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The geostatistical approach to the inverse problem is discussed with emphasis on
the importance of structural analysis. Although the geostatistical approach is
occasionally misconstrued as mere cokriging, in fact it consists of two steps:
estimation of statistical parameters (“‘structural analysis™) followed by estimation
of the distributed parameter conditional on the observations (‘“‘cokriging™ or
“weighted least squares”). It is argued that in inverse problems, which are
algebraically undetermined, the challenge is not so much to reproduce the data as
to select an algorithm with the prospect of giving good estimates where there are
no observations. The essence of the geostatistical approach is that instead of
adjusting a grid-dependent and potentially large number of block conductivities
(or other distributed parameters), a small number of structural parameters are
fitted to the data. Once this fitting is accomplished, the estimation of block
conductivities ensues in a predetermined fashion without fitting of additional
parameters. Also, the methodology is compared with a straightforward maximum
a posteriori probability estimation method. It is shown that the fundamental
differences between the two approaches are: (a) they use different principles to
separate the estimation of covariance parameters from the estimation of the
spatial variable; (b) the method for covariance parameter estimation in the
geostatistical approach produces statistically unbiased estimates of the param-
eters that are not strongly dependent on the discretization, while the other method
is biased and its bias becomes worse by refining the discretization into zones with
different conductivity. Copyright © 1996 Elsevier Science Ltd

1 INTRODUCTION

Mathematical solutions to the equations that describe
groundwater flow and the transport and transformation
of solutes are important tools for predicting the
behavior of a hydrogeologic system. However, pre-
dictions made by such simulation models cannot be
reliable without representative values for the hydro-
geologic parameters, the mass sources and sinks,
boundary conditions, etc. Most parameters must be
inferred from data.

The literature on estimating groundwater parameters
is voluminous? and the problem is still receiving much
attention, as adequate site characterization is recognized
as crucial in making good predictions and decisions and
as new methods for measurements are developed. The
diversity among available methods confounds those who
have not devoted substantial effort in studying the
problem.

In my judgement, the well-studied and established
methods of statistical inference provide the basis for
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solving estimation problems encountered in hydro-
geology, especially challenging inverse problems. For
example, methods of nonlinear least squares or non-
linear regression have proven particularly useful.*’
However, the estimation of spatial processes involves
distinctive challenges that have not been addressed in
other fields. Principal among them is that the estimation
from some measurements of an arbitrarily large number
of parameters, obtained from the discretization of a
spatial function, is an ill-posed problem. The established
but unfortunate term ‘‘ill-posed” simply means that
there are more unknowns than equations, resulting in an
under determined system of equations. The numerous
different ways of possible reformulation (or *“‘param-
etrization”) of this problem into a problem with a well-
defined solution accounts for the proliferation of
available methods.

Carrera and Glorioso® pointed out similarities
between two methods for the solution of the inverse
problem, particularly the estimation of conductivity or
transmissivity from head and other measurements: the
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geostatistical approach or GA;%!®12182L2224 454 4

somewhat related maximum likelihood approach or
MAP.? This work has two principal objectives:

1. to discuss the essential points of the geostatistical
approach, and

2. to highlight through theoretical analysis and
examples the key differences between GA and
MAP.

2 THE GEOSTATISTICAL APPROACH

One of the methods for the solution of the inverse
problem, proposed by Kitanidis and Vomvoris,'® is
based on a parametrization familiar from the theory of
random fields that has been used extensively in the
stochastic approach to subsurface flow and transport.”’
This parametrization has been popularized in geo-
physics by the classical geostatics of Matheron;'® for
this reason, this method was named “geostatistical”.
The formal framework within which Kitanidis and
Vomvoris'® approach the inverse problem is that of
standard statistical inference!®?®? and the theory of
stochastic differential equations.

