Space and Time Scales
in Ambient Ozone Data

£

S. T. Rao,* I. G. Zurbenko,* R. Neagu,* P. S. Porter,* J. Y. Ku,® and R. F. Henry®

ABSTRACT

This paper describes the characteristic space and time scales in time series of ambient ozone data. The authors dis-
cuss the need and a methodology for cleanly separating the various scales of motion embedded in ozone time series
data, namely, short-term (weather related) variations, seasonal (solar induced) variations, and long-term (climate—policy
related) trends, in order to provide a better understanding of the underlying physical processes that affect ambient ozone
levels. Spatial and temporal information in ozone time series data, obscure prior to separation, is clearly displayed by
simple laws afterward. In addition, process changes due to policy or climate changes may be very small and invisible
unless they are separated from weather and seasonality. Successful analysis of the ozone problem, therefore, requires a
careful separation of seasonal and synoptic components.

The authors show that baseline ozone retains global information on the scale of more than 2 months in time and
about 300 km in space. The short-term ozone component, attributable to short-term weather and precursor emission fluc-
tuations, is highly correlated in space, retaining 50% of the short-term information at distances ranging from 350 to 400 km;
in time, short-term ozone resembles a Markov process with 1-day lag correlations ranging from 0.2 to 0.5. The correla-
tion structure of short-term ozone permits highly accurate predictions of ozone concentrations up to distances of about
600 km from a given monitor. These results clearly demonstrate that ozone is a regional-scale problem.

1. Introduction and long-term components is necessary since the pro-
cesses occurring at different frequencies are caused by
To discern whether a physical process is dynandifferent physical phenomena: the synoptic-scale com-
cally important in any particular situation, meteorolgonent is attributable to weather and short-term fluc-
gists introducescales of motionThe presence of tuations in precursor emissions, seasonal scale to
various scales of motion in time series of meteorologiariation in the solar angle, and long-term scale to
cal and air quality variables can complicate analysieanges in climate, policy, and/or economics (Rao and
and interpretation of data. Separation of time seriesaafrbenko 1994; Rao et al. 1995; Porter et al. 1996).
ozone and meteorological data into synoptic, seasotgpatial and temporal information in ozone and meteo-
rological data, obscure prior to separation, may be-
come clear afterward.
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tional reason for separately analyzing temporal comemponents. Reproduction of the synoptic (stochas-
ponents of ozone is that short-term phenomena ctin) component around the baseline will also re-cre-
tain information related to the transport of ozone aiatle exceedances (Rao et al. 1996). Thus, ozone air
conditions conducive to ozone accumulation. Seasogaklity management efforts can be addressed in
components, on the other hand, lend little insight baseline terms.
pollutant transport issues. The correlations among baseline components of
The purpose of this paper is to illustrate the temmeteorological variables are much stronger than those
poral and spatial information available in spectralligmong their short-term components. Baseline ozone
decomposed ozone and temperature data. Tre&ins global information on the scale of more than 2
Kolmogorov—Zurbenko (KZ) filter (Zurbenko 1986)months in time and about 300 km in space. Short-term
is used to separate data into short-term, seasonal, @anghe is highly correlated in space, retaining 50% of
long-term processes. Characteristics of the KZ filteshort-term information at distances ranging from 350
including parameter choices given a cutoff frequendp, 400 km. The correlation structure of short-term
and its transfer function are described in detail. Thiweather related) ozone permits accurate predictions
method is used because it provides effective sepavdozone concentrations up to distances of 600 km
tion of frequencies (Eskridge et al. 1997) and becaudsam a monitor. In contrast to baseline and short-term
it does not require special treatment for missing dateone, the information available in exceedance events
The anomaly (perturbation) method was not used lig-only about 15 km.
cause noticeable amounts of energy from all parts of
the spectrum are present in every component (Eskridge
et al. 1997). The wavelet transform method describ@d Spectral decomposition of time series
by Lau and Weng (1995) has very low leakage be- data
tween temporal components (Eskridge et al. 1997) but
requires special considerations for missing data. a. Database
Analysis of 437 sites in the United States for the Hourly concentrations of ozone (in ppb) at all
period 1983-94 indicates that only about 2% of tmeonitoring stations in the United States were extracted
total ozone variance is in the long-term componeffitpm the Environmental Protection Agency’s (EPA)
with the remainder divided roughly equally betweefierometric Information Retrieval System (AIRS) for
short-term and seasonal components. The variancéhef 1983-94 period. Also, temperature data (in °F) for
short-term and seasonal components varies considbe same time period were obtained from the nearest
ably across the United States. and most representative National Weather Service sta-
Temporal and spatial scales for czone componetitms. From this dataset, time series of daily maxima
are described in terms of the decay of the process adourly ozone and temperature were constructed and
relation in time (serial correlation) or space (correlanalyzed here.
tions between different stations as a function of
distance) to a value of &/ Process correlations foth. Conceptual model
temporal and spatial scales follow a Markov process Concentrations of atmospheric ozone depend on
and exponential decay, respectively. Threiddex of atmospheric variables and precursor concentrations
scale has also been used by the National Climatic D#tat have strong seasonal and synoptic components
Center to design monitoring networks (Wallis 1996jRao and Zurbenko 1994). Successful analysis of the
Whereas raw ozone data exhibit very slow decay @one problem requires a careful separation of sea-
serial correlations, serial correlation in the short-tersonal and synoptic components. Therefore, time series
component alone decays in 1 to 3 days to that expeaé&dzone and temperature data will be represented by
for white noise. The resemblance between short-term
ozone and white noise suggests that ozone events©éh= e(t) + Jt) + W(t); T(t) =e'(t) +S(t) + W (), (1)
be simulated by superimposing “noise” (computer-
generated random numbers) over the baseline (defimdtbre O(t) is the natural logarithm of the original
as the sum of long-term and seasonal componermsdne time series afdt) is the temperature time se-
(Rao et al. 1996). Similarly, Eskridge et al. (1997%)es, &t) is the long-term (trend) compone&}) is
suggest that time series of temperature data can asasonal chang@((t) is short-term variation, arids
be represented as the sum of “noise” and baseltmee. Wherea€)(t) is log-transformed with a view that

