Jump to main content or area navigation.

Contact Us

Extramural Research

Grantee Research Project Results

NCER Grantee Research Project Results

The Contribution of Exposure Measurement Uncertainty on the Total Uncertainty in Epidemiology Study Results

EPA Grant Number: U916158
Title: The Contribution of Exposure Measurement Uncertainty on the Total Uncertainty in Epidemiology Study Results
Investigators: Jurek, Anne M.
Institution: University of Minnesota - Twin Cities
EPA Project Officer: Zambrana, Jose
Project Period: January 1, 2003 through January 1, 2006
Project Amount: $145,344
RFA: STAR Graduate Fellowships (2003)
Research Category: Fellowship - Public Health Sciences , Academic Fellowships , Health Effects

Description:

Objective:

The objective of this research project is to apply uncertainty analysis to epidemiologic studies to provide a more honest reporting of the uncertainty in epidemiologic study results. All epidemiologic study results have some amount of error, both random and systematic. One important source of systematic error in study results is faulty measurement of study exposures. Some exposures, such as exposure to environmental tobacco smoke, provide greater challenges in measuring than others such as gender. However, whatever the exposure, the ability or inability to quantify the error can have a large effect on a study's impact on public health decisions.

Approach:

Routine epidemiologic practice involves formally quantifying only random error, thereby leaving other sources of error, such as exposure-measurement error (EME), to be dealt with informally, typically in the discussion section. Based on a survey I conducted of the epidemiologic literature, EME is sometimes completely ignored when interpreting study results; in other cases, EME is merely qualitatively interpreted. Given the current state of epidemiologic research, when addressing EME, many questions that must be answered to conduct accurate public health research cannot be answered. These questions include:

1. How much EME is present?
2. In what direction is this error in the study results?
3. What is my uncertainty about this error in the study results?

Because of these questions, my research uses uncertainty analysis, a probabilistic approach to sensitivity analysis, to clearly describe the effect of EME on the uncertainty in epidemiologic study results. Numerical simulation methods are used to generate the probability distributions for EME. Uncertainty analysis provides a more accurate representation of the uncertainty in epidemiologic study results, allowing for better-informed public health decisions.

Supplemental Keywords:

fellowship, exposure measurement, uncertainty analysis, exposure-measurement error, EME, epidemiologic study results, epidemiologic literature.

Top of Page

The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Conclusions drawn by the principal investigators have not been reviewed by the Agency.

Jump to main content.