to
describe the relative contribution of alternative life paths to variations in total
population growth rate λ.

4.3 Loop analysis

Loop analysis is a type of sensitivity analysis for demographic models. For
example, Fig. 8 in Example 3.3 can be viewed as a graphical representation
of a demographic model – a life cycle graph. The nodes {1, 2, 3} may repre-
sent three life stages, e.g., {baby, youth, adult}, or {small, medium, large}. The
edges represent directed transitions between stages. A population projection

214 L. Sun, M. Wang

1 2 3

15

1526

213 18

11

Fig. 8 Example 3.3, original graph G

matrix describes the transition rate between stages. Loop analysis, or life cycle
analysis, focuses on the life cycles, their fates, and their contributions to total
population growth rate. Life cycles (simple cycles in graph theory), such as
{1→ 2→ 3→ 1} and {1→ 2→ 1}, are called loops. Each life cycle is a path
followed by some individuals in the population. In loop analysis, the weights of
the directed edges in the life cycle graph are the elasticity values. To conduct
loop analysis, the life cycle graph is decomposed into a set of loops. Loop elas-
ticity is defined as the sum of the weights of the edges in the loop. Since elasticity
matrix satisfies the flow conservation condition, biologically, loop elasticity of
a life cycle can be interpreted as the proportional sensitivity of the population
growth rate to the life cycle. The flow conservation condition also implies that
loop elasticities are additive. The total elasticity of all loops sums to 100%.
Loop elasticities of different life cycles can be used to compare the relative
contributions of the various life cycles to changes in the population growth rate.

A graph theoretic spanning-tree method can be used to decompose the life
cycle graph into a set of loops. The method was formulated and illustrated
by Wardle [13] with detail and clarity. Wardle also pointed out problems in
using the spanning tree method. Primarily, it may be hard or impossible to
avoid loops containing contradictory directions when decomposing complex
life cycle graphs. The following examples present such situations and illustrate
our proposed decomposition method.

4.4 Examples

Example 4.1 – A classic example (teasel Dipsacus sylvestris)
This example was used in Wardle [13] to illustrate loops with contradictory

directions. Wardle also proposed methods to deal with such loops. The life cycle
graph (Fig. 9) is reproduced based on the version in [13], originally from Werner
[14], Werner and Caswell [15], Caswell and Werner [4] and later reanalyzed by
Caswell [3].

Dipsacus sylvestris is a monocarpic (bearing fruit but once, and dying after
fructification), perennial plant. In the life cycle graph, the stages 1–6 represent:
first year dormant seeds, second year dormant seeds, small rosettes, medium
rosettes, large rosettes, and flowering individuals. The weights of the directed

An algorithm for a decomposition of weighted digraphs 215

1

2

3

4 6

5

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 9 Example 4.1, the life cycle graph G and two spanning trees

edges are the elasticities (not shown in the figure). The original elasticity matrix
(×100) is

stage (1) (2) (3) (4) (5) (6) row sum
(1) 0 0 0 0 0 6.594 6.594
(2) 0.025 0 0 0 0 0 0.025
(3) 0.079 0.025 0.015 0 0 0.151 0.270
(4) 0.750 0 0.256 2.773 0 23.270 27.049
(5) 5.740 0 0 19.120 2.272 4.454 31.586
(6) 0 0 0 5.157 29.310 0 34.467

column sum 6.594 0.025 0.271 27.050 31.582 34.469 99.991

(2)

The life cycle graph is complicated. There are no known spanning trees that
can produce a set of loops containing no contradictory directions. Wardle [13]
selected a set that contains one loop with contradictory directions, using the
first spanning tree 2⇒ 3⇒ 4⇒ 5⇒ 6⇒ 1 in Fig. 9.

A spanning tree of a graph is an acyclic subgraph connecting all n nodes in
the original graph. Notice that a spanning tree always consists of n − 1 edges.
Two possible spanning trees are depicted in Fig. 9. The co-tree consists of the
|E(G)| − (n− 1) edges not used by the spanning tree, where |E(G)| is the total
number of edges in the original graph G.

