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Abstract

In this paper, the concept of scale analysis is applied to evaluate ozone predictions from two regional-scale air quality
models. To this end, seasonal time series of observations and predictions from the RAMS3b/UAM-V and MM5/
MAQSIP (SMRAQ) modeling systems for ozone were spectrally decomposed into fluctuations operating on the intra-

day, diurnal, synoptic and longer-term time scales. Traditional model evaluation statistics are also presented to
illustrate how the scale analysis approach can help improve our understanding of the models’ performance. The results
indicate that UAM-V underestimates the total variance (energy) of the ozone time series when compared with
observations, but shows a higher mean value than the observations. On the other hand, MAQSIP is able to better

reproduce the average energy and mean concentration of the observations. However, both modeling systems do not
capture the amount of variability present on the intra-day time scale primarily due to the grid resolution used in the
models. For both modeling systems, the correlations between the predictions and observations are insignificant for the

intra-day component, high for the diurnal component because of the inherent diurnal cycle but low for the amplitude of
the diurnal component, and highest for the synoptic and baseline components. This better model performance on longer
time scales suggests that current regional-scale models are most skillful in characterizing average patterns over extended

periods, rather than in predicting concentrations at specific locations, during 1–2 day episodic events. In addition, we
discuss the implications of these results to using the model-predicted daily maximum ozone concentrations in the
regulatory framework in light of the uncertainties introduced by the models’ poor performance on the intra-day and
diurnal time scales. r 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Many atmospheric processes contribute to the levels
of ozone concentrations observed at the ground level;

these processes themselves are influenced by meteorol-

ogy, chemistry, emissions and land-use patterns, to
name a few. Their complex nonlinear interactions are
simulated by three-dimensional regional photochemical
grid models such as URM (Kumar et al., 1994), UAM-V

(Systems Applications International (SAI), 1995),
CAMx (ENVIRON, 1997), SAQM (Chang et al.,
1997), MAQSIP (Odman and Ingram, 1996; Kasibhatla

and Chameides, 2000), MODELS-3 (United States
Environmental Protection Agency (US EPA), 1998,
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2000), etc. which are being used both in research and in
regulatory applications for developing emission control

strategies to reduce ozone concentrations to a level
below the National Ambient Air Quality Standard
(NAAQS) (United States Environmental Protection

Agency (US EPA), 1991, 1999). Therefore, as discussed
in Part I of this paper (Hogrefe et al., 2001), an
evaluation of all aspects of photochemical modeling
systems is critical to building confidence in the use of

these models for regulatory decision making. In this
paper, we focus on the evaluation of ozone concentra-
tions simulated by two photochemical models being

used for seasonal air quality simulations.
In the past, photochemical models were applied for

the duration of one or a few historical ozone exceedance

events, and model evaluation for a particular simulation
was usually limited to the comparison of ozone
predictions and measurements through a certain set

of statistical performance measures (Tesche et al.,
1990; United States Environmental Protection Agency
(US EPA), 1991, 1994, 1999). This approach to model
evaluation has been used extensively in the past (e.g.

Tesche et al., 1996). In this study, we introduce the
concept of scale analysis (Eskridge et al., 1997;
Vukovich, 1997; Rao et al., 1997, 2000b; Sirois et al.,

1999) to evaluate the regional-scale photochemical
modeling systems, and apply it to the output from
seasonal simulations of the time series of ozone

concentration values with two different current-genera-
tion modeling systems. Preliminary results from the
application of this technique to ozone predictions from a
different seasonal modeling simulation were reported in

Rao et al. (2000b) and Hogrefe et al. (1999). Analyses of
ozone precursors and ozone-precursor relationships are
presented in Part III of this series of papers (Biswas et al.,

2001). By evaluating model performance on different
time scales, we are able to illustrate that model
performance is time scale specific. The implications of

this time scale specific model performance to modeling
applications such as exposure assessment/forecasting or
research vs. regulatory policy-making are discussed.