The spatially variable parameter to be determined
(typically the log-conductivity) is represented as a
realization of an appropriately characterized random
field. In practice, the characterization is usually limited
to specifying a mean function and a covariance function.
Such a model is justified as a practical way to represent
the structure of the unknown function without making
overly strong or restrictive assumptions. Matheron!®
and others have argued that deterministic trend func-
tions are not appropriate for the description of erratic
variability, especially small-scale variability or random-
walk type variability; information about such vari-
ability is more suitably represented through low-order
statistics. Geological processes are complex and it is
difficult to predict in quantitative terms the variability of
parameters such as hydraulic conductivity, porosity, etc.
In most geostatistical applications, the simplest mean
function (i.e. a constant) is conservatively adopted and
the structure of the process is described through the
variogram. This approach is compatible with the
fundamental principle of inference that dictates that:
the simplest and least restrictive empirical model that
agrees with what is otherwise known should be fitted to
the data; and that complexity should be added to the
empirical model only if it leads to a statistically
significant improvement in the fit to the data and is
not inconsistent with other information.

In this approach, parameter estimation is carried out
in two stages. The first stage, known as structural
analysis, is the characterization of the random field. For
example, in the most basic case, the variogram is
selected. The second stage is that of conditioning on

the data, which is a well-defined mathematical problem
once the structure has been selected: derive estimates
(or the conditional distribution) of the unknown
parameters given the observations. In the case that the
relation between the set of observations and the
unknowns can be linearized, the minimum-variance
linear unbiased estimates of the parameters are obtained
in a straightforward fashion through an algorithm
known in geophysics as cokriging. By contrast, the
process of structural analysis involves inducing a model
from the data. This process may not be fully automated
but must be applied in three steps:

1. Exploratory analysis of the data leads to a tentative
selection of a simple empirical model with a very
small number of adjustable parameters to describe
the structure of the variable to be estimated;

2. Parameter estimation, where for a given model the
best possible (in some sense) estimates of the
adjustable parameters are obtained through fitting
to the data;

3. Model criticism (also known as validation), where
the fitted model is checked by performing some
statistical tests that may reveal model inadequacies
and may lead to model modifications.

It is nonsensical to introduce an empirical model with
too many parameters or with parameters that cannot be
identified from the data. An implicit assumption in the
approach just described is that reasonably accurate
estimates of the parameters can be identified, otherwise,
it may be important to recognize the uncertainty in the
covariance parameters and their effect on the second
step. A methodology for accounting for parameter
uncertainty has been described,' but it is computation-
ally intensive and may be impractical to use in routine
applications. Another reason to avoid using a model
with unidentifiable parameters is that it will likely lead
to difficulties in the fitting of parameters (step 2) which is
a nonlinear optimization procedure. One cannot over-
emphasize the importance of checking that the results of
the optimization make sense and that the estimates are
reasonable, stable, and with acceptable variance of
sampling error. Finally, model criticism is vital because
this is where, by subjecting the empirical model to tests
as severe as possible, one develops some basis for
trusting the results of the inverse modeling. No
methodology or model that precludes the possibility of
being tested and found incompatible with the data can
be considered scientific.

3 FITTING DATA IN THE GEOSTATISTICAL
APPROACH

It has always been stressed®!®131821.22 that the geo-
statistical approach consists of two steps: estimation
of structural parameters followed by estimation of the
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distributed parameter (e.g. block transmissivities).
Despite the emphasis given to that particular point,
this approach has often been misunderstood as “mere
cokriging”. However, as we will argue, cokriging is not
data fitting in any useful sense of the word and
consequently there can be no such thing as “an inverse
method that is mere cokriging”.

Consider what cokriging has to do with matching
data. Given expressions professing to represent the
covariance functions of log-transmissivity and head and
the cross-covariance between log-transmissivity and
head, one may obtain the best estimates of log-
transmissivity and head conditional on observations.
Cokriging reproduces the measurements, no matter how
absurd the assumed covariances or how senseless the
results at points where no observations are available.
That the estimates reproduce the observations is a
consequence of the so-called “exact interpolator”
property. It is a consequence of how cokriging is
formulated. It happens automatically and not because
there is some basis to hope that the predictions are any
good. Of course, the real challenge is not to reproduce
the observations but to devise a rational procedure to
estimate quantities that we do not know, such as
conductivities at points between measurement locations.
There are in principle infinite degrees of freedom
in choosing a spatial function and consequently any
data set can be reproduced through cokriging in a
trifling fashion even with the most absurd geostatistical
model.