A loop is formed by adding an edge from the co-tree to the spanning tree.
For example, adding the edge 1→ 3 to the first spanning tree produces the loop
{1→ 3⇒ 4⇒ 5⇒ 6⇒ 1}, where double arrows represent edges in the span-
ning tree and the single arrow is the edge from the co-tree. The weight of the
edge from the co-tree is the characteristic elasticity of the loop. The loop elastic-
ity is the characteristic elasticity multiplied by the length of the loop. Therefore,
the loop {1→ 3⇒ 4⇒ 5⇒ 6⇒ 1} has characteristic elasticity 0.079 and loop
elasticity 0.079× 5 = 0.395.

216 L. Sun, M. Wang

Each spanning tree uniquely determines a set of independent loops because
each loop contains a unique edge from the co-tree. The problematic loop for the
first tree occurs when the edge 4→ 6 is added to the tree. The loop formed is

{4⇒ 5⇒ 6← 4} (3)

The loop contains contradictory directions. There are no biological interpreta-
tions for such loops. No individuals in the population follow the path of the loop
as a life cycle. Other spanning trees for this example do not avoid producing
loops with contradictory directions. Wardle proposed three methods to handle
the problem after the set of loops is produced.

To use our proposed algorithm to decompose the life cycle graph (Fig. 9), we
start with the elasticity matrix. Theoretically, the elasticity matrix should satisfy
the flow conservation condition. However, in the given elasticity matrix (2), the
flow conservation condition is only approximately satisfied because of rounding
errors. We modify the elements (3,6), (4,6) and (5,6) slightly to obtain a matrix
that satisfies the flow conservation condition:

stage (1) (2) (3) (4) (5) (6) row sum
(1) 0 0 0 0 0 6.594 6.594
(2) 0.025 0 0 0 0 0 0.025
(3) 0.079 0.025 0.015 0 0 0.152 0.271
(4) 0.750 0 0.256 2.773 0 23.271 27.050
(5) 5.740 0 0 19.120 2.272 4.450 31.582
(6) 0 0 0 5.157 29.310 0 34.467

column sum 6.594 0.025 0.271 27.050 31.582 34.467 99.989

(4)

The difference between different modifications is usually negligible as long as
sufficient significant digits are left untouched. The elasticities in (4) are assigned
as the weights of the directed edges in the life cycle graph of Fig. 9. Using the
proposed algorithm, we decompose the graph into a set of loops with no con-
tradictory directions (Table 1).

The step by step decomposition of the elasticity matrix (5) is in the Appen-
dix. The total number of loops is 11 = edges − nodes + 1 = 11 − 6 + 1, which
equals the nullity of the life cycle graph G of Fig. 9. Table 1 exhibits one set
of loops listed in the order searched. The loops can be further grouped [13] to
represent plants that are: (a) with 2 years in seed bank; (b) with 1 year in seed
bank; (c) quadrennials; (d) triennials; (e) biennials; and (f) with delays at rosette
stages. Different search orders could produce different loops. Here the loops
with starting stage 1 were given higher priorities. Search order does not affect
the loop elasticities of the self-loops L9, L10, L11. Notice that the loop L7 cannot
be produced by the first spanning tree in Fig. 9. In one of the methods (Method
C) proposed by Wardle [13] to handle the loop with contradictory directions,
loop (3) was changed into L7, the loop elasticity of another loop (corresponding
to L6) was adjusted accordingly to keep total elasticity unchanged. Other than

An algorithm for a decomposition of weighted digraphs 217

Table 1 Example 4.1 loops, the removed edges of each loop, characteristic elasticities and loop
elasticities

Graph Simple cycle Removed Minimum wgt Loop wgt Sum
(loop) edge of char. loop

min wgt elasticity elasticity

(a) L1={1→ 2→ 3→ 4→ 5→ 6→1} (2,1) 0.025 0.150 0.150
(b) L2={1→ 3→ 4→ 5→ 6→ 1} (3,1) 0.079 0.395 20.615