2. Description of models and database

Part of the modeling simulations analyzed in this
study have been performed as part of separate previous
studies by different groups (Lagouvardos et al., 1997;

Kasibhatla and Chameides, 2000) with no coordination
of modeling options considered. For example, to isolate
the effect of chemistry, it would be useful to perform

additional seasonal simulations using the meteorological
fields from either RAMS or MM5 to drive both
photochemical models, but no such simulations have

been performed by either group. However, it should be
noted that Biswas and Rao (2001) have applied both

RAMS and MM5 to the UAM-V photochemical model
(Systems Applications International (SAI), 1995) for

three episodes and found large differences in predicted
ozone concentrations.
The first photochemical model used in this study is

UAM-V which has extensively been used for regulatory
applications in the past (e.g. Tesche et al., 1996).
Simulations were performed for the 1 June–31 August
1995 period on a grid with horizontal grid dimensions of

36 km. The grid extends from 991W to 671W and from
261N to 471N. Fourteen vertical layers extend from the
surface to about 4 km in the UAM-V model, with 10

layers being below 1500m. The meteorological input
fields were derived from a simulation with the RAMS3b
model (Walko et al., 1995) and interpolated to the

UAM-V grid system. More details on the setup of
the meteorological model can be found in Part I of this
series of papers (Hogrefe et al., 2001).

The second modeling system analyzed is the Seasonal
Model for Regional Air Quality (SMRAQ) (SMRAQ,
1997; Kasibhatla and Chameides, 2000). The photo-
chemical model used in the SMRAQ study is the

Multiscale Air Quality Simulation Platform (MAQSIP)
(Odman and Ingram, 1996). MAQSIP is a generalized
coordinate, modular science process, multiscale air

quality modeling system built as a prototype for EPA’s
Models-3 system, which borrows salient features from
the SARMAP Air Quality Model (SAQM) (Chang et al.,

1997). The modeling period covered from 15 May 1995
to 11 September 1995, encompassing the time period for
which the RAMS3b/UAM-V simulation was carried
out. The air quality simulation was carried out with a

horizontal grid spacing of 36 km covering the eastern
United States (Fig. 1). In the vertical direction, 22 sigma
levels were used up to 100mb, with 11 layers below

1500m. The meteorological component of the SMRAQ
system is the NCAR/PennState Fifth Generation Model

Fig. 1. Map showing the 36 km MAQSIP grid, the 36 km

UAM-V grid, and the analysis domain used in this study.
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(MM5) (Grell et al., 1994). The MM5 simulation was
carried out for the same time period as the air quality

simulation and no interpolation of the meteorological
fields was necessary since both MM5 and MAQSIP used
the same grid projection. Additional details on the setup

of MM5 can be found in Part I of this series of papers
(Hogrefe et al., 2001).
Both air quality models used the Carbon Bond

Mechanism (Gery et al., 1989), but the treatment of

boundary conditions was different between the UAM-V
and MAQSIP simulations. While time- and height-vary-
ing boundary conditions based on surface observations

and available ozonesonde data were used in UAM-V, a
time-invariant ozone boundary concentration at the
background level of 35 ppb was prescribed for MAQSIP

at all heights. Emissions for both modeling systems were
based on the same available national emissions inven-
tories for anthropogenic emissions, but there were

differences in the treatment of sub-grid scale plumes.
Biogenic emissions were calculated as a function
of model meteorology using the Biogenic Emissions
Inventory System 2 (BEIS2) (Geron et al., 1994).

Because the temperatures and insolation differed be-
tween the two meteorological models, so did the
modeled biogenic and mobile source emissions input to

the two air quality models. The emission inventories for
the UAM-V simulation analyzed in our study were
prepared as described by Sistla et al. (2001) for their

12 km UAM-V simulation, and further details on the
emission inventory for the MAQSIP simulation can be
found in Houyoux et al. (2000).
In this study, we focus on the evaluation of Layer 1

model predictions using the hourly surface ozone
observations from the US EPA’s AIRS database. The
height of the first layer was set at 50m in RAMS3b/

UAM-V and at 38m in MM5/MAQSIP. The analysis
domain for this study extends from 921W to 69.51W and
321N to 441N (see Fig. 1). Only monitoring data from

stations within this analysis domain and corresponding
model results are presented; the model results were
bilinearly interpolated to the observational sites. To

illustrate spatial patterns, a data interpolation algorithm
was used (Civerolo and Rao, 2001).

3. Methods of analysis

3.1. Traditional statistics for model evaluation

For model evaluation in air quality management
studies, the US EPA stipulated the application of the

statistical measures listed in Table 1 to predicted ozone
concentrations (United States Environmental Protection
Agency (US EPA), 1991). Note that for normalization

all of these measures are divided by the observed ozone
concentrations at each hour and location rather than

normalizing by the mean observed concentration after

computation of the evaluation metric. Observation-
prediction pairs were often excluded from the analysis
if the observed concentration was below a certain cutoff;

the cutoff levels varied from study to study but often a
level of 60 ppb was used (Russell and Dennis, 2000). The
sampling for these statistics can be done through space

at each hour (i.e., time series of spatial statistics),
through time at each location (i.e., spatial patterns of
temporal statistics), or both through space and time (i.e.,

one number characterizes the entire simulation).
Although there is no objective criterion set forth for a
satisfactory model performance, US EPA suggested
values of 5–15% for the mean normalized bias error

(MNBE), 15–20% for the unpaired peak prediction
accuracy (UPA), and 30–35% for the mean normalized
gross error (MNGE) to be met by modeling simulations

being used for regulatory applications. The values for
the MNBE and UPA can be either positive or negative.
As discussed by Russell and Dennis (2000), these

statistics provide little insight into the physical behavior
of the model. In the following section, we apply scale
analysis to evaluate ozone predictions as an additional
tool for performing model evaluations.