2154 Vol. 78, No. 10, October 1997



1075 .. ABS(KZ(15,1))
. 0o T KZ(15.2)
0.9+ |  ABSIE(153)
08 1 _resik(155)
e 2 K218
074
< 06
&
£ 05
= 015
B o4 E
03
02 ) LT
014 P
a0 «»,]_ ‘\,’_ I - | Nre . -l -...1'..~'L-—-..."< g R 3
0 00 00 012 015 010 0.15 0 025 030
frequency (1idays) frequency (1/days)

Fic. 1. Absolute value of the transfer function of the KZ filter. Fic. 2. Kernels (absolute valuekfis odd) for several sets of
filter parameters.

statistical analysis can be performed successfi(fy, inferences through anomaly-based models. In this
is not log-transformed since it already follows an agaper, components in the data due to different scales
ditive model; the components of this additive modedf motion are separated using the KZ filter (Zurbenko
W (1), S(t), and€(t) have the same meanings as tHE986, 1991). Among the several high-resolution fil-
ones in the first equation. Long-term, seasonal, ateds available, the KZ filter is distinguished by its
synoptic components are described by completely dfmple algorithm and the preservation of true infor-
ferent physical and chemical processes. mation when applied in a nonequally spaced and/or

missing data environment (Zurbenko et al. 1996;
c. Separation techniques Eskridge et al. 1997).

The choice of separation techniques is crucial. The KZ({mK) filter is defined a& applications of a
Anomaly techniques based on monthly, seasonal, anhple moving average of points. The moving av-
annual averages are far from adequate because&@ge can be expressed as
of the energy and 22% of the amplitude of each
component is mistakenly attributed to the others

(Eskridge et al. 1997). Such poor separation com- Y _1 (m_l)/i((t+s)
pletely destroys the possibility of drawing accurate t ms:—(;—l)/z . (2)
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Fic. 3. Same as Fig. 2 for KZ(15,5) and KZ(365,3).
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TasLe 1. Cutoff frequency for givem, k, anda. TaBLE 2. Parameters randk that give cutoff frequency
0.01492 with precision 0.001.

a m k Cutoff frequency
Cutoff

1/2 5 4 0.046405 a Precision m k frequency
1/2 11 5 0.018605 1/2 0.001 11 8 0.01474
1/2 13 3 0.020205 1/2 0.001 13 5 0.01573
1/2 15 5 0.013619 1/2 0.001 15 4 0.01520
1/2 11 8 0.014748 1/2 0.001 17 3 0.01543

1/2 0.001 11 7 0.01576

whereX is the original time series ands time (in

days). The serie§ becomes the input for the second

pass, and so on. The time series producdditeya- where w has units of cycles per day (frequency).

tions of the filter described by (2) is deno¥d. Equation (3) shows, among other things, that the KZ

The square transfer function of the iKZK) [see is a low-pass filter (Fig. 1).

Eskridge et al. (1997) for details on the transfer func- The parametek controls the level of noise sup-

tion] is given by pression. For example, if a value fois chosen such
that the height of the additional peaks in the squared

0 sin(nma)) 3 transfer function are to be less thar e resulting
|¢mk(w)|2 = O——0 , 3) Value fork will be 24 (Fig. 1). Once K is fixedn is
’ i sin(mw) chosen such that

a. original units ] wo - 7 \““ W ’ (4)
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T

wherew, is the desired separating fre-
qguency. The right side of (4) is the ap-
proximate solution to the equation
@ (P = 1/2.