L3 = {1→ 4→ 5→ 6→ 1} (4,1) 0.750 3.000
L4 = {1→ 5→ 6→ 1} (5,1) 5.740 17.220

(c) L5 = {3→ 4→ 5→ 6→ 3} (4,3) 0.152 0.608 0.608
(d) L6 = {4→ 5→ 6→ 4} (5,4) 18.114 54.342 54.342
(e) L7 = {4→ 6→ 4} (6,4) 5.157 10.314 19.214

L8 = {5→ 6→ 5} (6,5), (5,6) 4.450 8.900
(f) L9 = {3↔ 3} (3,3) 0.015 0.015 5.060

L10 = {4↔ 4} (4,4) 2.773 2.773
L11 = {5↔ 5} (5,5) 2.272 2.272
Total 99.989 99.989

small differences due to our adjustment of the rounding errors in the elasticity
matrix, the set of loops listed in the above table is consistent with the set of
modified loops obtained in [13] by Method C.

Example 4.2 – A new challenge
The life cycle graph in Fig. 10 based on a model for a population of kelp

(Alaria Nana, [8]) motivated the development of the proposed decomposition
method.

Stages 1, 3, 5 represent slow growers with sizes small, medium and large,
and 2, 4, 6 represent fast growers with sizes small, medium and large. Dotted
lines indicate reproductions. The model is inspired by the research of Pfister
and Stevens [8] and is developed further in [9]. In this example, we focus on the
mathematical issues in the decomposition, using an elasticity matrix based on
one set of estimated parameters. For readability, the following matrix consists
of elements of the elasticity matrix multiplied by 1,000. Routine modification
has been applied to the matrix to preserve the flow conservation condition.

stage (1) (2) (3) (4) (5) (6) row sum
(1) 79 21 2 1 12 10 125
(2) 34 74 2 2 16 15 143
(3) 9 14 22 20 0 0 65
(4) 3 34 14 25 0 0 76
(5) 0 0 15 12 190 99 316
(6) 0 0 10 16 98 152 276

column sum 125 143 65 76 316 276 1001

(5)

For the life cycle graph in Fig. 10, the number of independent loops equals the
nullity 23 = 28− 6+ 1. There are considerable difficulties in using the spanning
tree method to produce a set of loops. The following trees

218 L. Sun, M. Wang

1 3 5

62 4

Fig. 10 Example 4.2 life cycle graph

1 ⇒ 3 ⇒ 5
⇓
2 ⇒ 4 ⇒ 6

(6)

and

1 ⇒ 3 ⇒ 5
⇑
2 ⇒ 4 ⇒ 6

(7)

produce several pairs of loops that are biologically interesting, such as
{1⇒3⇒5→ 1} and {2⇒ 4⇒ 6→ 2}, representing life cycles of individuals
with a definite growth status. However each set spanned by the trees (6) or (7)
contains ten loops with contradictory directions. The spanning tree

2⇒ 3⇒ 4⇒ 5⇒ 6⇒ 1

produces fewer loops (four) with contradictory directions. However many loops
of biological interest do not show up in this set, and the number of loops with
contradictory directions are still too numerous to be handled by the modifica-
tion method in [13]. Other spanning trees considered are inferior in terms of
the production of many loops with contradictory directions and the inability to
obtain pairs of loops of biological interest.

Combining stages is another way to handle loops with contradictory direc-
tions. We also considered combining stages 1 and 2, or stages 5 and 6. Certain
spanning trees can produce a few pairs of loops of moderate interest. However,
loops with contradictory directions spring up persistently.