3.2. Definition of time scales and associated processes

It has been documented in the past that time series of
ozone observations contain fluctuations occurring on
many different time scales (Rao et al., 1997; Vukovich,
1997; Hogrefe et al., 2000; Sebald et al., 2000). Since we

analyze hourly concentrations of both ozone observa-
tions and model predictions for a time period of three
months in this study, the periods that can be resolved

range from 2h to 30–40 days. Spectral analysis of
observed ozone time series at various locations for the
summer of 1995 reveals that the single largest forcing in

the hourly time series data is the diurnal forcing having a
period of 24 h. Additional frequency bands of interest

Table 1

Definition of the US EPA recommended statistical measures

Mean Normalized Bias

Error (MNBE)

1

n

Xn

i¼1

Cmodðx; tÞ@Cobsðx; tÞ
Cobsðx; tÞ

Mean Normalized Gross

Error (MNGE) 1

n

Xn

i¼1

Cmodðx; tÞ@Cobsðx; tÞj j
Cobsðx; tÞ

Unpaired Peak Prediction

Accuracy (UPA)

Cmodðx; tÞmax@Cobsðx; tÞmax
Cobsðx; tÞmax
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are the intra-day range (periods less than 12 h), the
synoptic range (periods of 2–21 days), and longer-term

fluctuations (periods greater than 21 days). The choice
of these periods is based on the analysis of power spectra
as well as on a priori knowledge about the characteristic

time scales of different processes affecting ozone con-
centrations (the intra-day component should include
fast-acting, local processes, the diurnal component
should be dominated by the 24 h periodicity, the

synoptic component should contain fluctuations related
to changing synoptic conditions, and the baseline should
contain the low-frequency part of the signal). The actual

choice of frequency ranges was made to minimize the
covariance between the estimates of the different
components. Details on the choice of filter parameters

for the estimation of spectral components can be found
in Rao et al. (1997) and Hogrefe et al. (2000). The
definition of these time scales is identical to those for

the evaluation of meteorological variables described in
Part 1 of this series of papers (Hogrefe et al., 2001).
The atmospheric processes that contribute to intra-

day fluctuations of ozone include the effects of turbulent

horizontal and vertical mixing, local titration by fresh
emissions of NO, and ozone response to fast-changing
emission patterns during the rush traffic hours. Diurnal

fluctuations in ground-level ozone are associated with
the diurnal variation of the solar flux and the resulting
differences between daytime photochemical production

and nighttime removal of ozone as well as the diurnal
cycle of boundary layer evolution and decay. The
variations of ozone on the synoptic scale are caused by
changing meteorological conditions such as the presence

of a near-stagnant high pressure system or the passage
of frontal systems. Fluctuations of the baseline are
expected to be caused by such processes as the seasonal

variation of the solar flux, changing large-scale flow
patterns, and changes in vegetation coverage and
biogenic emissions.

3.3. Spectral decomposition and log-transform of ozone
time series

While any method that can cleanly decompose a time
series into fluctuations of the desired time scales can be

used, we used the Kolmogorov–Zurbenko (KZ) filter
(Zurbenko, 1986) because of its powerful separation
characteristics, simplicity, and ability to handle missing
data. This technique is described in more detail in

Eskridge et al. (1997) and Rao et al. (1997). A log-
transform of time series data prior to analysis is a
technique frequently used to stabilize the variance of a

time series in cases where the local mean of the time
series is proportional to the local standard deviation
(Milionis and Davies, 1994). Since this is the case for

time series of ozone concentrations (Rao and Zurbenko,
1994; Salcedo et al., 1999; Sebald et al., 2000), we

analyzed the log-transformed observed and predicted
hourly ozone concentrations.