Thus far, these values ofand kare
Yoor only approximations; their accuracy
should be checked by solving the equa-
, tion|g, (w)f = 1/2 forew [which we call
b. log-scale thecutoff frequency of the KZ(k) filter]
and assess its proximity &@, the desired
cutoff frequency. A computer program
that solves the above equations for any
values ofm andk is available from the
- authors. Theesults of the program have
L been tabulated (Table 1) so that one can
easily find the cutoff frequency givem,).
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Year Usually the problem appears in re-
Fic. 5. Comparison of short-term components for original and log ozone/§fS€: analysis O_f a periodogram |nd|—
Cliffside Park. cates the separating frequency; knowing
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TasLE 3. B-level interval for = 0.3 (30%). F

2540°
m k Interval Kernel center 2 01 _
5 4 (0.023174, 0.10683) 0.065002 & -
11 5 (0.009274, 0.04297) 0.026126 104 -
13 3 (0.010107, 0.04636) 0.028233 504¢
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11 8 (0.007336, 0.03419) 0.020766 Fic. 6. Raw periodogram of log ozone at Cliffside Park, New

Jersey.

this, we have to find the paim(k) that will produce a
cutoff frequency closest to the separating frequency. R:I F(e) @) [1_ qom,k(a))] deo. (5)
A program that takes as input a number (correspond-
ing to the separating frequency) and returns paikd ( Therefore, the kernel for the covariance between KZ
that will produce Kznk) filters having cutoff fre- and [1 -KZ] is given by
guencies within a given interval around the input fre-
guency is also available (see Table 2 for an example).
The above analysis was also done for an arbitrary k(ew) = q’m’k(w) [1_ (pmvk(w)] : ©6)
level of reduction (substitute one-half with arbitrary
a between 0 and 1) and tables with results for other There is high correlation between filtered data and
values ofa are available from the authors. residuals for small values k{Fig. 2); also, the width of
the kernel gets smaller asandk increase. The asymp-
d. Criteria for the effectiveness of separation totical convergence of the correlation to 0 is given by
techniques
The energy of separated processes should be con- 5
centrated at different frequencies (spectral domain) H 2471 BV O 1 O
and the information in th_e natural physi_cal processes O(R) = g(zm"'—l)z_l]T(E + OWE} (7)
that cause these energies should be independent of
each other. The degree to which this is accomplished
is evident in the filter's squared transfer functiomhe frequencies), at whichk(c) is concentrated, have
(gain), which shows the transfer of energy to eableen tabulated. The interval aroung inside which
component affected by a separation technique (ske kernel takes values bigger th@n, wheref is
Eskridge et al. 1997). A good separation technique is
characterized by a gain function that concentrates en-
ergy at the timescale of interest and does not mix enroac
ergies from different timescales. .
The squared transfer function (gain) gives us in-8o
formation about the transfer of energy to resulting
components. It does not tell us whether these ener 887 T
are mixed. More precisely, we want to have a measurg, ., i W
of the correlation between resulting components of the |
KZ filter. This is important when making inferences ,oqe |- \M\\VW

about the general process, having reasoned only on a

specific component. _ 00 0 00 015 am 0% 090 035040 0& 050
Calculation of the covariance between the result of frequency (1idays)
KZ filtration and the residual, [* KZ], gives Fic. 7. Same as Fig. 6 except smoothed with Daniell smoother.
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an arbitrary number between 0 and 1, have also béfenot impossible, were the short-term components

tabulated (Table 3). We call this t3devel interval. seasonal. In addition, without a log transformation, all

Approximations for the end points of tfgdevel in- higher-order nonlinear terms and effects in ozone data

terval can easily be calculated using the estimate of #re not separated and quantile—quantile (QQ) plots of

cutoff frequency given above. Figure 3 shows the kehe short-term component are nonlinear.

nels used to separate high-frequency (short term) andSeparation of Qf.y) in time by KZ filtration (with

low-frequency (long term) components in ozomek( appropriate parameter choices) provides baselifje (

= 15,5 and 365,3, respectively). and short-term or synopti©f) components defined
What is the meaning of thi$-level interval? We by

choosef (depending on the physics of the process)

such that we can assuik(ev) = 0 outside th¢g-level O(t,xy) = OB(t,x,y) + OS(t,x,y). (8)

interval. Now, if the frequency interval we are inter-

ested in is outside thiglevel interval, the componentsEquation (8) is practically realizable only wheéhand

are not correlated and we can perform further analy® components are cleanly separated. Poor separation

ses. Otherwise, a retuning of the parameteasidk leaves together in each component completely differ-

may be needed using, for example, Table 3. Figuredt physical phenomertaven when working only with

shows an example of@level interval for the kernel summer season ozone observations, which have

of the KZ(15,5) filter. smaller variation in the baseline relative to a complete
year, separation is needed to provide the correct short-
e. Log scale for ozone term component.