An algorithm for a decomposition of weighted digraphs 219

Table 2 Example 4.2 loops, the removed edges of each loop, characteristic elasticities and loop
elasticities

Simple cycle Removed edge Minimum weight Loop weight
(loop) of min weight characteristic elasticity loop elasticity

L1 = {1→ 3→ 1} (1,3) 2 4
L2 = {2→ 4→ 2} (2,4) 2 4
L3 = {1→ 3→ 5→ 1} (3,1) 7 21
L4 = {2→ 4→ 6→ 2} (2,6) 15 45
L5 = {1→ 4→ 6→ 1} (6,4) 1 3
L6 = {1→ 4→ 5→ 1} (1,4) 2 6
L7 = {1→ 2→ 3→ 5→ 1} (1,5) 3 12
L8 = {1→ 2→ 3→ 6→ 1} (1,6) 9 36
L9 = {1→ 2→ 4→ 1} (1,4) 1 3
L10 = {2→ 3→ 5→ 2} (3,2) 2 6
L11 = {2→ 4→ 5→ 2} (4,5) 10 30
L12 = {2→ 4→ 3→ 5→ 2} (5,3) 3 12
L13={2→ 4→ 3→ 6→ 5→ 2} (2,5) 1 5
L14 = {2→ 4→ 3→ 2} (4,2) 2 6
L15 = {1 � 2} (1,2) 21 42
L16 = {3 � 4} (4,3) 14 28
L17 = {5 � 6} (6,5) 98 196
L18 = {1↔ 1} (1,1) 79 79
L19 = {2↔ 2} (2,2) 74 74
L20 = {3↔ 3} (3,3) 22 22
L21 = {4↔ 4} (4,4) 25 25
L22 = {5↔ 5} (5,5) 190 190
L23 = {6↔ 6} (6,6) 152 152
Total 1001

Using the proposed method, we obtain a set of loops with no contradictory
directions. Also, pairs of loops (e.g., L1 and L2, L3 and L4) that are biologically
interesting appear in the same set (Table 2).

Since the data and parameter estimates used here are intermediate results
from a work in progress [9], we restrain our comments to mathematically rele-
vant matters. The loops are independent. The total number of loops in the set
is 23, which equals the nullity of the graph. The decomposition gives priorities
to loops of interest (L1 — L4) and loops started at stages 1 and 2. Corollary 2.1
asserts the complete decomposition of the matrix, regardless of loop selections.
This set of loops cannot be produced from any spanning tree. The decomposi-
tion of the elasticity matrix (5) is similar to that of Example 4.1. Details of the
decomposition are in the Appendix.

5 Conclusion

5.1 Biological implications

In the study of population dynamics, loop analysis has been used for comparing
the relative importance of different life paths to the population growth rate.
An essential step of loop analysis is to decompose the life cycle graph of the

220 L. Sun, M. Wang

population into a set of life cycles followed by individuals in the population.
A graph theoretic spanning tree method has been used to provide a system-
atic approach to the decomposition. The method provides a set of loops with
elasticities summing to 1. However there are difficulties in realizing a suitable
decomposition for complex life histories using the spanning tree method. One
of the problems is the occurrence of life cycles that contain contradictory direc-
tions, caused by the existence of two or more pairs of life stages with reversions
(e.g., the life stage pairs 4 � 5 and 5 � 6 in Example 4.1, and the pairs 2 � 3,
2 � 4 and 3 � 4 in Example 4.2). Cycles with contradictory directions are
unavoidable for some complex life cycle graphs: there may not exist any tree
that spans a set of cycles containing no contradictory directions. There is no bio-
logical interpretation for such cycles, since a cycle with contradictory directions
generally cannot represent the life path followed by individual organisms. Ad
hoc method to modify or eliminate cycles with contradictory directions have
not been satisfactory. The proposed algorithm guarantees a complete decompo-
sition of a population life cycle graph into a set of life cycles that do not contain
contradictory directions. As in the spanning tree method, the decomposition
is generally not unique, and thus important, meaningful life cycles should be
given higher priority for selection by the algorithm.

