Jump to main content or area navigation.

Contact Us

Extramural Research

1999 Progress Report: Catalysts for Environmentally Benign Organic Reactions in Water

EPA Grant Number: R826120
Title: Catalysts for Environmentally Benign Organic Reactions in Water
Investigators: RajanBabu, T. V.
Institution: Ohio State University - Main Campus
EPA Project Officer: Karn, Barbara
Project Period: November 1, 1997 through October 31, 2000 (Extended to November 16, 2001)
Project Period Covered by this Report: November 1, 1998 through October 31, 1999
Project Amount: $280,000
RFA: Technology for a Sustainable Environment (1997)
Research Category: Economics and Decision Sciences , Pollution Prevention/Sustainable Development

Description:

Objective:

The use of water as an environmentally friendly solvent for the manufacture of chemical intermediates depends on the discovery of new catalysts and processes. The primary objective of this project is the design and development of broadly applicable water-soluble organometallic catalysts. A second objective, highly relevant to green chemistry, is to discover and develop new, highly selective and catalytic reactions in which abundantly available carbon feedstocks such as ethylene and propylene can be used for the synthesis of pharmaceutical and agricultural intermediates.

Progress Summary:

Use of Water as a Solvent for Organic Synthesis: Development of Water-Soluble Organometallic Catalysts from Carbohydrates. Ability of metal ions to catalyze selective reactions depends on the ligands to which they are attached. It was envisioned that carbohydrates, the most readily available natural products, would be used as scaffolding for the preparation of water-soluble metal-complexes. The expectation was that once a metal-sequestering group (in the present case, a trivalent phosphorus atom) was appropriately incorporated on a carbohydrate frame, the resulting ligand would be water soluble. Because there are thousands of carbohydrate molecules to choose from, there exists the possibility of optimizing the catalytic properties of the metal for efficiency and selectivity.

During the first year of this grant, a broadly applicable synthesis of two classes of water-soluble rhodium complexes from readily available sugars, D-salicin and , -trehalose was developed. Applications of these complexes for the synthesis of highly valued amino acids by rhodium-catalyzed hydrogenation reactions of dehydroamino acids in water have been demonstrated.

During the past year (1999), the synthesis of a series of phospholane ligands from another readily available sugar, D-mannitol, was completed. These ligands can be easily converted into water-soluble hydroxyphosphines. The catalytic applications of the complexes of these ligands are currently under study. Preliminary indications are that they are among the best ligands for two prototypical reactions: rhodium-catalyzed hydrogenation (a C-H bond-forming reaction) and palladium-catalyzed allylation reactions (a C-C bond-forming reaction).

Use of Ethylene/Propylene for Fine Chemical Synthesis. Recently, we discovered a new protocol for a nickel-catalyzed codimerization reaction, in which unprecedented yields and selectivity were achieved in the addition of ethylene (1 atmosphere, low temperature, 0.003 equivalents of the nickel catalyst, >95 percent yield) to a variety of substituted styrenes. The products of this environmentally friendly reaction (catalytic use of the metal, no side-products, ambient conditions) are useful for the synthesis of widely-used anti-inflammatory agents such as ibuprofen, flurbiprofen, and naproxen. Another potential application of the resulting products includes the synthesis of high-melting polymers.

We can make one of the two enantiomers (left-handed and right-handed mirror image forms) of the anti-inflammatory agents preferentially using ligands derived from readily available sugars. This is an important discovery because it is well known that only one of the two forms (in this case, the left-handed form) of these molecules has the desired pain-killing ability. Yet, except for naproxen (the active ingredient in ALEVE) all these drugs are sold as a mixture of the two forms.

A study of the basic chemistry associated with this process has allowed us to develop other potentially important applications of this chemistry. Two of these are: (1) a high-yielding addition of propylene to vinylarenes, and (2) catalyzed cyclization of , -dienes for the synthesis of cyclic compounds. Cyclic compounds are ubiquitous in organic chemistry, and selective synthesis of these compounds from readily available precursors is always a challenge.

