Research Grants/Fellowships/SBIR

Synthetic and Natural Small Molecule Zebra Mussel Anti-foulants

EPA Grant Number: R829421E03
Title: Synthetic and Natural Small Molecule Zebra Mussel Anti-foulants
Investigators: Hamann, Mark T.
Institution: University of Mississippi Main Campus
EPA Project Officer: Winner, Darrell
Project Period: October 1, 2001 through September 30, 2003
Project Amount: $109,732
RFA: EPSCoR (Experimental Program to Stimulate Competitive Research) (2001) RFA Text |  Recipients Lists
Research Category: EPSCoR (The Experimental Program to Stimulate Competitive Research)

Description:

The colonization, and consequently the clogging or fouling, of water intakes by zebra mussels (Dreissena polymorpha) is so severe that "The U.S. Fish and Wildlife Service forecasts $5 billion in losses over the next decade to manufacturing, power, and municipal water intake facilities that use Great Lakes water." Concern has been raised over the use of copper-based and tin-based compounds as anti-foulants as they are generally toxic to aquatic life. Alternative anti-fouling approaches are needed.

Objective:

The objectives of this proposal are to: 1) Measure the anti-fouling efficacy of natural and synthetic small molecules with tyrosine-based chemical structures; 2) Determine the ability of these compounds to prevent the formation of DOPA-containing "glue proteins" in zebra mussel (Dreissena polymorpha) adhesive plaques; 3) correlate the anti-fouling and "glue protein" forming properties of these compounds with their tyrosine hydroxylase inhibiting activity. Our hypothesis is that small tyrosine-based molecules will be efficacious zebra mussel anti-foulants.

Approach:

Our approach will be to test for zebra mussel anti-fouling activity using a zebra mussel reattachment bioassay and to correlate the anti-fouling efficacy of small tyrosine-derived molecules with their ability to both inhibit tyrosine hydroxylase activity and to prevent the formation of DOPA-containing glue proteins.

Expected Results:

The expected results are that small tyrosine-based molecules from synthetic and natural sources will be efficacious zebra mussel anti-foulants. In addition, we anticipate a positive correlation between anti-foulant properties and the ability to inhibit both the formation of DOPA and tyrosine hydroxylase activity. This research on the potential molecular mechanisms of zebra mussel anti-fouling agents should help to usher in a new generation of zebra mussel anti-foulants, and it may help to explain the general biology of anti-foulant strategies utilized by a wide range of aquatic species. Understanding the principles of naturally-occurring anti-fouling strategies may provide highly specific and environmentally-friendly ways of combating zebra mussel infestations.

Publications and Presentations:

Publications have been submitted on this project: View all 2 publications for this project

Journal Articles:

Journal Articles have been submitted on this project: View all 1 journal articles for this project

Supplemental Keywords:

aquatic science, biology, central, zoology, industry, biofouling, environment-friendly., RFA, Scientific Discipline, Ecosystem Protection/Environmental Exposure & Risk, Ecology, exploratory research environmental biology, Environmental Chemistry, Ecosystem/Assessment/Indicators, Ecosystem Protection, Geochemistry, Fate & Transport, Ecology and Ecosystems, ecological effects, fate and transport, chemical ecology, zebra mussel anti-foulants, biofoulfing, ecosystem assessment, aquatic habitat, ecosystem management, chemical kinetics, aquatic ecosystems, bioassay, aquatic ecology

Progress and Final Reports:
2002 Progress Report
2004 Progress Report