4. Results and discussion

4.1. Traditional statistics for model evaluation

The results of model performance evaluation using
the US EPA-recommended statistical measures de-
scribed in Section 3.1 are presented in Table 2. In this
analysis, sampling was performed over both space and

time, i.e., these statistics were computed using values
from all available stations for the entire simulation
period. Table 2 also illustrates how the computed

statistics vary for three different cutoff values of 60, 40
and 20 ppb (i.e., observation-prediction pairs are ex-
cluded from the analysis if the observed concentration is

below the cutoff concentration). It can be seen that both
UAM-V and MAQSIP meet the US EPA-recommended
criteria of 5–15% for the mean normalized bias, and 30–
35% for the normalized gross error for acceptable model

performance when the statistics are computed for cutoff
levels of 60 and 40 ppb for both hourly and daily
maximum concentrations. For the unpaired peak pre-

diction accuracy, only UAM-V satisfies the criterion of
having an absolute value not exceeding 15–20%. While
there is obviously no impact of the choice of the cutoff

value on the UPA (the observed and predicted peaks
over the entire domain and season are, of course, larger
than 60 ppb), the MNBE and the MNGE show larger

values for smaller cutoff concentrations. This increase is
larger for hourly concentrations than for the daily
maximum concentrations. The increase of both the
MNBE and MNGE with decreasing cutoff values is

larger for UAM-V than MAQSIP, indicating that
MAQSIP has a greater ability to predict lower observed
concentrations correctly. More generally, the use of

these cutoff-value-dependent performance statistics in
the regulatory process might lead to model-tuning
geared to accurately predict the peak ozone values

without evaluating the capability of the model to
properly simulate the ozone accumulation process, i.e.,
the difference between daily minimum and maximum

concentrations. In addition, the regulatory practice of
excluding observation-prediction pairs from the analysis
if the observed concentration is below the cutoff
concentration regardless of the predicted concentration

creates a bias estimate that is too lowFsome model
underpredictions (observed concentration above and
modeled concentration below the cutoff) are included in

the estimate, but some overpredictions (observed
concentration below and modeled concentration above
the cutoff) are excluded. Historically, this ‘‘negative bias

of the bias estimate’’ was deemed desirable from
a regulatory perspective, since it is presumed that such a

C. Hogrefe et al. / Atmospheric Environment 35 (2001) 4175–41884178



model would lead to more stringent emission reduction
estimates. However, if these statistics are to be used in a

scientific model evaluation, only observation-prediction
pairs where both the observed and modeled concentra-
tion are above the cutoff should be included in the

analysis.

4.2. Distribution of variance

Since the object of this study is to evaluate the
accuracy of model predictions for ozone on different
time scales, a first step of this evaluation is to compare

the relative importance of the individual components to
the overall ozone process for both observations and
model predictions. To this end, the variance of each

component was computed and divided by the sum of all
component variances for both observations and model
predictions. The results (Fig. 2) illustrate that the

diurnal component is the largest contributor to the
overall variance in observations and predictions from
both models, followed by the synoptic, baseline and
intra-day component. However, there are clear differ-

ences between the modeling systems: while UAM-V
underestimates the relative contribution of the intra-day
and diurnal fluctuations to the overall process variance

and overestimates the strength of fluctuations on the
synoptic and baseline time scale, MAQSIP predicts a
variance distribution that is very close to the observa-

tions. Both models underestimate the total variance of
the time series significantly, but the underestimation is
more severe for UAM-V than for MAQSIP. The

numbers in the pie charts in Fig. 2 were computed as
spatial averages for all observational sites and the
corresponding model predictions and, therefore, provide
an average estimate of process energies in observations

and model predictions. Clearly, specific sites could show
distinctly different patterns depending on which pro-
cesses are dominant in driving ozone fluctuations at this

site (e.g. differences between urban and rural sites). Also,
there is a significant amount of covariance between the
separated components as indicated by the difference

between the sum of the component variances and the
variance of the undecomposed time series.
While Fig. 2 provides information about the relative

importance of the individual processes in both model
predictions and observations, it does not allow us to
easily compare the absolute amount of energy on
different time scales between observations and model

predictions. For this purpose, Table 3 lists the ratios of
the variances of the modeled to observed time series for
different time scales for both modeling systems. It can be

seen that, as discussed above, UAM-V strongly under-
estimates the variance of the raw (unfiltered) time series,
while the underestimation is less severe for MAQSIP.

For UAM-V, the underestimation of variance is
pronounced on all time scales except for the baseline.T
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For MAQSIP, on the other hand, only the under-

estimation of the variance on the intra-day and, to a
lesser extent, on the synoptic time scale is significant,
while the amount of energy is captured for both the

diurnal and baseline time scale. The only time scale for
which the amount of energy is captured by both modeling
systems is the baseline time scale.