5.2 The algorithm and its properties

We propose an algorithmic searching procedure for decomposing a directed,
weighted graph. This proposed approach can be viewed as the spanning tree
method reversed.

In the spanning tree method, arcs are successively added to a basic tree,
corresponding to adding edges to an acyclic graph containing all nodes. The
method presented here starts with the whole graph, removing (at least) one
edge at a time. Both methods yield a set of independent cycles. If the original
full graph satisfies the flow conservation condition, then our method guaran-
tees that the remaining graph still satisfies the condition after each removal
of a simple cycle with no contradictory directions, as shown in Corollaries 2.1
and 2.2. Therefore the graph can be completely decomposed into such simple
cycles. In applications to life cycle analysis, this property ensures that an elastic-
ity matrix will be decomposed into a complete set of loops with no contradictory
directions, as illustrated in Examples 4.1 and 4.2, thereby resolving a standing
problem in loop analysis.

The proposed decomposition is generally not unique, just as different span-
ning trees produce different sets of cycles. The interests of the subject matter
should dominate the order and selection of cycles. Important, meaningful cycles
should be given higher priority during the decomposition.

The number of simple cycles in a decomposition of a life cycle graph is at
most

the number of edges − the number of stages + 1

An algorithm for a decomposition of weighted digraphs 221

because the cycles in a decomposition are independent. The complexity of
the search procedure for one simple cycle with no contradictory directions is
O(|E(G)|), where |E(G)| is the number of the edges of the graph G. For the
decomposition of the entire graph into a set of such cycles and a remaining
graph, the complexity is O(|E(G)|2). In other words, the complexity increases
rapidly with |E(G)|. The algorithm may not be suitable for graphs with very
large |E(G)|. In practice, we typically look for one set of cycles instead of
obtaining all possible decompositions.

Acknowledgements We thank C. Pfister for presenting the challenge of conducting loop analysis
for the matrix (5), for kindly allowing us to use her parameter estimates in Example 4.2, and for
many conversations that helped us to focus on the biological questions to be answered. We thank
the editor for his valuable, constructive suggestions.

6 Appendix

6.1 The decomposition of G in (4)

G=




0 0 0 0 0 6.594
0.025 0 0 0 0 0
0.079 0.025 0.015 0 0 0.152
0.750 0 0.256 2.773 0 23.271
5.740 0 0 19.120 2.272 4.450

0 0 0 5.157 29.310 0




=




0 0 0 0 0 6.569
0 0 0 0 0 0

0.079 0 0.015 0 0 0.152
0.750 0 0.231 2.773 0 23.271
5.740 0 0 19.095 2.272 4.450

0 0 0 5.157 29.285 0



+




0 0 0 0 0 .025
.025 0 0 0 0 0

0 .025 0 0 0 0
0 0 .025 0 0 0
0 0 0 .025 0 0
0 0 0 0 .025 0




= G1
⋃

L1 (= {1→2→3→4→5→6→1})

G1 =




0 0 0 0 0 6.490
0 0 0 0 0 0
0 0 0.015 0 0 0.152

0.750 0 0.152 2.773 0 23.271
5.740 0 0 19.016 2.272 4.450

0 0 0 5.157 29.206 0



+




0 0 0 0 0 0.079
0 0 0 0 0 0

0.079 0 0 0 0 0
0 0 0.079 0 0 0
0 0 0 0.079 0 0
0 0 0 0 0.079 0




= G2
⋃

L2 (= {1→ 3→ 4→ 5→ 6→ 1})

G2 =




0 0 0 0 0 5.740
0 0 0 0 0 0
0 0 0.015 0 0 0.152
0 0 0.152 2.773 0 23.271

5.740 0 0 18.266 2.272 4.450
0 0 0 5.157 28.456 0



+




0 0 0 0 0 0.750
0 0 0 0 0 0
0 0 0 0 0 0

0.750 0 0 0 0 0
0 0 0 0.750 0 0
0 0 0 0 0.750 0




= G3
⋃

L3 (= {1→4→5→6→1})

222 L. Sun, M. Wang

G3 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0.152
0 0 0.152 2.773 0 23.271
0 0 0 18.266 2.272 4.450
0 0 0 5.157 22.716 0



+




0 0 0 0 0 5.740
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

5.740 0 0 0 0 0
0 0 0 0 5.740 0




= G4
⋃

L4 (= {1→5→6→1})

We have exhausted all cycles started from stages 1 and 2.