Future Activities:

During the first 2 years of this project, we have established the basic protocols for the preparation and use of a number of water-soluble ligands and their rhodium complexes. In the next phase of the project, we plan to expand this chemistry to include other metal complexes (ruthenium, palladium, platinum, and nickel) and other reactions: rhodium- and ruthenium-catalyzed hydrogenation of common substrates like imines, ketones, and acrylic acids; rhodium-catalyzed hydroformylation reactions (use of carbon monoxide in synthesis); and palladium-catalyzed cross-coupling reactions.

In the area of ethylene/propylene-codimerizations, we will try to expand the scope of the activated olefins (dienes, strained olefins) that would take part in the reaction. Enhancement of efficiency and selectivity of the catalyst also will be an important goal in these studies.

Both the discovery of new reactions and attempts to control their selectivity are intimately tied to the design and synthesis of new ligands. We anticipate continuing this activity.


Journal Articles on this Report : 9 Displayed | Download in RIS Format

Other project views: All 23 publications 14 publications in selected types All 13 journal articles

Type Citation Project Document Sources
Journal Article Clyne DS, Mermet-Bouvier YC, Nomura N, RajanBabu TV. Substituent effects on ligands on asymmetric induction in a prototypical palladium-catalyzed allylation reaction: Making both enantiomers of a product in high optical purity using the same source of chirality. Journal of Organic Chemistry 1999;64(20):7601-7611 R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article Jin J, RajanBabu TV. Heterodimerization of propylene and vinylarenes: Functional group compatibility in a highly efficient Ni-catalyzed carbon-carbon bond-forming reaction. Tetrahedron 2000;56(15):2145-2151 R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article Nandi M, Jin J, RajanBabu TV. Synergistic effects of hemilabile coordination and counterions in homogeneous catalysis: new tunable monophosphine ligands for hydrovinylation reactions. Journal of the American Chemical Society 1999;121:9899-9900. R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article Radetich B, RajanBabu TV. Catalyzed cyclization of alpha,omega-dienes: A versatile protocol for the synthesis of functionalized carbocyclic and heterocyclic compounds. Journal of the American Chemical Society 1998;120(31):8007-8008 R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article RajanBabu TV, Radetich B, You KK, Ayers TA, Casalnuovo AL, Calabrese JC. Electronic effects in asymmetric catalysis: Structural studies of precatalysts and intermediates in Rh-catalyzed hydrogenation of dimethyl itaconate and acetamidocinnamic acid derivatives using C-2-symmetric diarylphosphinite ligands. Journal of Organic Chemistry 1999;64(10):3429-3447 R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article RajanBabu TV, Nomura N, Jin J, Radetich B, Park HS, Nandi M. Hydrovinylation and related reactions: New protocols and control elements in search of greater synthetic efficiency and selectivity. Chemistry-A European Journal 1999;5(7):1963-1968 R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article Shin S, RajanBabu TV. Water-soluble organometallic catalysts from carbohydrates. 1. Diarylphosphinite-Rh complexes. Organic Letters 1999;1:1229-1232. R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article Yan Y, RajanBabu TV. Highly flexible synthetic routes to functionalized phospholanes from carbohydrates. Journal of Organic Chemistry 2000;65. R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Journal Article Yan YY, RajanBabu TV. Ligand tuning in asymmetric catalysis: Mono- and bis-phospholanes for a prototypical Pd-catalyzed asymmetric allylation reaction. Organic Letters 2000;2(2):199-202 R826120 (1999)
R826120 (2000)
R826120 (Final)
not available
Supplemental Keywords:

innovative technology, environmentally conscious manufacturing, homogeneous catalysis, pharmaceutical intermediates, organic chemistry in water, carbon feedstocks is synthesis, waste minimization., RFA, Scientific Discipline, Sustainable Industry/Business, Chemical Engineering, cleaner production/pollution prevention, Environmental Chemistry, Sustainable Environment, Technology for Sustainable Environment, cleaner production, environmentally conscious manufacturing, transition metal catalysts, environmentally benign water cycles, carbon bond formation, catalysts, green process systems, SIC = pharmaceutical , ligands, pollution prevention, green chemistry

Progress and Final Reports:
Original Abstract
2000 Progress Report
Final Report

Top of Page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

Jump to main content.