A calculation of the bias in the predicted seasonal
arithmetic mean ozone concentration (predicted minus
observed) indicates that over large regions of the
modeling domain UAM-V overpredicts the mean

(Fig. 3) while the bias is generally smaller and even
negative for larger areas for MAQSIP. In general, both
models show a larger bias for the southern part of the

modeling domain than for the northern portion. These
results combined with the previous analysis of the
predicted and observed variability on different time

scales suggest that the underprediction of variability
by UAM-V (especially for the intra-day and diurnal
time scales) is compensated by a higher mean ozone

concentration. In other words, the net effect of processes

that cause fluctuations (e.g. vertical and horizontal
transport, photochemical production, surface removal
for the diurnal component) on ozone concentrations is

underestimated by UAM-V, and any agreement between
observed and predicted daily maximum ozone concen-
trations is the result of a compensating positive bias. The

standard practice of excluding ozone concentrations
below 60 ppb from the model evaluation process (United
States Environmental Protection Agency (US EPA),
1991) could conceivably exacerbate the situation where

the desired agreement between observed and predicted
daily maximum ozone concentrations can be reached by
simply increasing the mean concentration rather than

improving the model’s ability to correctly simulate the
atmospheric processes leading to the observed varia-
bility on these time scales. In contrast to the UAM-V

simulation, the MAQSIP simulation was able to better
capture the mean and variability present in ozone time
series.

Fig. 2. Pie charts of the relative contribution of the variances of the component time series to the sum of the component variances for

observations and model predictions. (a) Observations, and (b) UAM-V, and (c) MAQSIP.
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4.3. Diurnal component

As mentioned before, the diurnal component distin-

guishes itself from the other components by its well-
defined periodicity, namely, 24 h. Furthermore, it is the
largest contributor to the overall variance as discussed in
the previous section. The observed and predicted diurnal

cycles averaged over all stations and the entire summer
season and the average diurnal curves for the rates of
change are presented in Figs. 4a and b, respectively. It is

evident that the two parameters characterizing the
diurnal oscillation, namely the amplitude and phase,
are different between observations and UAM-V predic-

tions. For these average cycles, UAM-V underestimates
the amplitude (compare with Table 3, ratio of variance
of predicted to observed diurnal component) and

displays a phase lag of about one hour. It can also be
seen in the corresponding diurnal curves for the rates
of change that UAM-V underestimates the rates of

change (i.e. ozone tendancy) during the morning and
evening hours. On the other hand, the observed and
MAQSIP-predicted diurnal cycles of the diurnal com-
ponent and the rate of change are very similar.

Morning-hour rates of change (ozone tendencies) are
determined by the amount of ozone depletion during
nighttime, chemical removal and subsequent production

caused by fresh emissions, and the downward mixing of
ozone trapped above the nocturnal inversion (e.g.
Kleinman et al., 1994; Zhang and Rao, 1999). The

underestimation of the ozone tendency by UAM-V
suggests that the model does not capture the contribu-
tions of these processes to the overall diurnal cycle

Fig. 3. Bias of the seasonal mean ozone concentration derived from hourly concentrations. The bias is calculated as

(modeled)@(observed). (a) UAM-V minus observed, and (b) MAQSIP minus observed.

C. Hogrefe et al. / Atmospheric Environment 35 (2001) 4175–4188 4181



properly and, therefore, future model developments

would have to focus on these processes to improve the
representation of the diurnal cycle. MAQSIP captures
the amplitude and rate of change of the diurnal cycle
better than UAM-V. Since peak ozone predictions are

very sensitive to the rate of growth of the mixed layer in
the morning hours (Berman et al., 1997), an adequate
treatment of ozone tendencies in the morning as the

boundary layer grows is essential in photochemical
modeling (Rao et al., 2001).

4.4. Correlations between the modeled and observed
ozone concentrations

In addition to comparing the variances and spatial
correlation structures for both observations and model
predictions on different time scales, it is of interest to

examine the models’ capability to reproduce spectral
components themselves via spatial images of the
correlation coefficient between the observed and mod-

eled time series of each of the components at each
observation station for the entire length of simulation

(Fig. 5). The correlations for the raw time series range

between 0.3 and 0.8 for both modeling systems,
with the highest correlations along the eastern seaboard.
The correlations for the intra-day component, however,
are less than 0.3 almost everywhere, suggesting that

the processes contributing to the high-frequency fluctua-
tions in the intra-day component are not captured
by either model. The correlations for the diurnal

component are high over most of the domain, as is
expected due to the inherent diurnal cycle caused by the
day and night differences. These correlations are

somewhat higher for UAM-V than for MAQSIP.
However, when the amplitude of the diurnal component
(which is created by taking the difference between
the maximum and minimum values of the diurnal

component on each day and, thus, does not contain
the quasi-sinusoidal pattern of the hourly diurnal
component stemming from night/day differences) is

considered, the correlations between observations and
predictions from both models are poor for most of the
modeling domain. The synoptic component displays

correlations between 0.4 and 0.7 for the northern part of

Fig. 4. Average diurnal cycles of ozone observations and model predictions. (a) Diurnal component, and (b) Rate of change of the

diurnal component.