We will denote the natural logarithm of ozone
O(t,x,y), wheret is time and,y is the monitor loca- f. Partition of variability
tion. Log scales are as essential to the clear separaThe ozone time series data for 437 stations located
tion of the components of ozone as the choice afross the United States, extracted from the EPA’s
separation technique. The effect of working in the IGgRS for the 1983—-94 time period (daily maximum
scale can be illustrated using both raw and log-trarish ozone concentrations in ppb and daily maximum
formed ozone concentrations at Cliffside Park, Net@mperature in °F), were separated into high-frequency
Jersey. Filtration of raw o0zone concentrations leav@geather related) and low-frequency components (sea-
a short-term componeMy(t), that is clearly seasonalsonal and long term) using the KZ filter. Baseline
(Fig. 5a). Filtration of log-transformed ozone, on thezone is defined as the sum of the seasonal and long-
other hand, leaves a short-term stationary variable ttextm components:
is nearly independent of seasonal influences (Fig. 5b).
The statistical analyses of short-term components pre- baselinef) = e(t) + t). 9)
sented later in this paper would be extremely difficult,

Rao et al. (1996) simulated ozone time series data as
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Fic. 8. Same as Fig. 6 except adaptively smoothed; CsFic. 9. Standard deviation of adaptively smoothed peri-
=0.008%. odogram; Cs = 0.008%.
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O(t) Dbasdline(t) + N(O, 0.2)’ (10) riodograml (») within reaches a prespecified constant
valueC.. Thls amounts to considering spectral esti-

matesf (cq()
whereN is the normally distributed random varlable

with a zero mean and variance @f. Similarly, .
Eskridge et al. (1997) were able to recreate the tem- ; ( ) 1 : (w )
perature time series data as N 2r 41 e K+ ] 13)

k=-N/2+1..,N/2,
T(t) Dbaseline(t) + N(0,02), (11) N/2+1,...,N/2

whereg, ando;, are the standard deviations of the highvhere 2, + 1 is the length of the window of the adap-
frequency processes (the short-term component) in tive smoothing procedure, chosen such thi the
ozone and temperature time series data, respectividygest integer satisfying:

An estimate of the baseline was provided by the fil-
tered ozone or temperature: -1

2
_ _ z IN(wk+j+1)_|N(wk+j)] =< Cs. (14)
estimate of baseling(=KZ (12) =

where KZ,  refers to five passes of a simple moving
average of width 15 days. The effective filter width is
approximately 15(%) days, or approximately 33.5 I
days,which results in an approximate separation fre-, ..s |
guency of 0.5/[15(®%)] = 0.0149, or separation time of
approximately 67 days. From Table 1, we see that thgyae |
exact time ofseparation for KZ(15,5) is 1/0.0136
= 73.5 days. The baseline contains phenomena thac
have a period longehan 73.5 days, and the residuals
of the filter, [O(t) - KZ,, ] or [T(t) - KZ, ], contain 1040 = |
high-frequency processes. [

One might ask why K¢ _rather than some other
choice of parameters. For any set of parameters, one | Fu i
might also consider how well the synoptic variation 000 005 010 015 frzqzu%nc;)(i?dayc;):so 035 040 045 080
is separated from the baseline; that is, are the result-
ing components independent or is there some correla-
tion left between them (and, therefore, mixed energies)?
To answer these two questions, we will follow the
procedures outlined in sections 2c and 2d above. a5 - b

Typically, one would find the separating frequency
(cutoff frequency) from the power spectrum. In the 2
case of ozone data, however, it is difficult to find the
frequencies at which the energy is concentrated? -
(Figs. 6 and 7). The classical solution to this i mconve-
nience is to smooth the periodogram, which we ha
done using the algorithm (DZ algorithm) constructed -
by DiRienzo and Zurbenko (1997) and DiRienzo et al.™
(1997). When there is information about J 4t w, it
is reflected by a sharp change in the spectsa ato- LW
tivating one to construct a spectral estimate with vari- ol L.,
able window width selected as follows. At each point 0 % oo ab ﬁofim?fmw 05 a0 e 0w
of estimatiorw,, extend the width of the spectral win-
dow @ (*) until the local squared variation of the P&