G4 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 23.271
0 0 0 18.114 2.272 4.450
0 0 0 5.157 22.564 0



+




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.152
0 0 0.152 0 0 0
0 0 0 0.152 0 0
0 0 0 0 0.152 0




= G5
⋃

L5 (= {3→4→5→6→3})

G5 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 5.157
0 0 0 0 2.272 4.450
0 0 0 5.157 4.450 0



+




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 18.114
0 0 0 18.114 0 0
0 0 0 0 18.114 0




= G6
⋃

L6 (= {4→ 5→ 6→ 4})

G6 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 0
0 0 0 0 2.272 4.450
0 0 0 0 4.450 0



+




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 5.157
0 0 0 0 0 0
0 0 0 5.157 0 0




= G7
⋃

L7 (= {4→ 6→ 4})

G7 =




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.015 0 0 0
0 0 0 2.773 0 0
0 0 0 0 2.272 0
0 0 0 0 0 0



+




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 4.450
0 0 0 0 4.450 0




= G8
⋃

L8 (= {5→ 6→ 5})

where G8 consists of three self-loops:

G8 = L9
⋃

L10

⋃
L11 = {3 � 3}

⋃
{4 � 4}

⋃
{5 � 5}

An algorithm for a decomposition of weighted digraphs 223

Therefore G is decomposed completely into 11 loops:

G =
11⋃

i=1

Li

6.2 The decomposition of G in (5)

G =




79 21 2 1 12 10
34 74 2 2 16 15
9 14 22 20 0 0
3 34 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152



=




79 21 0 1 12 10
34 74 2 2 16 15
7 14 22 20 0 0
3 34 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152



+




0 0 2 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




= G1
⋃

L1(= {1→ 3→ 1})

Subtracting the loop L1, the remaining graph G1 can be decomposed as

G1 =




79 21 0 1 12 10
34 74 2 2 16 15
7 14 22 20 0 0
3 34 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152



=




79 21 0 1 12 10
34 74 2 0 16 15
7 14 22 20 0 0
3 32 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152



+




0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




= G2
⋃

L2(= {2→ 4→ 2})

Subtracting the loop L2, the remaining graph G2 can be decomposed as

G2 =




79 21 0 1 12 10
34 74 2 0 16 15
7 14 22 20 0 0
3 32 14 25 0 0
0 0 15 12 190 99
0 0 10 16 98 152



=




79 21 0 1 5 10
34 74 2 0 16 15
0 14 22 20 0 0
3 32 14 25 0 0
0 0 8 12 190 99
0 0 10 16 98 152



+




0 0 0 0 7 0
0 0 0 0 0 0
7 0 0 0 0 0
0 0 0 0 0 0
0 0 7 0 0 0
0 0 0 0 0 0




= G3
⋃

L3(= {1→3→5→1})

Subtracting the loop L3, the remaining graph G3 can be decomposed as

G3=




79 21 0 1 5 10
34 74 2 0 16 15
0 14 22 20 0 0
3 32 14 25 0 0
0 0 8 12 190 99
0 0 10 16 98 152



=




79 21 0 1 5 10
34 74 2 0 16 0
0 14 22 20 0 0
3 17 14 25 0 0
0 0 8 12 190 99
0 0 10 1 98 152



+




0 0 0 0 0 0
0 0 0 0 0 15
0 0 0 0 0 0
0 15 0 0 0 0
0 0 0 0 0 0
0 0 0 15 0 0




= G4
⋃

L4(= {2→4→6→2})