Table 3

Ratio of variances of modeled to observed ozone time series on different time scales

Original Intra-day Diurnal Synoptic Baseline

UAM-V/obs. 0.39 0.10 0.37 0.57 0.94

MAQSIP/obs. 0.82 0.54 0.97 0.87 0.99
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the modeling domain and the Atlantic Coast, while the
correlations are poor for the central Midwest. This
feature is even stronger for the baseline component,

where the correlations are higher than 0.7 for most of
the Atlantic Coast, but insignificant over large portions
of Indiana, Illinois, Ohio and Kentucky. In general, the

correlation patterns are remarkably similar between the
two modeling systems.
Two important inferences can be drawn from the

above analysis. First, model performance as measured
by correlation is time scale-specific: the intra-day
component and the amplitude of the diurnal component

Fig. 5. Correlation between observed and predicted ozone time series on different time scales. Correlations between observations and

UAM-V predictions on different time scales are shown in the left column, and correlations between observations and MAQSIP

predictions on different time scales are shown in the right column.
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are poorly captured by both modeling systems, and the
longer-term components (synoptic and baseline) on

the other hand, show higher correlations. Clearly, the
time and space scales needed for ozone forecasting and
exposure assessment purposes (namely, the intra-day

component and the magnitude of the diurnal component
which are needed in addition to an accurate description
of the larger-scale background) are not captured by
either modeling system. On the intra-day time scale, an

increased spatial resolution, both of the meteorological
and emission fields, along with a dense observational
network, might improve model performance, and,

therefore, forecasting and exposure assessment capabil-
ities. An analysis of UAM-V predictions from the
simulation with 12 km grid spacing used by Hogrefe

et al. (2000) (not presented here) shows that there is no
improvement in the simulation of the intra-day compo-
nent when compared to the 36 km simulation; therefore,

presumably a grid spacing even smaller than 12 km
would be needed to resolve the intra-day component.
This result is consistent with the finding reported in
Part I of this paper that also for wind speed fluctuations

there is no significant improvement in the correlations
for the 12 km simulation compared to the 36 km
simulation (Hogrefe et al., 2001). Therefore, the model

must have proper representation of dynamical processes
operating on the inter-day scale. On the other hand, the
longer time scales (synoptic and baseline) which are

more relevant to investigations of the effects of emission
control strategies on ozone concentrations (Porter et al.,
2001) are represented quite well by the models. For
regulatory modeling analysis, extended simulation per-

iods (as done in this study) compared to episodic
modeling covering smaller spatial domains appear to
make the best use of the models’ skills rather than

increased resolution for shorter simulation periods.
Second, the separation of the original time series into
different spectral components allows us to identify the

time scales that are responsible for the correlation
structure in the raw data. In this case, it was shown that
poor correlations in the Midwest are due to a poor

representation of the synoptic forcing and especially the
baseline component. In other words, to improve model
performance in the central Midwest, a more accurate
description of processes acting on time scales greater

than 2 days is necessary. While our procedures cannot
exactly determine which processes are poorly repre-
sented, these processes might include the characteriza-

tion of changing deposition patterns due to growing and
harvesting in the agricultural areas in the Midwest.

4.5. Implications to model applications in the regulatory
setting

In this section, we translate the result of time scale–
dependent model performanceFas measured by corre-

lations between observed and model predicted compo-
nent time seriesFto an estimate of model uncertainty

and discuss the implications to model applications in the
regulatory setting. To this end, we introduce the concept
of ‘inherent’ and ‘reducible’ uncertainty. We define the

‘inherent’ uncertainty to be the inability of the grid-
based models to capture the observed fluctuations that
are caused by processes acting on scales that are not
resolvable with the grid cell size used in the model

simulation.‘Reducible’ uncertainty arises from imperfect
scientific understanding on how to best describe certain
atmospheric processes that can be resolved by the

models (e.g. the inability of SMRAQ to capture the
day-to-day variations of the diurnal amplitude despite
the simulation of clouds, the uncertainty about the

proper parameterization for the PBL evolution in
mesoscale models, inadequacies in the model input
data). It manifests itself in the model-to-model and

model-to-observation differences of ozone concentra-
tions predicted by state-of-science modeling systems
using different scientifically-sound process formulations,
and model users are confronted with this ‘reducible’

uncertainty when applying a model to a particular
situation. While the ‘inherent’ uncertainty is the
theoretical lower bound of model uncertainty even for

a ‘perfect’ model, the sum of ‘inherent’ and ‘reducible’
uncertainties is still a lower bound for the total modeling
uncertainty in practical applications.