Where the important data matching or optimization
occurs is in structural analysis, which is by far the most
interesting step in the analysis. There, a few (structural)
parameters are estimated or fitted to the data. In the
geostatistical approach, all observations are used, rather
than just the log-transmissivity observations as done in
ad hoc methods such as experimental variogram analysis
of log-transmissivity data.

To appreciate better why the estimation of structural
parameters is the real history matching step, we will
review an intuitive interpretation of the structural
parameter estimation method used in Kitanidis and
Vomvoris'® and other applications of the approach,
skipping details that can be found in Kitanidis.'”> We
treat the observations zy, . . ., z, as if they were given in a
certain order. Consider that using a starting subset of
the data zy,...,z,_;, we can predict through cokriging
that we expect the next observation to be Z,. Since
cokriging has not used z; as an observation, there is
generally an error e, = Z; — z, which is a true measure
of the predictive ability of the model. We consider next
an expanded data base zy, .. ., zx, compute the predicted
value Z,,; and the prediction error e, = Z; | — zZxy;-
We continue with this process until we obtain a set of
fitting residuals which depend on the structural param-
eters. (By the way, such an approach is sometimes
termed ‘‘cross-validation”, but this i1s a misnomer

because the issue is parameter estimation.) A basic
principle of inference is that it is eminently reasonable
that parameter values that give small residuals are more
likely than parameter values that give large residuals,
provided of course that the model makes sense and a
small number of parameters are fitted to many observa-
tions. My point is that the approach recommended in
Kitanidis and Vomvoris'® effectively selects the param-
eters that give the best fit in a well-defined sense.

Thus, the basic idea in the geostatistical approach is
that, instead of attempting to solve the ill-posed
problem of fitting a spatial function, the parameters
that describe its structure are fitted. Thus, we end up
with a well-defined parameter estimation problem with
perhaps dozens of observations and only a couple of
parameters. For such a case, it is meaningful to attempt
history matching, the same way that it makes sense for a
biochemist to use the sequence of one hundred or so
observations of chemical concentration in a laboratory
reactor in order to fit a couple of parameters that
describe the rate of biochemical transformation; and the
same way that it would be meaningless to fit a model
with more parameters than data, just to reproduce the
data.

4 LINEAR CASE
4.1 General formulation

Let s represent the variable (such as log-transmissivity)
that needs to be estimated over the flow domain. The
process has a mean parametrized by 3 and a covariance
function parametrized by 8. We discretize the spatial
domain so that s is the m vector of the discretized
variable values and

Els] = X8 (1)

where X is a known m by p matrix, 8 is a p vector of
unknown drift coefficients, and E[-] denotes expected
value. Furthermore, s has a covariance matrix

Els-XB)(s—X3)"]1=Q(8) )

that is considered a known function of parameters .
The exponent 7 stands for matrix transpose.

The B and 6 parameters are treated as unknown
constants and are supposed to be few in number, far
fewer than the observations. The observations are
related to the unknown spatial process and the other
parameters through:

z=h{s)+v (3)

where z is the vector of observations. The observation
error v is random with zero mean and covariance matrix
R, fixed or (for generality) a known function of 6.

The vector z is a random vector, because it is a



336 P. K. Kitanidis

function of s and v that are random vectors. The joint
pdf of z and s depends on the distribution of s and v and
also on the function h:

p(z,s) = p(zls)p(s) 4)
It is common to model the observational errors as
‘Gaussian:
1 _
p(zls) o< |R|"2exp[-1(z— h(s))"R™'(z — h(s))] (5)

where here |-| denotes the determinant of a square
matrix. The prior probability distribution of s is con-
sidered Gaussian (consistent with most previous work):

p(s) x |0 2exp [~ 1(s — XB)TQ ' (s - XB)]  (6)
Then,

p(z,5/8,6) o [R| 2 exp [~} (z - h(s)) "R~ (z — h(s))]

Q| texp[-1(s — XB)TQ (s — XA)]
(7

Furthermore, the (marginal) probability distribution of
z given only 3 and 8 is:

