Jump to main content or area navigation.

Contact Us

Extramural Research

Grantee Research Project Results

Grantee Research Project Results

Optimization of the Hydraulic Design and Performance of Iron-Based Permeable Reactive Barriers.

EPA Grant Number: F6A20657
Title: Optimization of the Hydraulic Design and Performance of Iron-Based Permeable Reactive Barriers.
Investigators: Henderson, Andrew D
Institution: University of Michigan
EPA Project Officer: Jones, Brandon
Project Period: September 1, 2006 through September 1, 2009
Project Amount: $111,000
RFA: STAR Graduate Fellowships (2006)
Research Category: Academic Fellowships , Fellowship - Groundwater Geochemistry , Fellowship - Groundwater Remediation , Fellowship - Hydraulics , Hazardous Waste/Remediation

Description:

Objective:

Permeable Reactive Barriers (PRBs) are a promising, though still relatively new approach to remediating groundwater contaminated with heavy metals or organics. However, there is still uncertainty about the longevity of these passive, in situ systems. This research aims to improve this technology by contributing to understanding of their geochemical performance and by extending their operational longevity.

To gain a fundamental understanding of the hydraulic changes in reduced metal media in the subsurface. Based on this mechanistic understanding, this research will aim to extend the longevity of PRBs by manipulating the particle size distribution of the reactive media, as well as the ratio of reactive to non-reactive media.

Approach:

Task 1) Measurement of geochemical parameters in lab-scale PRB columns that accurately reflect field geochemical conditions.
Task 2) Analysis of the type and distribution of precipitated solids in the reactive media.
Task 3) Minimization of effects of precipitates via variation of a) the ratio of reactive to nonreactive media and b) particle size distribution.

Expected Results:

Design guidance to extend the operational lifespan of PRBs, based on new insights into the interplay of geochemical and hydraulic changes that occur in PRBs.

Supplemental Keywords:

groundwater remediation, Permeable Reactive Barriers (PRBs), reduced metal, precipitation, passivation, hydraulic conductivity, permeability, longevity, heavy metals, chlorinated organics,, Scientific Discipline, Waste, POLLUTANTS/TOXICS, Chemical Engineering, Remediation, Environmental Chemistry, Chemicals, Groundwater remediation, biodegradation, hazardous waste, chlorinated organic compounds, demonstration, permeable reaction barriers, treatment technologies, waste mixtures, permeable barrier technology, heavy metals, bioremediation

Top of Page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

Jump to main content.