In light of the above discussions, the failure of the
models to predict the intra-day component (as indicated
by the poor correlations in Fig. 5) should be viewed as
the ‘inherent’ uncertainty when the application of the

models is restricted to spatial scales coarser than that
needed to resolve the largest eddy motions. It is also
noteworthy that the overall model uncertainty is not

necessarily reduced as the grid resolution is increased to
reduce ‘inherent’ uncertainty. For example, even if the
grid resolution were fine enough to explicitly model

eddies and, thus, capture the variance at the intra-day
time scale, we would expect problems of predicting the
eddy motions at the right time and place due to

uncertainty in large eddy simulations. The standard
deviation of the observed intra-day component during
afternoon hours (1200–1700 EST) was calculated at each
station for the summer of 1995 (June–August); the

exponent of the resulting standard deviation, when
multiplied by 100, then gives the percentage uncertainty
in ozone concentration caused by the intra-day compo-

nent. Fig. 6 presents a map of the ‘inherent’ uncertainty
in predicting the daily maxima due to the models’
inability to simulate intra-day fluctuations. The map

illustrates that the ‘inherent’ uncertainty ranges from
4% to 14%, with higher values in the urban areas and
lower values in the rural areas. The ‘inherent’ uncer-

tainty averaged over all rural stations is 7%, while it is
11% for urban stations. As noted above, this ‘inherent’
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uncertainty has to be viewed as the theoretical lower
bound of model uncertainty even for a ‘perfect’ model.
As stated above, ‘reducible’ uncertainty arises from

our imperfect scientific understanding on how to best

describe certain processes (PBL evolution, soil moisture,
land use/land cover, emissions, etc.) on scales that are
resolvable with the grid spacing used in the simulation.

The results presented in this study suggest that the
largest part of the ‘reducible’ uncertainty in the current
generation models stems from the models’ inability to

properly predict the day-to-day variations of the diurnal
amplitude. The effect of meteorology, especially vertical
mixing and ventilation, on model-predicted ozone

concentrations was also illustrated by Biswas and Rao
(2001) who found that the uncertainty of daily
maximum ozone predictions due to the use of two
different state-of-science mesoscale meteorological mod-

els in the air quality simulation was on the order of 20%.
Since the simulations by Biswas and Rao (2001) were
carried out only for the duration of three episodes and,

therefore, little synoptic or baseline scale variability was
modeled, most of this uncertainty has to be attributed to
the uncertainty of predicting the diurnal component

of ozone. The less-than-perfect model performance on

the synoptic and baseline scales also contributes to the
‘reducible’, but to a much lesser extent than the
processes on the diurnal scale since model-to-observa-
tion and model-to-model correlations are higher

(Fig. 5).
The use of 8 h daily maximum ozone concentrations

for regulatory purposes, as promulgated recently by the

US EPA, reduces the influence of the intra-day
fluctuation on the daily maxima (i.e., the ‘inherent’
uncertainty associated with individual 8 h daily max-

imum values) to about 1%. The failure to properly
capture the processes on the diurnal time scale, however,
still introduces uncertainty to the 8 h daily maximum

ozone predictions, which is part of the ‘reducible’
uncertainty confronting model users as discussed above.
As an important implication to the use of models for

regulatory purposes, our result of better model perfor-

mance on longer time scales supports the approach
of averaging the predicted daily maximum ozone
concentrations when using these models for regulatory

purposes as suggested by Sistla et al. (2001). This view is
also supported by a recent study (Rao et al., 2000a) that
investigated the differences in the daily maximum ozone

predictions from a variety of episodic simulations with

Fig. 6. Spatial map depicting the ‘inherent’ uncertainty in predicting daily maximum ozone concentrations.
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various combinations of state-of-the-art photochemical
modeling systems.