1 1
p(6,0) = | pla.siB.O)ds = (RIHIQI 2|

x exp[—1{(z —h(s))"R™(z - h(s))
+(s-XBTQ '(s—XB)} ds (8)

4.2 Reduced case

Because our objective here is to highlight the similarities
and differences between the geostatistical approach and
the MAP method, nonessential parts will be eliminated
to allow us to focus on a case that is analytically
manageable. First, we will neglect uncertainty in the
drift coefficients so that the drift can be subtracted from
the spatial process. This is formally equivalent to setting
X = 0. Second, we consider that the relation between the
observations and the spatial process is linear:

z=Hs+v 9)

Note that these simplifications are made only in order to
make the main point more visible and that the more
general case can be addressed without conceptual
difficulty, as has been done elsewhere. In particular,
note that the geostatistical approach has been extended
for nonlinear systems.17 Under these conditions the joint
pdf of z and s:

p(z,5/6)  RI"Z/Q| 3
x exp [~ 1 {(z —Hs)"R ' (z — Hs) +s" Q" 's}|
(10)

and the pdf of the observations z is

p(al6) o [RI21QI% x [ exp[~4{(z ~ Hs) R’

x (z — Hs) +s7Q " 's})ds (11)

4.3 Maximum a posteriori probability (MAP) method

Maximum a posteriori probability (MAP) estimation

boils down to maximizing eqn (10) with respect to both s

and 6. (It is the same method that Carrera and Neuman?

call maximum likelihood.) The problem is equivalent to
the minimization of the negative logarithm of eqn (10),

lln|R|+1In|Q|
+1{z—Hs)"R'(z—Hs) +s'Q7's]  (12)

Setting the derivative with respect to vector s equal to
zero and solving for s (as function of 6):

s=MHR'H+Q )'H'R 'z (13)

This is the best estimate of s (if @ were given) and has
mean square error matrix:

V,=H'RH+ Q™! (14)

These two equations constitute a linear estimator
(essentially the same as with cokriging or Gaussian
conditional mean estimation). Since s is a function of 8,
we may substitute into the objective function obtaining
what we need to minimize with respect to 8:

lInR|+1In|Q|
+1LTRT'RTHHR'H+ Q) 'H'R '}z
(15)
or, using a matrix identity,
1n|R| +1n|Q| +1iz" (R + HQH') 'z (16)

Thus, the estimation problem has been separated into
two problems:

1. Structural analysis, or estimation of covariance
parameters 8 from the minimization of eqn (16);

2. Linear estimation, or estimation of spatial function
s from eqn (13).

4.4 Geostatistical approach (GA)

In the geostatistical approach,18 the estimation of
structural parameters is based on the maximization of
the expression of eqn (11), which after performing the
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integration analytically is:
p(z|6) x [R|72|Q|"2H'RTH+Q |2
x exp[iz’{R™' —R'HHTR'H
+Q™)'H'R '}z (17)

or (using matrix identities)

1
p(z/6) o [R + HQH” | Zexp [ 127 (R + HQH”) 7]

(18)

Thus, structural parameters are estimated by minimizing
with respect to 8 the function:

{in |R+HQH| +1z" (R +HQH") 'z (19)

The same results could have been obtained if, like
Kitanidis and Vomvoris,'® we had used the well-known
fact that the linear transformation of a Gaussian vector
is a Gaussian vector, so that z is Gaussian with a mean
zero and covariance matrix R + HQH” .

After the structural parameters have been obtained,
the pdf of s given z can be obtained easily, given that
they are jointly Gaussian, as done, for example, in
Dagan.® The result is eqns (13) and (14).

As the analysis has demonstrated, the estimation
consists of two stages: structural analysis and linear
estimation (cokriging or Gaussian conditional mean).
The second-stage formulae are identical in GA and
MAP methods. However, the objective functions to be
minimized for estimation of structural parameters are
different, as can be seen by comparing eqns (16) and

(19).