224 L. Sun, M. Wang

We have obtained the most desirable loops that track slow growers and fast
growers. Now subtracting the loop L4, the remaining graph G4 can be decom-
posed in possibly different ways. Consider

G4=




79 21 0 1 5 10
34 74 2 0 16 0
0 14 22 20 0 0
3 17 14 25 0 0
0 0 8 12 190 99
0 0 10 1 98 152



=




79 21 0 1 5 9
34 74 2 0 16 0
0 14 22 20 0 0
2 17 14 25 0 0
0 0 8 12 190 99
0 0 10 0 98 152



+




0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0




= G5
⋃

L5(= {1→ 4→ 6→ 1})

G5=




79 21 0 1 5 9
34 74 2 0 16 0
0 14 22 20 0 0
2 17 14 25 0 0
0 0 8 12 190 99
0 0 10 0 98 152



=




79 21 0 1 3 9
34 74 2 0 16 0
0 14 22 20 0 0
0 17 14 25 0 0
0 0 8 10 190 99
0 0 10 0 98 152



+




0 0 0 0 2 0
0 0 0 0 0 0
0 0 0 0 0 0
2 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 0 0




= G6
⋃

L6(= {1→4→5→1})

Further,

G6=




79 21 0 1 3 9
34 74 2 0 16 0
0 14 22 20 0 0
0 17 14 25 0 0
0 0 8 10 190 99
0 0 10 0 98 152



=




79 21 0 1 0 9
31 74 2 0 16 0
0 11 22 20 0 0
0 17 14 25 0 0
0 0 5 10 190 99
0 0 10 0 98 152



+




0 0 0 0 3 0
3 0 0 0 0 0
0 3 0 0 0 0
0 0 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0




= G7
⋃

L7(= {1→2→3→5→1})
where

G7=




79 21 0 1 0 9
31 74 2 0 16 0
0 11 22 20 0 0
0 17 14 25 0 0
0 0 5 10 190 99
0 0 10 0 98 152



=




79 21 0 1 0 0
22 74 2 0 16 0
0 2 22 20 0 0
0 17 14 25 0 0
0 0 5 10 190 99
0 0 1 0 98 152



+




0 0 0 0 0 9
9 0 0 0 0 0
0 9 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 9 0 0 0




G8
⋃

L8(= {1→2→3→6→1})!!"



79 21 0 0 0 0
21 74 2 0 16 0
0 2 22 20 0 0
0 16 14 25 0 0
0 0 5 10 190 99
0 0 1 0 98 152



+




0 0 0 1 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




G9
⋃

L9(= {1→ 2→ 4→ 1})

An algorithm for a decomposition of weighted digraphs 225

Now there are no more loops starting at state 1. Consider

G9=




79 21 0 0 0 0
21 74 2 0 16 0
0 2 22 20 0 0
0 16 14 25 0 0
0 0 5 10 190 99
0 0 1 0 98 152



=




79 21 0 0 0 0
21 74 2 0 14 0
0 0 22 20 0 0
0 16 14 25 0 0
0 0 3 10 190 99
0 0 1 0 98 152



+




0 0 0 0 0 0
0 0 0 0 2 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 0 0 0




= G10
⋃

L10(= {2→ 3→ 5→ 2})

G10 =




79 21 0 0 0 0
21 74 2 0 4 0
0 0 22 20 0 0
0 6 14 25 0 0
0 0 3 0 190 99
0 0 1 0 98 152



+




0 0 0 0 0 0
0 0 0 0 10 0
0 0 0 0 0 0
0 10 0 0 0 0
0 0 0 10 0 0
0 0 0 0 0 0




= G11
⋃

L11 = ({2→ 4→ 5→ 2})

G11 =




79 21 0 0 0 0
21 74 2 0 1 0
0 0 22 17 0 0
0 3 14 25 0 0
0 0 0 0 190 99
0 0 1 0 98 152