3.041C° -

T

50010° |-

T

5040° |

Fic. 10. Kernel for KZ(15,5) for (a) cut = 0.0136, Cs = 0.008%;
b) cut = 0.0136, Cs = 0.004%.
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The adaptively smoothed periodogranses a large sets of points where there is low energy (noise
spectral window that varies with location (differenpresent).
from the S-plus smoothing procedure of Fig. 7, which Following the DZ algorithm (DiRienzo et al. 1997,
uses a modified Daniell smoother that has a fix@&Rienzo and Zurbenko 1997), we produced an
value throughout the periodogram); the spectral wiadaptively smoothed periodograhmat clearly shows
dow width is proportional to the local variation of théhe high energy frequencies (Fig. 8). The baseline and
periodogram. Variation in the periodogram is an ishort-term components are clearly identified in the
dication of information present in the data at that fradaptively smoothed periodogramaking selection
guency; in order not to destroy this information bgf the cutoff frequency an easy task. It is obvious from
oversmoothing, we need to control the width of tHéig. 8 that the energy concentrated at the first peak
spectral window. We compute the total variation (T\(nostly seasonal) is significant, but we are also con-
of the periodogram, and we smooth on intervals wharerned with whether the second group of peaks at
its variation does not exceed a given congfarithis about 20 days contains any information or should be
constant is better understood as a percentage ofttimught of as noise. Therefore, we computed the stan-
total variation, that isC /TV%. Therefore, at a givendard deviation for the adaptively smoothed peri-
frequency, we extend the spectral window untiddogram (Fig. 9) and compared the height of the
the local variation reaches the valigthis results in 20-day peak (¥ 10°) with the standard deviation at
averaging few points around frequencies with highat period (1.2% 1. The proportion of the two (the
energies (information present) and averaging ovagight of the peak is approximately 4 times larger than
its standard deviation) is very strong evi-
dence that the level of energy at that
-5 ik A period is significant, indicating the pres-
' T, Pz ence of some information in the short-
¥ i T e term component. Although several of the
A ;e peaks in the short-term component ap-
E=a - h o % E ! #" pear to be significant, from Fig. 8 we
g ; e " - observe that the energy is not concen-
: 2 - : pis o X trated at a single location. Further, the
‘g.'!f ’ Sl BL7 oy o, . W magnitudes of energies decrease expo-
0 ' | e B .o nentially (see Fig. 10b), an indication of

b i b ;i: ::E a Markov process. While this informa-
- B tion may be significant, it represents only
;’ a small portion (about 2%) of the total
variation of the short-term component at
this location.
b. Figures 10a and 10b show the cutoff

frequency for the KZ . and also the ker-

] Tf. e nel function as a measure of the correlation
" : _ : T A S between resulting components of the filter
| St O, £ 5 T o™ KZ . ; Because the two frequency regions

I o responsible for most of the variation in

L Y P "-uf the data are clearly outsidg3devel in-
: | _ Yol ! terval (with smallB), we can conclude
g - ' g Aoph - that there will be very low correlation be-
i R LAY T tween resulting components of KZ

. . ob Rt [l < One would not go too far wrong if

ik e they used filter parameters (15,5) for all

L. § ozone monitoring sites. However, the

procedure outlined above for choosing

Fic. 11. Variance of the ozone seasonal component for (a) year-rofii@! parameters will lead to slight dif-
monitoring and (b) 120-day summer season (15 May to 15 September).  ferences among ozone (and temperature)
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time series and, hence, should be repeated to assur&ledian synoptic (short term) fluctuations are 45%

optimal results. and 77% for year-round and summer season data, re-
Sample estimates of individual components wespectively. In relative terms, synoptic fluctuations tend
obtained as follows: to be low in the Midwest and high in coastal areas. For

sites monitoring yeamund or summer season-only,
(15) areas of higshort-term variance include the Northeast
and parts of the Gulf Coast (Fig. 12).
(16) Taken together, Figs. 11 and 12 illustrate the
amount of energy associated with seasonal and syn-
(17) optic processes across the United States. Long-term
variances are small in both relative and absolute
The total variance dD(t) can be written as a sumsenses. Seasonal forces increase relative to synoptic
of the variances and covariances of the ozone comfaees in a northeasterly direction. In an absolute sense,
nents separated by the filter: the Northeast is a high energy region, having large
seasonal and synoptic variances.

estimate ofMt) = O(t) - KZ

15,5

estimate of(t) = Kzsss,s'

estimate ofyt) = KZ . .- KZ

365,3

0*(0) = 0%(e) + 0§ + o%(W) + 2 cove,S)
+ 2 cov(eW) + 2 covgW). (18) g. Analysis of short-term (synoptic) component
As previously noted, ozone data are log-trans-
The sum of covariance terms was typically less than 28tmed prior to filtering. Variance stabilization does
of the total variance, indicating good separation of comet lead automatically to normalization, however, and
ponents, as described above. the synoptic components are negatively skewed for
For data at 437 U.S. stations, long-
term fluctuations are a small fraction of 1541 2
the total. More than 90% of year—roundl"'. : g
and 95% of summer season monitoring Lk Vs PAR
sites have long-term components that are | I T A
less than 10% of the total variation. . - _ Ty e R L Ay
Median values (fraction of total variance ]
in the long term component) for year- ﬂ" g _ . 2T
round and summer season fractions are 4 % « . LT R Wos
2.4% and 3.6%, respectively. Summer '?q G el ) e Boma <o
season data have a greater relative con- - : i kool e
tribution of long-term and synoptic fluc- : -
tuations because the seasonal component x| ¥
is reduced by about half. -
Seasonal fluctuations account for up to

