Research Grants/Fellowships/SBIR

Implications of Nanomaterials Manufacture and Use: Development of a Methodology for Screening Sustainability

EPA Grant Number: R830910
Title: Implications of Nanomaterials Manufacture and Use: Development of a Methodology for Screening Sustainability
Investigators: Beaver, Earl R. , Beloff, Beth , Tanzil, Dicksen , Wiesner, Mark R.
Institution: BRIDGES to Sustainability , Rice University
EPA Project Officer: Lasat, Mitch
Project Period: May 1, 2003 through April 30, 2005
Project Amount: $99,740
RFA: Environmental Futures Research in Nanoscale Science Engineering and Technology (2002) RFA Text |  Recipients Lists
Research Category: Nanotechnology , Safer Chemicals



Advances in nanotechnology present opportunities for more sustainable industries through new or improved materials and devices. Many potential applications in waste treatment, "green" processing, process control, safety, etc., may significantly enhance the environmental performance and efficiency of industrial activities. Nevertheless, the relative magnitudes of the potential benefits have not been fully understood and there are concerns about potential harmful consequences especially from a life cycle and sustainability perspective.

In response to these challenges, a screening methodology will be developed and applied to assess the relative magnitudes of potential sustainability impacts of the future applications of nanomaterials especially in industrially important areas of membranes, catalysis, and nanotechnology-enabled sensors. The assessment will address the life-cycle costs and benefits including the environmental implications in the production of the nanomaterials.


The assessment will focus on the manufacture of fullerenes and mineral nanoparticles and their near- to intermediate-term uses in membranes, catalysis, and sensors. Laboratory studies on the production and use of the nanomaterials will be summarized and extrapolated to estimate their effects on industries in terms of resource use and environmental impacts. A set of questions and indicators will be developed to assess the sustainability of the technology applications. The resulting screen will permit assessment of the potential life-cycle effects on resource use, pollutant emissions, health, safety, security, and other areas of sustainability. In addition, it will lead tothe identification of key uncertainties with respect to the technology developments and their impacts. Iterative interviews with other experts will be conducted to gather consensus on the most likely scenarios. Cursory comparisons between the nanotechnology applications withalternative techniques that will bring similar of benefits will also be performed.

Expected Results:

The project will provide a framework to assist decision makers in directing research efforts towards capturing the most significant benefits of nanotechnology while preparing for potential harmful consequences. The proposed analysis will present a more comprehensive view of the sustainability benefits and potential harmful consequences of the industrial use of nanotechnology in the above mentioned areas and identify further research needs. Evaluation of the impacts associated with the manufacture of the nanomaterials will provide critical information for virtually every downstream assessment of the impacts of technologies based on the products of nanochemistry. Furthermore, the methodology developed in this proposed work can be applied to screen for additional sustainable applications of nanotechnology and other emerging technologies.

Publications and Presentations:

Publications have been submitted on this project: View all 3 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 1 journal articles for this project

Supplemental Keywords:

sustainable development, green chemistry, life-cycle analysis, technology assessment., Scientific Discipline, Air, Sustainable Industry/Business, Environmental Chemistry, Environmental Monitoring, New/Innovative technologies, Engineering, Chemistry, & Physics, Environmental Engineering, life cycle analysis, nanotechnology, green engineering, green processing, catalysts, catalytic studies, environmental contaminants, technology assessment, nanomaterials, green chemistry, membrane technology

Progress and Final Reports:
2003 Progress Report
Final Report