+




0 0 0 0 0 0
0 0 0 0 3 0
0 0 0 3 0 0
0 3 0 0 0 0
0 0 3 0 0 0
0 0 0 0 0 0




= G12
⋃

L12(= {2→ 4→ 3→ 5→ 2})

G12 =




79 21 0 0 0 0
21 74 2 0 0 0
0 0 22 16 0 0
0 2 14 25 0 0
0 0 0 0 190 98
0 0 0 0 98 152



+




0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0




= G13
⋃

L13(= {2→ 4→ 3→ 6→ 5→ 2})

G13 =




79 21 0 0 0 0
21 74 0 0 0 0
0 0 22 14 0 0
0 0 14 25 0 0
0 0 0 0 190 99
0 0 0 0 98 152



+




0 0 0 0 0 0
0 0 2 0 0 0
0 0 0 2 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




= G14
⋃

L14(= {2→ 4→ 3→ 2})

226 L. Sun, M. Wang

We have exhausted all life cycles started from and grown out of stages
1 and 2. Now

G14 =




0 21 0 0 0 0
21 0 0 0 0 0
0 0 0 14 0 0
0 0 14 0 0 0
0 0 0 0 0 98
0 0 0 0 98 0



+




79 0 0 0 0 0
0 74 0 0 0 0
0 0 22 0 0 0
0 0 0 25 0 0
0 0 0 0 190 0
0 0 0 0 0 152




= L15 ∪ L16 ∪ L17
⋃

L18 ∪ L19 ∪ L20 ∪ L21 ∪ L22 ∪ L23

= {1 � 2} ∪ {3 � 4} ∪ {5 � 6} ⋃ 6 self loops

Therefore G is decomposed completely into 23 loops:

G =
23⋃

i=1

Li

References

1. Bang-Jensen, J., Gutin, G.: Digraphs: theory, algorithms and applications. Springer, Berlin
Heidelberg New York (2001)

2. Carré, B.: Graphs and Networks. Clarendon Press, Oxford (1979)
3. Caswell, H.: Matrix Population Models: construction, analysis, and interpretation, 2nd edn.

Sinauer, Sunderland (2001)
4. Caswell, H., Werner, P.A.: Transient behavior and life history analysis of teasel (Dipsacus

sylvestris Huds.). Ecology 59, 53–66 (1978)
5. Diestel, R.: Graphs theory, 2nd edn. Springer, Berlin Heidelberg New York (2000)
6. van Groenendael, J., de Kroon, H., Kalisz, S., Tuljapurkar, S.: Loop analysis: evaluating life

history pathways in population projection matrices. Ecology 75, 2410–2415 (1994)
7. Jungnickel, D.: Graphs, networks and Algorithms. Springer, Berlin Heidelberg New York

(1999)
8. Pfister, C.A., Stevens, F.R.: Individual variation and environmental stochasticity: implications

for matrix model predictions. Ecology 84, 496–510 (2003)
9. Pfister, C.A., Wang, M.: Beyond size: matrix projection models for populations where size is

an incomplete descriptor. Ecology 86, 2673–2683 (2005)
10. Shea, K., Rees, M., Wood, S.N.: Trade-offs, elasticities and the comparative method. J. Ecol. 82,

951–957 (1994)
11. Silvertown, J., Franco, M., McConway, K.: A demographic interpretation of Grime’s triangle.

Funct. Ecol. 6, 130–136 (1992)
12. van Tienderen, P.H.: Life cycle trade-offs in matrix population models. Ecology 76(8),

2482–2489 (1995)
13. Wardle, G.M.: A graph theory approach to demographic loop analysis. Ecology 79(7),

2539–2549 (1998)
14. Werner, P.A.: Predictions of fate rosette size in teasel (Dipsacus fullonum L.). Oecologia 20,

197–201 (1975)
15. Werner, P.A., Caswell, H.: Population growth rates and age vs. stage distribution models for

teasel (Dipsacus sylvestris Huds.). Ecology 58, 1103–1111 (1977)