73% and 60% of the total variance in year- . :
round and summer season data, respec . e b
tively, with median values of 51% and "+ o
12%. Seasonal variance patterns are quite
different for year-round and summer sea-

L)
-
-
.
'l.
¥
a

son data. For year-round monitoring, sea- « « . . X g
sonal variance is lowest near coastal areasi” . | [ N e ey
and highest in a band from the Midwest 4% =™ s | | y Rl Bk oo
to the East Coast (Fig. 11a). For summer *. B | \ RlE am
season-only monitoring, there is no clear : . : bl s

pattern to seasonal variance. Values tend
to be highest on the West Coast and in the
Midwest, and low in the Southeast. How-

ever, sites with low seasonal_variance Can F. 12. Variance of the ozone short-term component for (a) year-round
be found throughout the United Statesmonitoring and (b) 120-day summer season (15 May to 15 September).
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, , a. the estimate of\(t) is a difference be-
¥ S _ tweenO(t) and a moving average], while
1 S | the autoregressive component is attribut-
i 7 & ableto correlation in day-to-day weather
B g e g phenomena. One-day lag correlations
S— E : ranged from 0.20 to 0.5, with a median
: L Vg value of 0.35.
“9 ; | o The filter effect is illustrated by
Bt el TS Fig. 14a, which shows the expected
A =3 i LR LR correlogram of independent random
' ' -t numbers subject to the KZ. Significant
! negative serial correlation extends to
¥ | about half the effective filter length. A
z purely autoregressive process produces a
F : o correlogram resembling Fig. 14b. The
Y. st - correlograms of the estimat&Wt) for
i ; - 4| nearly all stations resemble Fig. 14c.
. ag o B4 iV A few stations have very strong
e [ g o Sl . weekly cycles, which produce significant
' L - — " e _'fﬁ autocorrelations every 7 days. One might
‘: N e A also notice the resemblance between the
AR ' ' i o b 5 spectra of short-term ozone at a typical
% F ¥ : - ' 1y 4 o, site (Fig. 15a) and that for a Markov pro-
s =0 _a . i » W Ml ... cess subject to filtration (Fig. 15b). The
: o gl S m.'.'.c li: decay in the height of the peaks follows
v j ST a similar pattern in both figures.
3 Some improvement in the simulation

of W(t) would result from using (19) but
Fic. 13. Coefficient of skewness of the ozone short-term component £grg cost of increasing complexity. In

(a) year-round monitoring and (b) 120-day summer season (15 May top]aﬁticular (19) requires four parameters

September). whereas (10) and (11) need only 1.

The e-folding distance (the distance
nearly every monitoring station (Fig. 13), probably a&t which the correlation drops to thes1/alue) for
tributable to the variability in the synoptic-scale prashort-term (synoptic forcing) ozone is on the order of
cesses responsible for the ozone accumulation &@d km. One can address the timescale for the short-
removal. Other transformations, such as Box—Caerm component either by applying a mean wind speed
square root, etc., may produd#t) that closely ap- to the spatial scale or by examining the temporal (se-
proach normality at every location. However, eaafal) correlation in the short-term ozone time series
monitoring station would require a slightly differendata. Based on the former, mean wind speeds in the
transformation. range of 8—-20 kmlead to timescales of about 1-3

The independence of thé(t) were assessed bydays for ozone. For the latter approach, the short-term
analyzing their correlograms, which are consisteadmponent was assumed to follow an AR(1) process.