4.5 Ilustrative example

Consider a generic linear case where the covariance is
known except for a multiplicative constant @ and the
observation error is extremely small so that R can be
neglected in comparison to Q:

Q=0Q,, R=cR (20)

where Q, is a known m x m matrix of rank m, Ry is a
known n x n matrix of rank n, H is an n x m matrix of
rank n, and the scalar ¢ ~ 0. The numerical values of Q,,
Ry, and H do not matter. We will be concerned here
with cases where m is larger than n, because a domain
can be discretized into an extremely large number
of zones or nodes, whereas measurements are limited
in number. It is reiterated that m is the number of
parameters (zones in the MAP approach) that determine
the discrete number of s variables. Then,

Q| = 61Qu| (21)
R +HQH™ ~ 6HQ,H”, |R + HQH| ~ ¢"HQ,H”|
(22)

Next, we will apply the two methods, the obtained
estimators, and evaluate their properties.

MAP
1 HQ,H")~

min —|Q0|+ Inf+ TM (23)
Set the derivative with respect to 6 equal to zero:

ml 1 p(HQH")'

75 Tk 7 z=0 (24)
to obtain the MAP estimate:

o 1 _

Ormar = EZT(HQOHT) 'z (25)
GA

mm —IHQOHT{ —I— Zin 0+; Twz (26)
Take derivative, then set equal to 0:

nl_1 r(HQH)™

—— - = 27
33 —52 & z=0 (27)
éGA = %ZT(HQOHT)_IZ (28)

4.6 Comparison

Clearly, these two estimators are different. To test for
bias, compute the expected value of each estimator:

E [éMAP] = %E [ZT(HQOHT)_IZ]

=  E[T(HQH") =)

- % Tr((HQoH") ™' E[zz"])

1 n
= m Tr(Lixn)0 = ;0 (29)

Following exactly the same steps:

Elfo) = 1 El" (HQuH") 2 =0 = ¢ (30)
Thus, while the geostatistical approach yielded an
unbiased estimator, the MAP approach vyielded a
biased estimator, with bias that depends critically on
the discretization (into zones of constant conductivity,
for example). The finer the grid, the worse off the bias
and, for a very fine discretization, the MAP method
ends up with one hundred percent relative bias!

To appreciate the practical significance of the bias in
the covariance parameter, consider how it affects the
computed mean square error, given for both cases by
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eqn (14). For the example considered here:
V,=MHR'H+Q")!
= [Qo — QoH" (HQ,H") 'HQy6 (31)

The mean square estimation matrix V, is thus
proportional to the value of 6. If a greatly biased
estimate of # is used, the computed mean square
estimation matrix is not representative of the actual
error. If the domain is discretized into a very large
number of zones, the MAP method will miscalculate the
mean square estimation error to be zero.

5 ASYMPTOTIC BIAS ANALYSIS

The structural parameters in both methods are obtained
from a nonlinear optimization scheme. Theoretical bias
analysis in nonlinear estimation in its most general form
is quite complex. However, we may analyze the
asymptotic case, i.e. that the sample is effectively
“large” and that the MAP and GA estimates Op4p and
GGA are “close” to the true parameters 6. Our objective
here is to demonstrate that while the GA parameter
estimation method is unbiased, the same cannot be said
about the MAP parameter estimation method.

The MAP method estimates structural parameters
from the minimization with respect to 8 of:

Lyap(8) =3 1n |R|+41n |Q| + 42" (HQH” + R)™
(32)
dL _ _
dA;?P =3TrR 'R} + IQ'Q)

— i Tr[(HQH + R)"'(HQH" +R,)

x (HQH” + R)'zz7] (32a)
where R; = ae R and Q; = Taklng expected values and
assuming that E[zz’] = HQHT +R

dLyap] _ 1 -1 1 -1

- % T{(HQHT + R)™'(HQHT + R,)]

(33)
From identity
IR||Q|H'R'H+Q'| = |[HQH™ +R| (34)
by taking logarithms
In [R|+1n |Q|+1In [HTR'H+ Q7|
=In [HQH’ +R| (35)

and differentiating with respect to 6,
TrR7'R] + Tr[Q7'Q) - TF[(HTR'H+ Q7 !)
x (H'R'RR'H+Q'QQ™)]
= Tr[(HQH” +R)"'HQH” +R;)]  (36)

we obtain

dLyap| _ 1 Tp-1 -1
E[ - ]—zTr[(HR H+Q™)

x H'R'IRRH+Q'QQ™Y)] (37)