In summary, the use of grid-based photochemical
models for predictions of maximum ozone concentra-
tions on individual days at individual grid cells has

substantial uncertainties thatFat this pointFwarrant
against using them for this purpose in the regulatory
setting. These uncertainties are caused not only by the
inadequate spatial resolution of the models themselves,

imperfect scientific understanding of the underlying
processes, and random and systematic errors in the
input data used for photochemical model simulations,

but also the lack of sufficient and adequate spatio-
temporal resolution of required input fields (e.g.
emissions, soil moisture). It is important to realize that

a modeling system is only as strong as its weakest link.
However, since the coarser scale models can capture the
critically important longer-temporal signals quite well,

their use in policy-making applications is appropria-
teFparticularly in light of the growing understanding
that longer time scales need to be considered when
assessing emission control strategies (Porter et al., 2001;

Hogrefe et al., 2000). This latter viewFwhich supports
the importance of long-range spatio-temporal processes
(the BL, SY, and to some extent DU signals) in the

ozone problemFis also reflected in the current US EPA
guidance on the use of photochemical models that calls
for the use of ozone concentrations averaged over all

episode days modeled rather than individual daily
maximum concentrations for policy purposes (United
States Environmental Protection Agency (US EPA),
1999). In related studies, Kasibhatla and Chameides

(2000) also argue that current-generation modeling
systems are better able to predict the ensemble of events
that shape the spatial distribution of ozone on a seasonal

scale rather than predict individual episodes, and
Bouchet et al. (1999) report that the climatology of
ozone in July during a five-year period is better

characterized by an air quality model than the ozone
distribution during a specific time period. The results of
our study lend further support to these viewpoints.

5. Summary

In this study, ozone predictions from two photo-
chemical modeling systems were evaluated using the
scale analysis concept. Seasonal time series of observa-

tions and predictions for ozone from the RAMS3b/
UAM-V and MM5/MAQSIP modeling systems were
spectrally decomposed into intra-day, diurnal, synoptic

and baseline time scales. While traditional statistics for
model evaluation reveal the presence of a positive bias in
the RAMS3b/UAM-V simulation, they do not provide

any further insight into the strengths and shortcomings
of the models. Scale analysis results reveal that UAM-V

underestimates the relative strength of the intra-day and
diurnal fluctuations and overestimate the relative

strength of the longer-term fluctuations while MAQSIP
approximately captures the relative contributions of all
components. The absolute variance is underestimated by

both modeling systems; however, the underestimation is
more severe for UAM-V. Whereas UAM-V overesti-
mates mean concentrations, the bias is much smaller for
MAQSIP. The standard practice of excluding ozone

concentrations below 60 ppb from the model evaluation
process (United States Environmental Protection
Agency (US EPA), 1991) can mask this behavior of

UAM-V.
A detailed analysis of the average diurnal cycle reveals

that UAM-V does not capture its amplitude and its rate

of change in the morning hours. A plausible explanation
is the inability of the model to properly simulate the
effects of clouds, vertical mixing, and nighttime removal

processes. The average diurnal cycle is properly captured
by MAQSIP. The poor simulation of the diurnal
amplitude in UAM-V points to shortcomings in the
model’s treatment of processes that dominate the

diurnal cycle of ozone that need to be addressed in
future model improvements. Correlations between
model predictions and observations are insignificant

for the intra-day component, high for the diurnal
component because of the inherent diurnal cycle but
low for the amplitude of the diurnal component, and

highest for the synoptic and baseline components for
both modeling systems. While the poor performance on
the intra-day time scale is at least partially related to the
horizontal grid dimension used in the model and the

inability of the input fields (meteorology, emissions, soil
moisture, vegetation cover, etc.) to capture this scale in
time and space, the poor correlation for the amplitude of

the diurnal cycle for both models points to uncertainties
associated with modeling processes on this time scale
that need to be addressed in future model improvements.

A decrease in grid spacing from 36 to 12 km had not
led to a better model performance for the intra-day
component; therefore, a grid spacing even smaller than

12 km would be needed presumably to improve correla-
tions on the intra-day component. Future studies using
higher resolution modeling could employ the spectral
decomposition technique introduced in this paper to

demonstrate the potential benefits of high resolution
modeling.
In sum, the better performance of the model on longer

time scales suggests that modeling periods should be
longer than the duration of a single episode to increase
confidence in the regulatory modeling process. In

addition, the results illustrate that predictions of the
daily maximum ozone concentrations on individual days
at individual grid cells are subject to considerable

uncertainty. Therefore, it is important to average the
daily maximum ozone concentrations over longer time
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periods since it is in better accord with the strengths of
the model to best characterize the synoptic and baseline

time scales. This longer-term averaging is also most
relevant to regulatory policies aimed at meeting and
maintaining the standards.
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