ol
sy
-
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with an ARMA(2,1) or ARMA(1,1) model: Thee-folding times in the autocorrelation coefficient
of an AR(1) process were then calculated at 437 ozone
[O() — KZ(15,5)] =Oe(t— 1) + ®W(t - 1) and 270 temperature monitoring stations in the United
+ QW(t - 2) +e(t) (19) States (Fig. 16). After accounting for the effects of fil-
e~11D(0,0?), tration, thee-folding times for short-term ozone were

found to range from about 0.5 to 2.5 days (Fig. 16b).
wherellD refers to independent and identically dis©zone timescales are shorter in the Northeast than in
tributed random variables. The moving average cothe Southeast. Examination of the timescales for short-
ponent is due to the moving average filtration [sincerm (weather induced) surface temperature in
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Fig. 16a suggests that ozone is associated with sloveistance of 300 km, indicating similar seasonal influ-
moving synoptic patterns in the Southeast and fastences over this scale (Fig. 17a). Synoptic ozone
moving weather systems in the Northeast. High ozof@%(t,x,y)] contains a very precise spatial law related
levels in the eastern United States are often associatethe directional decay of their spatial correlations
with a slow-moving high pressure system, a Bermu¢iRao et al. 1995); that is there is a strong exponential
high, which results in near stagnant and disorganiz#eicay relationship in the correlation between two
flow conditions conducive to the ozone accumulatiaononitorsm andm' and their distance of separation,
in the Southeast (Vukovich 1995). When the flow be; in directiong
comes organized as the high pressure system ad-
vances, the Northeast might then receive ozone, anaorrelationo5(t,m,), O5(t,n)] (20)
its precursors from transport around the high pressure = expFa(m,, @d +b],
system and the flow could be fairly rapid in the North-
east. These results are consistent with those derivatere ‘a” depends on reference monitor location
from time-lagged intersite correlation analyses k,Y,) and spatial directiop(Fig. 17b). Stated in other
Brankov et al. (1997). words, there is a Markov relationship between short-
term (synoptic) components in space.
Obvious in a physical sense is that a statiin
3. Space scales in baseline, short term,  downwind of statiorm’ does not have information
and exceedances aboutm,: ozone transported to'mar produced there
cannot be distinguished farther downwindrét The
a. Spatial information in baseline and short-term Markov property for a Gaussian process yields
components

AR(1) process after KZ filtration

Spatial correlations among the baseline compo- O%(t,m) = exp{-a d + b} O%(t,m)
nents in ozone remain relatively unchanged over a +0°c(t,m"), (22)
: power

independent normal a
=] \ : ‘ a. Vinton, Virginia: short-term from KZ filter
5 residuals of KZ(15,5) i I
o LhiLe
. > ) H “ il
° JH d (,‘ M M m il
= AR(1) process j ) ! Il N
- Hi w““ﬁl Mwhl Kokt
; | : _ _ d. Spectrum of Markov process subject to KZ

(lag 1 autocorrelation = 0.4)

; \ C.

N typical for 1-hour daily maximum ozone

-2 -0

]

z a © s 10 1z 14 16 18 zo

lag (days)

. X . i frequency, (cycles / day)
Fic. 14. Correlograms for (a) Gaussian white noise residuals

of KZ[N(0,1), 15,5] and (b) AR(1) process; (c) AR(1) process after Fic. 15. Spectrums of (a) short-term ozone and (b) Markov
KZ(15,5) and typical of 1-h daily maximum ozone. process.
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4 ¥ & a e, At short distances (< 80 km), the decline
B 0 B T b R a7 in a correlation plot determined bip™
'_ L o S | [ ey o % from(21) is related to the very short sur-
L als ! e A T T T vival time of ozone (Hales 1996; Loibl
. - rhr g™ e et al. 1994) and can be examined sepa-
il . Y.k At ] rately if spatially dense ozone data are
o s s Wil T available.
Sl k. v The exponential term in (21) is re-
[ . g oo T . lated to the synoptic transport of the
H = pollution, weather conditions, and the
= emissions that created ozofde coef-
: ficient a (@x,y) smoothly depends on
Yy (@x,y) and can be plotted in space using
a spatial filter [see for example Rao et al.
(1995) and Zurbenko et al. (1995)].
Correlations in the short-term compo-
nent for the same distance are about 70%
. A - and contain about 40% of total process
k. p i | : Ty < % energy. Since the baseline and short-term
| * | - kB - S 7 components are nearly orthogonal, the
_ P s PR g " spatial prediction error in total ozone
- . ok et Frngh over a distance of about 150 km will be
L . O [, @t/ % less than 20%. The decay of correlations
‘\1 L = : among short-term (synoptic) compo-
"*: o s S S = ' nents in temperature data is evident in
: ' <is Fig. 17d. The exponential decay of
the correlations with distance along
the direction of the prevailing wind at
i Charlotte, North Carolina, and Cincin-
o _ nati, Ohio, presented in Fig. 18, reveal
Fic. 16.E-folding timescales (in days) for (a) surface temperature and (b) OZ%-?Olding distances (scales) for ozone
that are similar to those extracted from
the data in the Northeast.
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whereQs(t,m’) is a local contribution portion at the

locationn?. Therefore, (21) separates the transpdst Spatial relationship among ozone exceedances
portion ofOY(t,nT) fromm, tom’ and local production.  Spatial correlations for exceedances (ozone con-
At distances of about 300 km, correlations in baselinesntrations exceeding the 0.12-ppm level) were cal-
exceed 90% and contain about 60% of total procesgated from

energy. Figure 17b displays a 50% decline at distances

of about 400 km produced by (21) in the direction of correlation{E(t,x,,y,), E(t.x,y")} = C(d,®), (22)

the prevailing wind (maximum transport direction).

