Jump to main content or area navigation.

Contact Us

Extramural Research

Grantee Research Project Results

NCER Grantee Research Project Results

Climate-Responsive Adaptive Controls for Natural Ventilation

EPA Grant Number: SU835073
Title: Climate-Responsive Adaptive Controls for Natural Ventilation
Investigators: Choi, Joon-Ho , Baur, Stuart W.
Institution: Missouri University of Science and Technology
EPA Project Officer: Lank, Gregory
Project Period: August 15, 2011 through August 14, 2012
Project Amount: $15,000
RFA: P3 Awards: A National Student Design Competition for Sustainability Focusing on People, Prosperity and the Planet (2011)
Research Category: Pollution Prevention/Sustainable Development , P3 Challenge Area - Built Environment , P3 Challenge Area - Energy

Description:

With today’s growing emphasis on minimizing energy use in buildings, energy-efficient active mechanical systems and strategies have admittedly overlooked passive strategies. Critically needed passive cooling or heating can demonstrate that, by maximizing natural resources, quantifiable environmental benefits will be obtained and energy use will be minimized.

Objective:

The objective of the proposed research is to develop a predictive environmental control for natural ventilation based on a real-time sensing of outdoor climate conditions, as well as the indoor thermal environment. In a pilot study, the project investigators carefully evaluated the availability of natural wind based on the weather data of Rolla, Missouri, and estimated that 40% of the energy required for cooling could be realized by adopting natural ventilation as a passive strategy.

Approach:

The proposed research will investigate and determine how significant individual outdoor climatic variables, such as solar radiation, wind speed and direction, outdoor temperature, and humidity levels, contribute to indoor temperatures and humidity conditions, and what the time-lag of heat flow and infiltration would be from outdoor to indoor spaces. These examined parameters will be used in an adaptive control logic, and an appropriate control system for natural ventilation will be constructed, as a test bed, in a residential house located on the campus of the Missouri University of Science and Technology. A validation test and simulation study, adopting yearly weather data, will show quantified environmental benefits derived from the developed control. Successful project performance requires diverse technical skills and explicit knowledge of data acquisition, thermal dynamics, sensing and control, and energy simulations.

Expected Results:

The project outcome will demonstrate how natural ventilation strategies can significantly contribute to environmental sustainability by energy savings without over-cooling conditions, and which parametric options for adaptive controls can be used to maximize the savings potential.

Supplemental Keywords:

Energy conservation, passive design, environmental control

Top of Page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

Jump to main content.