The GA method, on the other hand, minimizes:

L;4(6) =1ln HQH" + R| +1z" (HQH” +R) 'z
(38)
djg’* 1 Tr[(HQHT +R)™!

x (HQH" +R)) — 1 Tr[(HQH" + R)™
x (HQHT + R)HQH” + Ry 'zzT]  (39)

Taking expected values

dLg,4
— | = 40
5[] = (40
Rao (p. 367)® has proved that asymptotically:
N dL
- —F! 41
0-6=-F'— (41)

where F is the Fisher information matrix (computed for
the true value of the parameters). Intuitively, one may
view this as a Gauss—Newton iteration starting with the
true value 8; because of the assumed proximity of 8 to 9,
one iteration should be sufficient to lead to the final
estimate. Then, taking expected values,

A dL
E6-6=-F'E 42

0-61-—F'5|%] “2)
which expresses the important property that for
asymptotic unbiasedness, the expected value of the
gradient of the log-likelihood function needs to be zero.
As already demonstrated, this is not the case for the

MAP method,

. . [dL
E[@y4p — 6] = —F 1E[%] (43)

Carrying out the same procedure for the GA estimator:

Elfg, — 0] = -F'E [d’;gf‘] —0 (44)

Thus, asymptotically the MAP estimator is biased,
whereas the GA estimator is unbiased.
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6 EXAMPLE FROM INVERSE MODELING
6.1 Case study

We will compare the GA and MAP methods for an
inverse problem that is similar to the one in Kitanidis.'’
Consider steady one-dimensional flow without sources
or sinks:

a% (K(x) %) =0 45)

where ¢ is the hydraulic head and K is the hydraulic
conductivity. It is given as boundary or auxiliary con-
ditions that ¢(0) = 1 and the discharge is ¢ = 5.93. The
downgradient boundary head, ¢(1), is not given. The
objective is to estimate the log-conductivity ¥ =InK
and the head ¢, and to evaluate the uncertainty
associated with the estimation over a grid that covers
the domain of interest with spacing Ax = ;.

The log-conductivity is represented as a realization of
a stationary function with exponential covariance
function:

Cy(x;,x;) = v exp (— M) (46)

where v and / are structural parameters to be estimated.
The measurement errors are taken to be independent
and identically distributed with variance 0% = 1075, i.e.
the measurement error covariance matrix was taken to
be equal to:

R = 0%l (47)

where I is the identity matrix. Before proceeding, let us
review the methods to be applied. Here, s is the n by 1
log-conductivity vector. X is an n by 1 vector of 1s, 3 is
the process mean, and the covariance parameters 8 are
the sill and length parameters of the exponential
covariance function.

6.2 Method GA

Maximize with respect to 6 the expression:

p@l6.0) = | ptal,0)ap< R A HxT QX [
x I(s)ds) (48)
where the integrand is:
I(s) = exp[—4(z — h(s)) "R (z — h(s)) + 5" Gs}]
(49)
G=Q'-Q'xx"Q'x)"'x"Q"" (50)

The estimate of s is simply the value that maximizes
function I (s)."”

6.3 Method MAP

The maximum a posterior method can be applied in
different ways; here we will present the most straight-
forward implementation of the method (which may
differ in details from other implementations). The
objective is to maximize with respect to s, 3, and 0 the
following expression:

p(2518,0) o< [R3QI"2
x exp [~ 4 (z — h(s))"R™!(z ~ h(s))]
x exp[-3(s ~XB8)'Q (s —X@)] (51)
We will minimize the negative logarithm of eqn (51):
Lysp = 5In |R[+1In |Q|
+1i@z- h(s))"R™'(z — h(s))
+3(-X8)"Q7'(s - XB) (52)

which means that the following conditions must be met:

OLmar _ ;. v Ta-ly _
B8 (s—XB)'Q 'X=0 (53)
———6%‘;” =—(z-h@E)"RT'TH+(-X8)7Q ' =0
(54)
T HROR) + Q)

(z—h(s))"R™'R,R"}(z — h(s))

-1
2
1

5(5-X8)'Q7'QQ (s —XB) =0 (55)

The minimization is achieved using Gauss—Newton
iterations.