Spatial correlations among short-term componentdiere E{,x,y) is an indicator of exceedances on tlay
initially have a much greater rate of decay than is iat locationx,y; E(t,x,y) = 1 when an exceedance oc-
dicated by the exponential relationship in Fig. 17turs and 0 otherwiséis the distance between and
(distances less than 15 km.). Fifteen kilometens; andg@is direction. Correlations for exceedances
represents the scale of “direct” transport of 0zone, iaspace are calculated in the same way as for the syn-
well as the scale at which the exceedances (conceptic component. Spatial correlations for exceedances
trations exceeding a given threshold) in combinati@xtend information only about 15 km and are indis-
with deterministic models can yield accurate preditinguishable from zero for distances of more than
tions. Unfortunately, a monitoring network with sta50 km (Fig. 17¢). There are many examples where the
tions every few kilometers is practically impossible3-yr total exceedances are completely different within
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nation for the rapid decay of correlations W
for ozone exceedances may be the spar [ |

tlal |nh0mogene|ty |n the NOX IeVeIS |n —m— along the major axis —e— along the minor axis

. 459 from true north 459 from true north
an urban area and the importance of| v 00008 x £ L016 ) T 000014 x 0998
. . . . r =0 =40
chemical lifetime of ozone relative to the™ ‘ ‘
advective time. Such high spatial vari- ° = o Es
ablllty necessarlly reqUIres a m0n|t0r|ng° i —m— along the major axis —g— along the minor axis
density on a scale of about 5 km to cap- 450 from true north 459 from truc north
08 y =0.878 exp(-0.00153 x) y =0.938 exp(-0.00237 x)
ture all the exceedanc@us, the space T2 o7 2000

and time scales associated with the
ozone exceedance metric render its use
as a control variable impractical. "

0 200 400 600 800
istunce () feom Gresubele, MD

o fl —m— along the major axis —@— along the minor axis
459 from true north 459 from truc north
4. Summary

In this paper, we have demonstrated
. . ° O @
the need for separating the various spec; «® &g Ugom ® l. u v

) ' 4] [ ]
tral components of ozone time series. ‘ on
Separation leads to a clearer understand-
ing of ozone and its relationships to me= —m— along the major axis  —e—along the minor axis
. . 459 from true north 459 from true north
teorological and precursor variables. v, = 1062 oxp0.00098 ) y = 10142 expC0.0011 )
r<=0.985 r<=0.992

Any spectral-decomposition technique’

(e.g., a wavelet transform) capable of|

creating statistically independent short-

term, seasonal, and long-term compo- ‘ ‘ |

nents will achieve the goal of providing ° R

a better understanding of the underlying ¢ 17. correlation coefficient as a function of distance (km) from Washington,

physical processes that affect ambieiic, in the direction of the prevailing wind between (a) baselines of ozone,

ozone concentrations. (b) short-term components of ozone, (c) ozone exceedances, and (d) short-term
Among the useful results of thiscomponents of temperature.

analysis are descriptions of spatial—

temporal information in ozone data,

needed for ozone management efforts. This informa- The geographical variation in the timescales for

tion, unavailable in a meaningful form from raw ozonezone and temperature reveal that ozone in the South-

data, can be clearly displayed in the separated cogast is associated with slow-moving synoptic conditions

ponents. In addition, baseline ozone retains global and fast-moving weather systems in the Northeast. The

formation on the scale of more than 2 months in timiemescale of approximately 1-2.5 day and the space scale

and about 300 km in space. The short-term ozoofabout 600 km in ambient ozone data imply that ozone

component, attributable to weather fluctuations, iisthe eastern United States is a regional-scale problem.

highly correlated in space, retaining 50% of the short-

term iformation at distances ranging fam 350 (o gL o e e

400 km; in time, 'short—term 0zone rgsembles ectric Power Rese%rch}llnstitute under Contract WO4447-¥)1.

Markov process with 1-day lag correlations ranging

from 0.2 to 0.5. Furthermore, the correlation structure

qf short-term ozone permits highly accurate predigeaferences

tions of ozone concentrations up to distances of about

600 km from a monitor. The ozone timescales in tl%?ankov, E., S. T. Rao, and P. S. Porter, 1997: A trajectory-clus-

United States range from approximately 1 to 2.5 daytering-correlation methodology for examining the long-range
depending upon the monitoring location. transport of air pollutant#tmos. Environ.in press.
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