6.4 Results

Application of the two methods for six conductivity and
12 head observations yielded the following parameter
estimates

GA MAP
v 2.58  0.786
/ 0.649 1.42

In(det(Q)) —251 —446
In(det(V)) -398 —561

The MAP method estimated a smaller variance but a
larger correlation length than GA. These estimates
produce different Q and V matrices (where Q is the prior
and V is the posterior covariance matrix of s). What is of
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more interest in such inverse problems, however, is how
good are the best estimates of s and their mean square
error (MSE) of estimation. To measure how close the
best estimate is to the actual, we use the actual mean
square error which is 0.0562 for GA and 0.568 for MAP.
That is, the two methods produced practically equally
accurate best estimates. But the computed mean square
error and the confidence intervals in the MAP method
are too low. As Figs 1 and 2 show, the actual values
were outside the 95% confidence bounds in five cases for
GA but in 37 values for MAP (out of a total of 100).
Thus, the MAP method does not evaluate appropriately
the reliability of its estimates.

Note that both methods yield estimates that repro-
duce all observations equally well as shown in Figs 1 and
2, as well as in Figs 3 and 4 that show that the head is
predicted with excellent precision despite errors in the
log conductivity.

Additional numerical experiments (not reported here)
support the contention that by increasing %, the ratio of
pixels to observations, the MSE computed by MAP
tends to zero, unlike the MSE computed by GA. For
example, for a subset of the original data consisting of
two conductivity and five head observations, the results
are shown in Figs 5 and 6. As Fig. 6 demonstrates, 76 out
of the 100 values estimated using MAP are outside the
95% confidence interval, indicating that MAP under-
estimates seriously the mean square error. The actual
mean square error in this case is 0.347 for GA and 0.415
for MAP.

Finally, in order to illustrate the importance of
structural analysis, consider that the structural param-
eters are not optimized but are arbitrarily set at v =3
and / = 0. That is, assume that we perform only what in
the linear case is known as “cokriging” and more generally
as “weighted linear or nonlinear least squares”. The GA
and MAP methods yield the same best estimate of s (see
Figs 7 and 8). It is clear that despite the reproduction of
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Fig. 1. Application of GA. Log conductivity: actual (solid
line), estimated (dashed line), 95% confidence interval (dotted
lines), and observations (open circles).
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Fig. 2. Application of MAP. Log conductivity: actual (solid
line), estimated (dashed line), 95% confidence interval (dotted
lines), and observations (open circles).
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Fig. 3. Application of GA. Head: actual (solid line), computed
for best estimate of log conductivity (dashed line), and
observations (open circles).
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Fig. 4. Application of MAP. Head: actual (solid line),
computed for best estimate of log conductivity (dashed line),
and observations (open circles).
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Fig. 5. Application of GA. Log conductivity: actual (solid
line), estimated (dashed line), 95% confidence interval (dotted
lines), and observations (open circles).
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Fig. 6. Application of MAP. Log conductivity: actual (solid
line), estimated (dashed line), 95% confidence interval (dotted
lines), and observations (open circles).
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Fig. 7. Using suboptimal structural parameters. Log con-
ductivity: actual (solid line), estimate (dashed line), and
observations (open circles).
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Fig. 8. Using suboptimal structural parameters. Head: actual
(solid line), from best estimate of log conductivity (dashed
line), and observations (open circles).

the data, this approach gives suboptimal results at
locations where there are no observations.

7 CONCLUDING REMARKS

This paper made some points on the principles and
application of the geostatistical approach to the inverse
problem. In particular, the significance of the structural
analysis part was emphasized. It is during the structural
analysis that the important data fitting decisions are
made. Furthermore, it was demonstrated that the MAP
method of estimation of structural parameters differs in
principle and in practice from the estimation method in
Kitanidis and Vomvoris'® and that the former is biased,
unless the domain is descretized into only a few zones,
while the latter is unbiased even if every node or element
is treated as a separate zone.
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